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Abstract
Background/Aims: Drug-induced acute kidney injury (AKI) has been a severe threat to 
hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We 
investigated the protective activity of Dendropanax morbifera (DP), a medicinal plant which 
has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI) using 
cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E) 
and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: 
Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. 
Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, 
EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF) was found to be 
most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, 
mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment 
with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and 
serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, 
and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased 
cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute 
kidney damage.

Introduction

The kidney is one of the most susceptible target organs for drug-associated toxicity 
because of its high perfusion rate and high capability for drug uptake and metabolism. 
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Various types of drugs can be accumulated in kidney tissue in either the parental form or 
metabolites, resulting in critical impairment of renal function. This drug-induced acute 
kidney injury (AKI) is a severe threat to hospitalized patients [1]. There have been intensive 
efforts to develop strategies to minimize drug-induced AKI. Among several drugs that induce 
AKI, cisplatin is the most established and has been commonly used in studies aimed to 
elucidate mechanistic and preventive factors for drug-associated AKI [2, 3].

Cisplatin [cis-dichlorodiammineplatinum (II), CP] is a potent chemotherapeutic drug 
that is used in the treatment of various solid tumors including testis, breast, lung, and uterine 
cervix carcinomas [4, 5]. However, the severe adverse effects of CP, including nephrotoxicity, 
have limited its clinical use in cancer treatment [2, 6]. Approximately one-third of patients 
undergoing CP treatment have shown clinical nephrotoxicity [2, 3], as indicated by reduced 
glomerular filtration rate, increased serum creatinine, and dysregulated serum electrolyte 
levels [3, 7]. The proximal tubular epithelial cells, in which CP is actively accumulated to 
levels 5-fold higher than that in serum [8], are known to be a major target for CP toxicity 
[9, 10]. Although the nephrotoxic mechanisms of CP are not completely understood, several 
studies have reported involvement of the generation of free radicals including reactive 
oxygen species, disruption of mitochondrial function, depletion of anti-oxidant capacity, 
and activation of cell death machinery including apoptotic or necrotic pathways [11-13]. To 
develop novel strategies to prevent and/or reduce drug-induced AKI, diverse pharmacologic 
and molecular approaches have been investigated using CP-induced AKI [7]; however, the 
clinical applications of these preventive approaches are still limited [3]. In this context, multi-
modal approaches that can modulate the complex mechanisms of AKI may have benefits. 
Considering their pluripotent activities, natural products and herbal medicine are potential 
candidates for prevention of CP-induced AKI.

Dendropanax morbifera (Araliaceae) (DP) is an endemic species found in the 
southwestern region of South Korea [14]. Although the roots, leaves, seeds, and stems of 
this plant have long been used in traditional medicine for the treatment of several symptoms 
including headache, infectious diseases, skin diseases, and dysmenorrhea [15], the biologic 
activities of DP are not fully understood. Several recent papers reported the beneficial 
effects of DP extracts or compounds isolated from DP, including anti-complement, anti-
atherogenic, anti-cancer, and anti-diabetic activities [16-19], and the anti-oxidant activity of 
DP was proposed as the main mechanism underlying these biologic benefits. Interestingly, 
the nephroprotective potential of DP was described in the Bencao Gangmu (Compendium 
of Materia Medica), the most complete and comprehensive pre-modern textbook on herbal 
medicine. However, the biologic activity of DP against nephrotoxicity has not been elucidated.

In this study, we evaluated the protective potential of Dendropanax morbifera against 
CP-induced nephrotoxicity using in vitro renal proximal tubular epithelial cells and in vivo 
rat models. The mechanisms underlying its protective effects were also investigated. Our 
study provides new insight into the biologic activity of DP, as well as its therapeutic potential 
as a novel treatment for drug-associated AKI.

Materials and Methods

Reagents 
Cisplatin (CP) was obtained from Sigma-Aldrich (USA) and dissolved in DMEM (Dulbecco’s Modified 

Eagle Medium; Gibco BRL, Canada). Extracts from Dendropanax morbifera Leveille were provided from CL 
Institute, and dissolved in DMSO (dimethyl sulfoxide, Merck, USA).

Plant material and Preparation of extracts from Dendropanax morbifera 
The leaves of Dendropanax morbifera (DP) was purchased at a local herbal market in the southern area 

of Korea, in September 2012. The plant was authenticated and a voucher specimen has been deposited in 
the faculty of Herbarium of College of Pharmacy, Hanyang University (No. HYUP-DP-001). The dried leaves 
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of DP (1 kg) were extracted with 3 L of 70% MeOH for 2 weeks at room temperature. The extract solution 
of DP was vaporized under reduced pressure to yield approximately 167 g of crude total methanolic extract 
(yield 16.7%). For fractionation, the methanolic extract of DP was partitioned successively with n-hexane, 
chloroform, ethyl acetate, and n-butanol (Fig. 1A). Each extract was vaporized to dryness under reduced 
pressure and stored at 4°C. The concentrations of DP extracts used in in vitro and in vivo studies were 
determined based on the literatures on bioactivity of extracts from natural products and our pilot studies. 

Rat renal tubular cell culture 
NRK-52E cells (rat renal tubular epithelial cells) were obtained from ATCC (VA, USA) and grown in 

DMEM supplemented with 5% heat-inactivated FBS (fetal bovine serum, Gibco BRL, USA) and 100 units/mL 
penicillin and 100 μg/mL streptomycin (Welgene, Korea). Cells were maintained in an incubator (95% air, 
5% CO2) at 37°C. Experiments were performed with NRK-52E cells at 80% confluence.

Cell viability 
Cell viability was measured by MTT assay (Sigma-Aldrich, USA). Cells were seeded in 96-well plates at 

a density of 5×103 cells/well and incubated at 37°C for 24 h. After treatment with various concentrations of 
CP and/or DP extracts for 24 h, MTT solution was added (final concentration 5 mg/mL) and the cells were 
incubated at 37°C for 2 h. The supernatants were removed and 100 μL DMSO was added to each well to 
extract the formazan. The plate was mixed on plate shaker and the absorbance at 570 nm was recorded. Cell 
viability was calculated as a percentage compared to control cells.

Fig. 1. Effect of total MeOH extract and sub-fractions from Dendropanax morbifera (DP) on cisplatin-in-
duced cytotoxicity in rat renal tubular epithelial cells (NRK-52E). (A) Representative scheme for preparati-
on of each fraction was shown. (B and C) Viability in NRK-52E cells was determined using a MTT assay after 
treatment with DP extract or sub-fractions (10 μg/mL) with (B) or without (C) cisplatin (CP; 30 μM) for 24 
hr. Values are means ± SEM. **p<0.01 vs. control, ##p<0.01 vs. CP alone. B: N=4; C: N=3.
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Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential 
Generation of ROS (reactive oxygen species) was examined using CM-H2DCFDA (5-(and-6)-

chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester, Invitrogen, UK) [20]. Cells were 
seeded in 96-well plates at a density of 1×105 cells/well and incubated at 37°C for 24 h. After treatment with 
30 μM CP and/or 10 μg/mL DP extract for 24 h, DCF (final 10 μM) was added to each well and the plates 
were incubated at 37°C for 20 min in the dark. Images were obtained by fluorescence microscopy (Nikon 
Eclipse Ti). The fluorescence signal score was calculated using a region of interest (ROI) statistics program 
for fluorescence microscopy.

Mitochondrial membrane potential was measured using JC-1 (Invitrogen, UK). After treatment with CP 
and/or DP as described above, JC-1 (final 5 μM) was added to each well and the plates were incubated for 30 
min at 37°C in the dark. Images were captured by fluorescence microscopy. Red fluorescence corresponds to 
the aggregate form of JC-1 at normal membrane potential and green fluorescence indicates the monomeric 
form at disrupted lower membrane potential [21].

Caspase-3 activation 
Activation of caspase-3, an enzyme responsible for apoptotic cell death, was examined by immunoblot 

analysis of cleaved active caspase-3 and enzymatic assay. 
For immunoblotting, cells were seeded in 6-well plates at a density of 1×105 cells/well and incubated at 

37°C for 24 h. After treatment with 30 μM CP and/or 10 μg/mL DP extracts for 24 h, the cells were lysed using 
RIPA buffer (Thermo Fisher Scientific, USA) containing a proteinase inhibitor cocktail (Thermo Scientific, 
USA) and harvested by centrifugation. The protein concentrations in the supernatant were determined 
by bicinchoninic acid assay (Thermo Scientific). Protein extracts were mixed with Laemmli sample buffer 
and heated at 95°C for 3 min. Samples were separated by SDS-PAGE using 12% gels and transferred to 
polyvinylidene difluoride membranes (Bio-Rad, USA). After blocking, the membrane was incubated with 
primary antibody targeting caspase-3 (Cell Signaling Technology, USA) or α-actinin overnight at 4°C. After 
washing, the membrane was incubated with secondary antibody and protein bands were detected by the 
SuperSignal® West Pico Chemiluminescent Substrate (Thermo Scientific, USA).

Activity of caspase-3 was examined using a caspase-3 assay kit (Cayman Chemical, USA). Cells were 
treated with CP and/or DP as described above, and lysed according to the protocol. Activity of caspase-3 was 
detected using a fluorescent substrate. Fluorescent intensity (λex= 485 nm; λem=535 nm) was recorded and 
expressed as a percentage of the absorbance from the control cells.

DNA fragmentation 
Cells were treated with 30 μM CP and/or 10 μg/mL DP extracts for 24 h, detached by trypsinization, 

and fixed with 70% EtOH at -20°C for 24 h. Samples were washed with PBS containing 1% FBS, and then 
incubated with Ribonuclease A (10 mg/mL; USB Co, USA) for 30 min at 37°C in the dark. Propidium iodide 
(PI, 2 mg/mL; Sigma, USA) was added and DNA fragmentation was analyzed by flow cytometry using a 
Guava® easyCyte™ 8 Flow Cytometer (Millipore, USA). 

Animal treatment 
All animal protocols were approved by the Institutional Animal Care and Use Committee at Hanyang 

University (IACUC 2012-105). Sixteen male Sprague Dawley rats (8 weeks old, body weight 200±10 g) were 
used (KOATECH, Korea). The rats were randomly divided into four groups and housed under standard 
laboratory conditions (12 h light: 12 h dark cycle at 25±2°C). Prior to initial treatment, all animals were 
fasted overnight although water was provided ad libitum. Body weight and consumption of food and water 
were measured on a daily basis. CP (6 mg/kg) was intraperitoneally (i.p.) injected into animals to induce 
nephrotoxicity. Dried extracts from DP were dissolved in DMSO and administered to animals by i.p. injection 
(1% DMSO in saline). DP was administered once at 24 hr before CP injection, and once a day for 5 consecutive 
days after CP injection.

The rats in the four groups were treated as follows; Group 1 (vehicle control): 1% DMSO in saline; 
Group 2 (CP alone): single administration of CP (6 mg/kg); Group 3 (DP 25 + CP): CP (6 mg/kg) with 25 mg/
kg DP; Group 4 (DP 25 alone): 25 mg/kg DP.
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Rats were sacrificed on the seventh day after CP injection and blood and kidney samples were isolated 
to examine nephrotoxicity. Blood was collected and centrifuged for 15 min at 12,000 rpm to obtain serum. 
The levels of blood urea nitrogen (BUN) and creatinine were measured in Neodin VetLab (Seoul, Korea). The 
kidneys were weighed and subjected to histologic observation and biochemical assays. 

Histopathologic examination 
Kidneys were fixed in 4% formalin solution. After dehydration in graded alcohol, formalin-fixed 

kidneys were embedded in paraffin, sectioned at 5 μm, and stained with hematoxylin and eosin (H&E) for 
evaluation by light microscopy. Histologic changes induced by acute tubular necrosis (ATN score) were 
evaluated in the outer stripe of the outer medulla and the cortex and quantified by counting the percentage 
of tubules that displayed cell necrosis, cast formation, loss of brush border, and tubule dilatation as follows: 
0=none, 1= <10%, 2= 11-25%, 3= 26-45%, 4=46-75%, and 5= >76% [22]. At least 10 fields (×200) were 
evaluated for each slide.

Renal activity of superoxide dismutase and caspase-3 
Kidney tissue was washed with cold phosphate buffered saline (PBS) to remove blood and 

homogenized in sucrose buffer (0.25 M sucrose, 10 mM Tris, and 1 mM EDTA, pH 7.4). Kidney homogenates 
were centrifuged at 10,000 rpm for 15 min at 4°C. The supernatant was used for determination of total 
superoxide dismutase (SOD) activities using a SOD determination kit (Sigma-Aldrich Chemicals GmbH, 
Bushs, Switzerland). The absorbance at 450 nm was recorded and SOD activity was calculated using the 
manufacturer’s protocol.

Statistical analysis 
The means and standard errors of means (SEM) were calculated for all treatment groups. Data were 

subjected to one-way ANOVA (analysis of variance) test and t-test to determine the statistical significance. 
For all analyses, a p value < 0.05 was considered significant.

Results

In vitro protective effect of DP against CP-induced toxicity in renal tubular epithelial cells
To examine the protective potential of Dendropanax morbifera (DP) on cisplatin (CP)-

induced nephrotoxicity, we used tubular epithelial cells which are the most susceptible kidney 
cell type to xenobiotic-induced toxicity. Treatment with CP (30 μM) for 24 hr significantly 
decreased viability of rat kidney tubular epithelial cells (NRK-52E) (Fig. 1B). To evaluate the 
protective effect of DP, NRK-52E cells were treated with various DP extracts (10 μg/mL; total 
methanol extract and successive sub-fractions using n-hexane, CHCl3, EtOAc, n-BuOH, and 
H2O). Among these DP extracts, total MeOH extract and the CHCl3 sub-fraction significantly 
protected cells against CP-induced cytotoxicity (Fig. 1B). In contrast, the viability of tubular 
cells exposed to CP with the DP hexane fraction was significantly decreased, possibly because 
of a cytotoxic effect of the DP hexane fraction (Fig. 1C). The total MeOH extract or other sub-
fractions did not induce any cytotoxicity (Fig. 1C).

Next, we focused on the protective activity of the CHCl3 sub-fraction from DP (DP 
chloroform fraction; DP CF), which showed the most potent protection among all sub-
fractions. DP CF (0 to 10 μg/mL) significantly reversed CP-induced renal tubular cytotoxicity 
in a dose-dependent manner (Fig. 2A). Morphologic examination also revealed the protective 
effect of DP CF against CP-induced tubular cell damage (Fig. 2A).

To identify the underlying mechanism of the protective activity of DP, we investigated 
the anti-oxidant effect of DP CF on CP-induced intracellular ROS generation using DCF 
fluorescence. Cells were co-treated with 10 μg/mL DP extract and 30 μM CP for 24 h. CP 
alone increased ROS generation in NRK-52E cells, but this was significantly reduced by DP 
CF (Fig. 2B). Mitochondrial damage resulting from ROS generation is a major mechanism 
underlying CP-induced nephrotoxicity. We therefore examined whether DP CF reduced 
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Fig. 2. Protective effect of the CHCl3 fraction of DP (DP CF) on CP-induced cellular damage in NRK-52E cells. 
NRK-52E cells were treated with CP (30 μM) and DP CF (0, 1, 5, or 10 μg/mL for A; 10 μg/ml for B to F) 
for 24 hr. (A) Morphologic changes in cells were observed by microscopy (left panel) and cell viability was 
examined by MTT assay (right panel). (B) ROS generation was measured by DCF fluorescence and repre-
sentative photographs are shown (left panel). The DCF fluorescence signal score was obtained using a ROI 
statistics program for fluorescence microscopy (right panel). (C) Mitochondria membrane potential was 
measured using JC-1. Representative images of cells obtained by fluorescence microscopy are presented. 
(D) The level of caspase-3 cleavage (17-19 kDa) was detected by western blotting. Band densities were 
calculated using ImageJ program. (E) The activities of caspase-3 were examined by fluorescence assay. (F) 
Apoptotic DNA fragmentation was detected using flow cytometric analysis after staining the DNA with pro-
pidium iodide (PI). Scale Bar; 100 μm. Values are means ± SEM. *p<0.05, **p<0.01 vs. control, #p<0.05, 
##p<0.01 vs. CP alone. A, B, C, D, and F: N=3; E: N=4.
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damage to the mitochondria membrane potential that is induced by CP. In the JC-1 assay, 
red fluorescence corresponds to the aggregate form of JC-1 at normal membrane potential 
whereas green fluorescence indicates the monomeric form present at a disrupted lower 
membrane potential [21]. Green fluorescence was significantly increased in NRK-52E cells 
after exposure to CP, suggesting that the mitochondrial membrane potential was impaired by 
CP. Notably, co-treatment with DP CF recovered the normal membrane potential, resulting in 
enhanced red fluorescence (Fig. 2C).

Increased ROS generation and disruption of the mitochondrial membrane potential 
during CP-induced nephrotoxicity induce apoptosis in renal tubular cells. We examined the 
protective effect of DP on CP-induced apoptosis by analyzing activation of pro-apoptotic 
caspase-3 and DNA fragmentation. Treatment with CP increased both the level of cleaved 
caspase-3 (active form) and its enzymatic activity, whereas addition of DP CF significantly 
reduced the activation of caspase-3 (Fig. 2D and 2E). Consistent with these findings, CP 
increased the percentage of apoptotic cells with abnormally fragmented DNA whereas co-
treatment with DP CF and CP significantly decreased this apoptotic population, demonstrating 
the inhibitory effect of DP CF against CP-induced renal tubular apoptosis.

In vivo protection of CP-induced renal impairment by DP
To examine the in vivo relevance of the nephroprotective activity of DP, we evaluated 

the effect of DP CF on CP-induced kidney damage in rats. CP (6 mg/kg; dissolved in saline) 
and DP CF (25 mg/kg; dissolved in DMSO) were administered to rats by i.p. injection (final 

Fig. 3. In vivo effect of 
DP CF on CP-induced 
renal dysfunction in 
rats. CP (6 mg/kg) and/
or DP (25 mg/kg) were 
administered to rats as 
described in the Me-
thods section. (A) The 
change in body weight 
was monitored throug-
hout the treatment 
schedule. (B) On the 
sixth day of CP treat-
ment, the kidney was 
isolated and weighed. 
The ratio between kid-
ney and body weight 
was calculated. (C and 
D) Renal function was 
determined by the level 
of blood urea nitrogen 
(BUN; C) and serum 
creatinine (sCreatinine; 
D). Values are means ± 
SEM. *p<0.05, **p<0.01 
vs. rats in control group, 
#p<0.05, ##p<0.01 vs. 
rats treated with CP 
alone. A to D: N=4 rats/
group.
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1% DMSO diluted with saline). In vivo treatment of CP significantly reduced the increase in 
body weight (Fig. 3A), and increased the ratio of kidney to body weight (Fig. 3B). The ratio 
between body weight and isolated kidney weight, also known as the kidney index, is often 
used to reflect kidney damage because a kidney with impaired function has a greater weight 
due to edema [23]. Treatment with DP significantly rescued the change in body weight and 
the kidney/body weight ratio (Fig. 3A and 3B), suggesting that DP effectively reduced CP-
induced nephrotoxicity in vivo. Indeed, kidney function, as determined by the level of blood 
urea nitrogen (BUN) and serum creatinine (sCreatinine), was significantly impaired in CP-
treated rats, whereas administration of DP completely reversed the increase in BUN and 
sCreatinine (Fig. 3C and 3D). Treatment with DP CF (25 mg/kg) alone did not induce any 
changes in these parameters compared to rats in the control group (data not shown).

Concordant with the functional improvement, we also observed a protective effect of 
DP on CP-induced histopathologic damage in renal tissue (Fig. 4A). Renal tissues from CP-
exposed rats exhibited acute tubular necrosis with epithelial cell desquamation in proximal 
and distal tubules, tubular dilation, epithelial flattening and sloughed epithelial cells. DP 
significantly improved these histopathologic changes, further indicating that DP had a 
protective function against CP-induced renal damage. 

To investigate the mechanism underlying the in vivo DP protection, we examined the 
anti-oxidant capacity and caspase-3 activation in kidney samples. CP significantly decreased 
the level of renal SOD, a representative anti-oxidant enzyme. This decreased level of SOD 
was recovered by DP treatment, indicating that DP attenuated CP-induced oxidative stress in 
renal tissue (Fig. 4B). Consistent with our in vitro results, renal apoptosis was significantly 
enhanced in kidneys exposed to CP, as determined by the level of cleaved caspase-3.  

Fig. 4. Changes in kidney 
tissues after treatment with 
CP and/or DP CF. CP (6 mg/
kg) and/or DP (25 mg/kg) 
were administered to rats 
as described in the Methods 
section. On the sixth day of 
CP treatment, the kidney 
was isolated. (A) Histolo-
gic changes in renal tissues 
were observed using H&E 
staining. Scale Bar; 200 μm. 
(B) Renal SOD activity in ho-
mogenized kidney samples 
was measured using a SOD 
determination kit. (C) The 
level of caspase-3 cleava-
ge (17-19 kDa) was de-
tected western blotting. 
Values are means ± SEM. 
*p<0.05, **p<0.01 vs. cont-
rol, #p<0.05, ##p<0.01 vs. 
CP alone. A to C: N=4 rats/
group.
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DP significantly decreased the activation of caspase-3 in renal tissue, suggesting that DP 
inhibited CP-induced renal apoptosis (Fig. 4B). Taken together, our findings demonstrate the 
protective effect of DP against CP-induced nephrotoxicity both in renal tubular cells and in 
rat animal models.

Discussion

In this study, we demonstrated that extracts from Dendropanax morbifera (DP) 
significantly recovered cisplatin (CP)-induced acute kidney injury (AKI) both in renal 
tubular in vitro models and rat in vivo models. Mechanisms underlying the nephroprotective 
effect of DP were shown to include anti-oxidant, mitochondrial preserving, and anti-
apoptotic activities. Our findings provide new insight into novel biologic benefits of DP as a 
nephroprotective agent.

Despite its essential roles in maintaining homeostasis through clearance of endogenous/
exogenous metabolites, control of fluid volumes, and maintenance of electrolytic balance, the 
kidney is a main target organ for xenobiotic toxicity because of its high perfusion rate and 
specialized uptake system [24, 25]. Notably, various nephrotoxicants, including many clinical 
drugs, can induce kidney damage including AKI, tubulopathies, proteinuric renal diseases, 
chronic kidney injury, and renal failure [26]. Considering the complexity of progressive 
renal damage, natural products that have multiple active ingredients with multiple actions 
may have beneficial activity against drug-induced nephrotoxicity. Drug-associated AKI is a 
serious complication of hospitalized patients and occurs in 25% of patients in intensive care 
unit [27]. Because CP is accumulated within the tubular epithelial cells to levels 5 times 
higher than those in blood and induces serious AKI, there have been many attempts to 
identify potential candidates that protect against CP-induced nephrotoxicity and elucidate 
their mechanism of action [28]. 

CP-induced renal damage is closely associated with an increase in oxidative stress in 
the kidney tissues [29]. CP triggers ROS generation in the kidney, and these ROS directly act 
on multiple cell components, including lipids, proteins, and DNA [30]. Interestingly, previous 
studies have shown that DP showed anti-oxidant activity [18], and our study demonstrated 
that DP could reverse CP-induced ROS generation in NRK-52E cells. Increased ROS 
production and impaired cellular redox status can enhance mitochondrial dysfunction and 
subsequent activation of the caspase cascade. Previous studies suggest that mitochondrial 
impairment is the major apoptotic pathway for renal tubular cell death induced by CP [3, 11]. 
Our study demonstrated a protective effect of DP against ROS generation and impairment 
of mitochondria membrane potential in renal tubular cells. It is generally accepted that 
recovery of impaired redox balance is critical in maintaining mitochondrial function, and 
we thought that anti-oxidant capacity of DP may represent the most principle bioactivity 
modulating nephrotoxicity. However, damaged mitochondria also aggravate ROS generation, 
and beneficial effect of DP on mitochondrial damage would contribute to reduced generation 
of ROS in CP-exposed tubular cells. Since mitochondrial dysfunction plays a key role in 
apoptosis, the protective effect of DP against mitochondrial impairment would underlie 
decreased apoptosis in CP-exposed kidney. We showed that induction of caspase-3 activation 
by CP was significantly reduced by DP extract both in vitro and in vivo, thus confirming the in 
vivo relevancy of the protective activity of DP.

Because the geographic distribution of DP as an endemic species is limited to 
southwestern regions of South Korea and some other areas of Asia, there are few scientific 
evaluations of this plant. Despite its traditional use in folk medicine for the treatment of pain 
and infectious diseases [15], the biologic activities of DP remain to be established. An anti-
oxidant activity of DP has previously been proposed, implicating beneficial effects through 
anti-complement, anti-atherogenic, anti-cancer, and anti-diabetic activities. Moon et al. 
(2011) observed that DP improved diabetes-associated renal dysfunction in streptozotocin-
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induced diabetic rats [19], but these results may stem from anti-diabetic rather than 
nephroprotective effects. Here, we provide new evidence for the biologic activity of DP 
against drug-induced nephrotoxicity and a novel protective mechanism through preservation 
of mitochondrial function. Considering that mitochondrial damage is involved in diverse 
pathologic states, including ischemic damage, the effect of DP against these disease states 
also needs to be determined. Our current findings support the pleiotropic multimodal action 
of DP and expand its potential applications.

Because of the limited available resources with respect to active ingredients in DP, 
total methanol or ethanol extracts from DP have been commonly used to evaluate the 
biological benefits of DP [17, 31]. Here, we used total methanol extracts as well as successive 
sub-fractions prepared using n-hexane, CHCl3, EtOAc, n-BuOH, and H2O, and found that 
the DP-CHCl3 fraction (DP CF) showed the most potent protective activity. As we focused 
on demonstrating the nephroprotective benefits of DP and elucidating the underlying 
mechanisms using in vitro and in vivo system, we could not expand our study to isolate a 
principle ingredient. Although several recent studies have proposed dendropanoxide and 
rutin as active ingredients in DP responsible for its anti-diabetic and neuroprotective 
activity, respectively [19, 31], these compounds are not likely to be present in DP CF on the 
basis of their molecular structure or polarity. Considering that natural products and their 
derivatives have been invaluable resource for drug discovery [32], further studies on the 
purification/identification of active compounds in DP CF are obviously necessary. Of note, the 
nephroprotective-bioactivity of pure compound from DP may demonstrate a high efficacy, 
since most of the target compounds from natural products represent much less than 1% of 
the crude extract [32] and we observed significant protection at concentrations of 10 μg/mL 
in vitro and 25 mg/kg BW in vivo with extracts. Identification of the nephroprotective active 
components of DP will be valuable for development of these compounds as adjuvants for the 
treatment of drug-induced AKI. 

In summary, our data show that DP protected renal proximal tubular epithelial cells 
against CP-induced cytotoxicity through multiple mechanisms, including anti-oxidant, 
mitochondrial protecting, and anti-apoptotic activities. 

Conclusion 

Notably, we demonstrated in vivo relevancy of DP nephroprotection in CP-exposed 
rat models, with histopathologic, functional, and mechanistic supporting evidence. These 
findings support the biologic benefits of DP as an adjuvant therapy against drug-induced 
kidney damage.

Abbreviations

BUN, blood urea nitrogen; CP, cisplatin; DMSO, dimethyl sulfoxide; DP, Dendropanax 
morbifera; DP CF, chloroform fraction of DP extract; EDTA: ethylenediaminetetraacetic acid; 
FBS, fetal bovine serum; NRK-52E, Rattus norvegicus kidney tubular epithelial cells; ROS, 
reactive oxygen species; SOD, superoxide dismutase
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