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Abstract. This paper is concerned with the existence of travelling wave solutions to a singularly perturbed gen-
eralized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and
based on the relation between solitary wave solution and homoclinic orbits of the associated ordinary differential
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sufficiently small. The numerical simulations verify our theoretical analysis.
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1. Introduction

In this paper, we consider a singularly perturbed gen-
eralized Gardner equation with nonlinear terms of any
order

ut +αupux +βu2pux + γ uxxx + ε(uxx +uxxxx) = 0,

(1.1)

where α, β, γ , ε are positive parameters, and p is a
positive integer. Actually, it is a hard task to seek its
explicit travelling wave solutions. So, in this paper, we
resort to the geometrical perturbation theory [1,2] to
establish the existence of solitary wave solutions to it
when the perturbation parameter ε is sufficiently small.

We note that, when the parameters in eq. (1.1) take
different values, several celebrated equations can be
derived. When α �= 0, β �= 0, γ �= 0, and ε = 0,
eq. (1.1) becomes the generalized Gardner equation

ut + αupux + βu2pux + γ uxxx = 0, (1.2)

which is one model in plasma physics and solid physics
[3]. Hamdi et al [4] obtained an exact solitary wave
solution to eq. (1.2). They also derived three conserva-
tion laws and three invariants of motion for eq. (1.2)
[5]. Antonova and Biswas [6] exploited the soliton
perturbation theory to eq. (1.2) with γ = 1.

When α �= 0, β �= 0, γ �= 0, ε = 0 and p = 1,
eq. (1.1) is the classical Gardner equation

ut + αuux + βu2ux + γ uxxx = 0, (1.3)

which is widely used in various branches of physics,
such as plasma physics, fluid physics, quantum field
theory [7–9]. It also describes a variety of wave phe-
nomena in plasma and solid state [10,11]. Exact travel-
ling wave solutions to the Gardner equation were given
by several researchers [12–19].

When α �= 0, β = 0, γ �= 0, ε = 0 and p = 1,
eq. (1.1) becomes the famous KdV equation

ut + αuux + γ uxxx = 0, (1.4)

which arises in physics as a model of propagation of
dispersive long waves, as was pointed out by Russel
in 1834 [20]. The KdV equation has solitary wave
solutions of the form [21]

u(x, t) = 12γ k2

α
sech2k(x − 4γ k2t). (1.5)

If α = 0, β �= 0, γ �= 0, ε = 0 and p = 1, eq. (1.1)
reduces to the so-called mKdV equation

ut + βu2ux + γ uxxx = 0, (1.6)

which arises in many of the same physical contexts as
the KdV equation, such as water waves and plasma
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physics, but in different parameter regimes [21]. The
mKdV equation admits solitary wave solutions as well
as periodic solutions [22,23].

It is known that solitary wave solution is a type
of solution to nonlinear wave equations, which can
provide much physical information and more insight
into the physical aspects of the problem and thus
lead to further applications. So, one of the impor-
tant issues about nonlinear wave equations is to search
for their solitary wave solutions. There have been a
variety of powerful methods in the literature, such as
the Bäcklund transformation [24], the Riccati equa-
tion expansion [25,26], the ansatz method [25–32],
the Jacobian elliptic equation expansion [30,33], the
bifurcation method [34], the method of solution in
series [35], the extended G′/G-expansion method [36]
and the first integral method [37], to derive solitary
wave solutions. However, when considering singularly
perturbed wave equations, such as eq. (1.1), it is gen-
erally difficult to work out the explicit travelling wave
solutions. In such a case, the first question is the exis-
tence of travelling wave solutions, such as solitary
waves, travelling fronts, or periodic waves. Compared
to traditional methods, geometric singular perturba-
tion method [1,2] plays a special role in giving a first
picture of the perturbed solutions. In recent years, geo-
metric singular perturbation method [1,2,38] has been
extended to some perturbed nonlinear dispersive equa-
tions. For example, Ogawa [39] proved the existence
of solitary wave solution to a perturbed Korteweg–de
Vries equation. Fan and Tian [40] showed that soli-
tary wave solution to a singularly perturbed mKdV–KS
equation persists when the perturbation parameter is
suitably small. Mansour [41] established the existence
of travelling wave solutions to a singularly perturbed
Burgers–KdV equation. Tang and Xu [42] showed
the persistence of solitary wave solutions of singularly
perturbed Gardner equation. Zhuang et al [43] consid-
ered the persistence of solitary wave solution to the
singularly perturbed higher-order KdV equation.

The remainder of this paper is organized as follows.
In §2, we introduce the geometric singular perturba-
tion theory. In §3, we investigate the relation between
solitary wave solution and homoclinic orbits. When
ε > 0, we show that homoclinic orbit of eq. (3.4) per-
sists by using geometric singular perturbation theory,
and then the solitary wave solution to eq. (1.1) persists.
Here, we use a method different from the methods used
in [40,42,43] and our result generalizes the work in
[42]. In §4, we give the numerical results to verify our
theoretical analysis. A short conclusion is made in §5.

2. Geometric singular perturbation theory

In this section, we introduce the following result on
invariant manifolds which is due to Fenichel [1] and
will be used in §3 for our purpose. For convenience,
we use a version of this theory due to Jones [2].

For the system{
x′(t) = f (x, y, ε),

y′(t) = εg(x, y, ε),
(2.1)

where x ∈ Rn, y ∈ Rl and ε is a real parameter, f, g

are C∞ on the set V × I where V ∈ Rn+1 and I is an
open interval, containing 0. When ε = 0, the system
has a compact, normally hyperbolic manifold of crit-
ical points M0 which is contained in the set {(x, y) :
f (x, y, 0) = 0}. Then for any 0 < r < +∞, if ε > 0,
but sufficiently small, there exists a manifold Mε:

(I) which is locally invariant under the flow of
system (2.1);

(II) which is Cr in x, y and ε;
(III) Mε = {(x, y) : x = hε(y)} for some Cr

function hε(y) and y in some compact K .
(IV) there exist locally invariant stable and unstable

manifolds Ws(Mε) and Wu(Mε) that lie within
O(ε) of, and are diffeomorphic to, Ws(M0) and
Wu(M0), respectively.

3. Persistence of solitary waves

A travelling wave solution u(x, t) = ϕ(x − ct) = ϕ(ξ)

to eq. (1.1) is called a solitary wave solution if ϕ(ξ) has
a well-defined limit, which is zero when ξ approaches
±∞, that is, ϕ(ξ) → 0 as ξ → ±∞.

Assume that eq. (1.1) has a travelling wave solution
in the form u(x, t) = ϕ(ξ), ξ = x − ct (c > 0), then
we get an ordinary differential equation

−cϕ′ + αϕpϕ′ + βϕ2pϕ′ + γ ϕ′′′ + ε(ϕ′′ + ϕ′′′′) = 0,

(3.1)

where ′ denotes the derivative with respect to ξ .
Integrating (3.1) once yields

−cϕ+ α

p+1
ϕp+1+ β

2p+1
ϕ2p+1+γ ϕ′′+ε(ϕ′+ϕ′′′)=0,

(3.2)

where we have taken the constant of integration as zero.
Make the transformation

ϕ = 2p

√
c

β
u, z = √

cξ, ϕ′
ξ = 2p

√
c

β
· √

c · u′
z,

ϕ′′
ξξ = 2p

√
c

β
· c · u′′

zz, ϕ′′′
ξξξ = 2p

√
c

β
· c

√
c · u′′′

zzz,
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then eq. (3.2) is written as

− cu + α

p + 1

√
c

β
up+1 + c

2p + 1
u2p+1 + cγ u′′

zz

+ ε(
√

cu′
z + c

√
cu′′′

zzz) = 0. (3.3)

Let u′
z = v, v′

z = w, then eq. (3.3) can be rewritten
as a system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u′
z = v,

v′
z = w,

εw′
z = 1√

c

(
u− α√

βc(p + 1)
up+1− 1

2p + 1
u2p+1

−γw − εv√
c

)
.

(3.4)

It is known that a solitary wave solution to eq. (1.1)
corresponds to a homoclinic orbit of system (3.4). So,
the existence of solitary wave solution to eq. (1.1) is
transformed to the existence of homoclinic orbit of sys-
tem (3.4). For this, let z = εη, then system (3.4) turns
into⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
η = εv,

v′
η = εw,

w′
η = 1√

c

(
u− α√

βc(p+1)
up+1− 1

2p+1
u2p+1

−γw − εv√
c

)
.

(3.5)

Systems (3.4) and (3.5) can be called the slow system
and the fast system, respectively.

Let

G(Z) =

⎛
⎜⎜⎝

εv

εw
1√
c

(
u − α√

βc(p + 1)
up+1 − 1

2p + 1
u2p+1 − γw − εv√

c

)
⎞
⎟⎟⎠,

where Z = (u, v, w)T . For ε �= 0, (3.4) and (3.5) are
equivalent. When p = 2k + 1, k ∈ N , the equilibrium
points are Z0 = (0, 0, 0)T , Z1 = (

p
√

Y , 0, 0)T and
Z2 = (

p
√

X, 0, 0)T . When p = 2k, k ∈ N , the equi-
librium points are Z0 = (0, 0, 0)T , Z+ = (

p
√

X, 0, 0)T

and Z− = (− p
√

X, 0, 0)T , where

X=−2p+1

2

⎛
⎝ α√

βc(p+1)
−

√
α2

βc(p+1)2
+ 4

2p+1

⎞
⎠

and

Y =−2p+1

2

⎛
⎝ α√

βc(p+1)
+

√
α2

βc(p+1)2
+ 4

2p+1

⎞
⎠.

Now, we investigate the coefficient matrix of the
linearization system of (3.5) at Z0. Let

A0 = DG(Z0) =

⎛
⎜⎜⎝

0 ε 0
0 0 ε
1√
c

−ε

c
− γ√

c

⎞
⎟⎟⎠,

then the characteristic equation for A0 is

det(A0 − λI) := −λ3 − γ√
c
λ2 − ε2

c
λ + ε2

√
c

= 0.

The discriminant of det(A0 − λI) is

D(c, ε) := ε2

c3
(4ε4 + (27c2 + 18cγ − γ 2)ε2 − 4cγ 3).

Define

D1(c, ε
2) := 4ε4 + (27c2 + 18cγ − γ 2)ε2 − 4cγ 3,

then D1(c, 0) = −4cγ 3 < 0 for any γ, c > 0. There-
fore, D1(c, ε

2) < 0 for any γ, c > 0 and sufficiently
small ε. This implies D(c, ε) < 0 for any positive
c, γ and sufficiently small ε. Thus, the matrix A0 has
three real eigenvalues, noted by λ1, λ2, λ3. By Viete
theorem, we see that λ1, λ2, λ3 satisfy⎧⎪⎪⎨
⎪⎪⎩

λ1 + λ2 + λ3 = − γ√
c
,

λ1λ2λ3 = ε2

√
c
.

It is obvious that one of the three real eigenvalues
is positive and the other two are all negative. So,
the stable subspace at Z0, named as ES(Z0), is two-
dimensional for positive γ, c and ε and EU(Z0),
the unstable subspace at Z0 is one-dimensional. Let
WS(Z0) and WU(Z0) be the local stable and unstable
manifold, respectively. By Hartman-Grobman theorem,
we have Dim(WS(Z0)) = 2 and Dim(WU(Z0)) = 1.
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Because Dim(WS(Z0)) + Dim(WU(Z0)) = 3 in R3, it
is not so obvious to ensure a homoclinic orbit here.

Next, we shall prove that system (3.5) has a homo-
clinic orbit for sufficiently small ε. When ε = 0, we
get the zero-order slow manifold

M0 =
{
(u, v, w)∈R3 :w= 1

γ

(
u − α√

βc(p + 1)
up+1

− 1

2p + 1
u2p+1

)}
,

which is suitably restricted to any compact domain
K of (u, v) space. Then, the linearization of the fast
system (3.5), restricted to M0, has the matrix

A∗ =

⎛
⎜⎜⎜⎜⎝

0 0 0
0 0 0

1√
c

(
1 − α√

βc
up − u2p

)
0 − γ√

c

⎞
⎟⎟⎟⎟⎠.

The matrix A∗ has eigenvalues 0, 0 and −γ /
√

c. Thus,
M0 is normally hyperbolic. By geometric singular per-
turbation theory described in §2, we know that there
exists a perturbed manifold Mε which lies within O(ε)

of M0 and is diffeomorphic to M0.
To determine the dynamics on Mε, we write

Mε = {(u, v, w) ∈ R3 : w = h(u, v, ε)},

where h(u, v, ε) depends smoothly on ε and satisfies

h(u,v,0)= 1

γ

(
u− α√

βc(p+1)
up+1− 1

2p+1
u2p+1

)
.

Substituting h(u, c, ε) into (3.4), we obtain a system
of ordinary differential equations on Mε⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
η = v,

v′
η = h(u, v, ε),

εw′
η = 1√

c

(
u − α√

βc(p + 1)
up+1 − 1

2p + 1
u2p+1

−γ h(u, v, ε) − εv√
c

)
.

(3.6)

The limit form of eq. (3.6) restricted to M0 can be
written as⎧⎪⎪⎨
⎪⎪⎩

u′
η = v,

v′
η = h(u, v, 0),

= 1
γ

(
u − α√

βc(p + 1)
up+1 − 1

2p + 1
u2p+1

)
,

(3.7)

which is the dynamical form of the generalized
Gardner equation (1.2) and its Hamiltonian function is

H(u, v) = v2

2
+ α

γ
√

βc(p + 1)(p + 2)
up+2

+ 1

γ (2p + 1)(2p + 2)
u2p+2 − 1

2γ
u2.

It is clear that the equilibrium point (0, 0) of (3.7) is
a saddle point, and there exists a homoclinic 
0 passing
through (0, 0) (see figure 1)


0 : v2

2
+ α

γ
√

βc(p + 1)(p + 2)
up+2

+ 1

γ (2p + 1)(2p + 2)
u2p+2 − 1

2γ
u2 = 0,

which corresponds to a solitary wave solution to eq. (1.2).

(a) p = 3 (b) p = 4

Figure 1. Homoclinic orbit of system (3.7). α = 1.0, β = 2.0, γ = 2.0, c = 2.0.
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As M0 is smooth, the vector field in (3.6) is smooth
and Mε can be characterized as the graph of a function;
h(u, v, ε) can be expanded in ε when ε is sufficiently
small, that is

w = h(u, v, ε)

= 1

γ

(
u − α√

βc(p + 1)
up+1 − 1

2p + 1
u2p+1

)

+ εh1(u, v) + O(ε2). (3.8)

We need to calculate the term h1(u, v) in (3.8),
which also likely depends on the parameters γ and c.
The only remaining information about Mε is the local
invariance relative to the equation and this can then be
used to evaluate h1. Differentiating (3.8) with respect
to η, we get

wη = 1

γ

(
v − α√

βc
upv − u2pv

)

+ ε

(
∂h1

∂u
v + ∂h1

∂v

(
1

γ

(
u − α√

βc(p + 1)
up+1

− 1

2p + 1
u2p+1

)))
+ O(ε2). (3.9)

Substituting (3.8) and (3.9) into (3.4), we obtain

εwη = 1√
c

(
u − α√

βc(p + 1)
up+1 − 1

2p + 1
u2p+1

− γw − εv√
c

)

= 1√
c

(
− εγ h1 − εv√

c

)
+ O(ε2)

= ε

γ

(
v − α√

βc
upv − u2pv

)
+ ε2

×
(

∂h1

∂u
v + ∂h1

∂v

(
1

γ

(
u − α√

βc(p + 1)
up+1

− 1

2p + 1
u2p+1

)))

+ O(ε2). (3.10)

Comparing coefficients of ε in (3.10), we have

h1(u, v) =
√

c

γ 2

(
u2p + α√

βc
up −

(
1 + γ

c

))
v.

So, the dynamics on the slow manifold Mε is given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
η = v,

v′
η = 1

γ

(
u − α√

βc(p + 1)
up+1

− 1

2p + 1
u2p+1

)

+ ε
√

c

γ 2

(
u2p+ α√

βc
up−

(
1+ γ

c

))
v

+ O(ε2).

(3.11)

Now, we still cannot see a homoclinic orbit merely
by adding the O(ε) term. However, we have other two
parameters c and ε that can be used. Adding parameters
c and ε into (3.11), we get an extended system in R4⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
η =v,

v′
η = 1

γ

(
u − α√

βc(p + 1)
up+1

− 1

2p + 1
u2p+1

)

+ ε
√

c

γ 2

(
u2p+ α√

βc
up−

(
1+ γ

c

))
v

+ O(ε2),

ε′
η = 0,

c′
η = 0.

(3.12)

Our purpose is to seek homoclinic orbits for (3.12) with
small ε. These will be found at values of c that depends
on ε. From the original equation, we can see the origin

O(u,v) = (u(c, ε), v(c, ε))

= (u(c, ε), 0)

=
(

1

γ

(
u− α√

βc(p+1)
up+1− 1

2p+1
u2p+1

)
,0

)

= (0, 0),

is a critical point for (3.4) and it is still a criti-
cal point and must lie on Mε. We need to look for
these orbits homoclinic to the origin O. The criti-
cal point O can be construed as a surface of critical
point, say S, parametrized by c, ε, i.e., critical point
S = (u(c, ε), v(c, ε)) = (0, 0). This in turn spans an
unstable manifold Wu

ε (S) and stable manifold Ws
ε (S)

which meet in the curve at ε = 0, namely the homo-
clinic orbit found previously. Furthermore, by a simple
proof, Wu

ε (S) and Ws
ε (S) must still cross hyperplane

v = 0. In the set v = 0, we parametrize Wu and
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Ws , respectively, near the intersection away from the
critical point 0, as u = h−(c, ε) and u = h+(c, ε).

We next define

d(c, ε) := h−(c, ε) − h+(c, ε),

and observe that zeroes of d render homoclinic orbits.
Since there are homoclinic orbits independently of c

when ε = 0, we have d(c, 0) = 0, and thus let
d(c, ε) = εd̄(c, ε). Then we have

d̄(c, 0) = M(c) =
(

∂h−

∂ε
− ∂h+

∂ε

) ∣∣∣∣
ε=0

.

If there exists a (unique) value of c = c(ε) for ε small,
near to c = c(ε), such that d(c, ε) = 0, that means if
at c = c(0),

M(c) = 0, M ′(c) �= 0, (3.13)

hold, then it is a simple application of the Implica-
tion Function Theorem to see that there is a curve of
homoclinic orbit.

The function M(c) can be calculated explicitly as in
[44] as

M(c) = ∂h−

∂ε
− ∂h+

∂ε

=
√

c

γ 2

∫ +∞

−∞

(
u2p+ α√

βc
up−

(
1 + γ

c

))
v2dξ

=
√

c

γ 2

∫ +∞

−∞

(
u2p + α√

βc
up

)
v2dξ

−
√

c

γ 2

(
1 + γ

c

) ∫ +∞

−∞
v2dξ

=
√

c

γ 2

(
u2p+1

2p + 1
+ α√

βc(p + 1)
up+1

)
v

∣∣∣∣
+∞

−∞

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a) = 10−1

−1.5 −1 −0.5 0 0.5 1 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) = 10−2

−1.5 −1 −0.5 0 0.5 1 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) = 10−3

−1 −0.5 0 0.5 1 1.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d) = 10−4

Figure 2. Persistence of homoclinic orbit of system (3.4) when ε varies. α = 1.0, β = 2.0, γ = 2.0, p = 3, c = 2.0 and
initial data (u(0), v(0), w(0)) = (0, 0, 0.1).
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−
√

c

γ 2

∫ +∞

−∞

(
u2p+1

2p + 1
+ α√

βc(p + 1)
up+1

)
üdξ

−
√

c

γ 2

(
1+ γ

c

) ∫ +∞

−∞
u̇2dξ

=
√

c

γ 2

∫ +∞

−∞

(
u− u2p+1

2p+1
− α√

βc(p+1)
up+1

)
üdξ

−
√

c

γ 2

∫ +∞

−∞
uüdξ−

√
c

γ 2

(
1+ γ

c

) ∫ +∞

−∞
u̇2dξ

=
√

c

γ

∫ +∞

−∞
ü2dξ −

√
c

γ 2

(
uv

∣∣∣∣
+∞

−∞
−

∫ +∞

−∞
u̇2dξ

)

−
√

c

γ 2

(
1 + γ

c

) ∫ +∞

−∞
u̇2dξ

=
√

c

γ

∫ +∞

−∞
ü2dξ − 1

γ
√

c

∫ +∞

−∞
u̇2dξ

=
√

c

γ

(∫ +∞

−∞
ü2dξ − 1

c

∫ +∞

−∞
u̇2dξ

)
. (3.14)

From (3.14), we can easily see that (3.13) holds at a
unique value of c.

Therefore, we have the following existence result.

Theorem 3.1. If ε > 0 is sufficiently small, the sin-
gularly perturbed generalized Gardner equation with
nonlinear terms of any order, that is, eq. (1.1) has
solitary wave solution.

4. Numerical results

In this section, we numerically investigate the persis-
tence of solitary wave solution to eq. (1.1) by solving
an initial-value problem associated with system (3.4).

We take the initial data (u(0), v(0), w(0)) =
(0, 0, 0.1). The parameters α = 1.0, β = 2.0, γ = 2.0,
p = 3, the wave speed c = 2.0 and ε take the val-
ues 10−1, 10−2, 10−3 and 10−4, respectively. Using the
software MATLAB 7.0, we numerically investigate sys-
tem (3.4) and present the results in figure 2. We can see
from figure 2 that the homoclinic orbit persists when ε

is small, while it breaks when ε becomes larger. This
verifies our theoretical analysis in §3.

5. Conclusion

The solitary wave, as a typical nonlinear phenomenon,
always plays an important role in the nature. In this
paper, we have proved theoretically for the first time

the existence of such elegantly coherent structure in
the singularly perturbed generalized Gardner equa-
tion (1.1) when the perturbation parameter ε is suf-
ficiently small. On the other hand, we have carried
out numerical investigations to verify our theoretical
analysis.

Our results indicate that eq. (1.1) with sufficiently
small perturbation parameter ε can describe the propa-
gation of ion acoustic waves or explain the propagation
of thermal pulse through single crystal, just like the
unperturbed generalized Gardner equation (1.2). Our
work, from theoretical and numerical aspects, make
it possible to find the solitary wave to (1.1) in exper-
iment. We believe that model (1.1) is of much interest
to the physicists in the field of plasma physics or solid
physics.

Our results give a picture of the perturbed solution
to model (1.1) for the first time. To work out such
solution analytically or numerically will be a signif-
icant advance in the study of this nonlinear weakly
dispersive model.
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