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Kac’s ring: The case of four colours
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Abstract. We present an instance from nonequilibrium statistical mechanics which combines increase in
entropy and finite Poincaré recurrence time. The model we consider is a variation of the well-known Kac’s ring
where we consider balls of four colours. As is known, Kac introduced this model where balls arranged between
lattice sites, in each time step, move one step clockwise. The colour of the balls change as they cross marked
sites. This very simple example rationalize the increase in entropy and recurrence. In our variation, the interesting
quantity which counts the difference in the number of balls of different colours is shown to reduce to a set of
linear equations if the probability of change of colour is symmetric among a pair of colours. The transfer matrix
turns out to be non-Hermitian with real eigenvalues, leading to all colours being equally likely for long times, and
a monotonically varying entropy. The new features appearing due to four colours is very instructive.
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1. Introduction

Kac’s ring is a simple and instructive model illustrating
subtle aspects of nonequilibrium statistical mechan-
ics, particularly the approach to equilibrium. One of
the most significant aspects of its dynamics is that it
makes us understand the explicit role played by the
finite Poincaré recurrence time. This model, proposed
by Kac [1] has been studied thoroughly by many peo-
ple. It has been shown that the Boltzmann H function
recurs every time interval of length 2N where N is
the number of sites for the usual version where there
are balls of only two colours. The model consists of
N balls, each residing between successive lattice sites.
Out of a total of N sites, there are a fraction, μ of
randomly chosen sites that are marked. The discrete-
time dynamics of the system consists of moving all
the balls to the next site, each step in a clockwise
manner. As the balls cross a marked site, the colour
of the ball is changed. For the model with balls of
two colours, the difference between their number fluc-
tuates randomly about a fixed value. It was shown
that the statistical fluctuations also recur with the time
period, 2N [2]. Also, a recent pedagogical account
3N [3] was given which explained coarse-graining of

Boltzmannian stosszahlansatz, ensemble averages, the
difference between ensemble averaged and typical sys-
tem behaviour, and the notion of entropy. This and
many other studies make it very interesting to try to
generalize the discussion to more than two colours.
Although the generalization seems nearly trivial, it will
be shown that there appear interesting, unanticipated
technical difficulties or surprises when we consider
four colours.

In this work, we consider the Kac’s ring with balls of
four colours, calling them red (R), yellow (Y ), green
(G), and blue (B). We shall consider a symmetric sys-
tem in which the probabilities of a ball changing its
colour from i to j is the same as for change from j

to i. Let R(t), Y (t), G(t), B(t) denote the functions
giving the number of balls of each colour at a time
t ; r(t), y(t), g(t), b(t) denote the functions giving the
number of balls of each colour at a time t in front of
a marker (which will change the colour). Further, we
define six variables p, q, k, m, c and d denoting the
probabilities of the process (change of colour):

p: Y → R and R → Y, q: G → R and R → G

k: B → R and R → B, m: G → Y and Y → G

c: B → Y and Y → B, d: G → B and B → G.
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The number of balls of different colours change with
time according to the following equations:

R(t+1)=R(t)+py(t)+qg(t)+kb(t)−r(t),

Y (t+1)=Y(t)+cb(t)+mg(t)+pr(t)−y(t),

G(t+1)=G(t)+qr(t)+my(t)+db(t)−g(t),

B(t+1)=B(t)+cy(t)+kr(t)+dg(t)−b(t). (1)

As indicated in the brief discussion made above, the
differences in the number of balls of different colours is
a quantity of great interest. In order to calculate �(t),
we can make an assumption similar to stosszahlansatz,
also employed in the problem with two colours. We
suppose that the fraction of red, yellow, green or blue
balls that change colour at a given time step is equal to
the probability μ that a lattice site has a marker on it,
where μ is equal to the number of markers divided by
the number of sites. That is,

r/R = y/Y = g/G = b/B = μ. (2)

Using (2), we can transform (1) as

R(t+1)=R(t)(1−μ)+μ[pY(t)+qG(t)+kB(t)],
Y (t+1)=Y(t)(1−μ)+μ[cB(t)+mG(t)+pR(t)],
G(t+1)=G(t)(1−μ)+μ[qR(t)+mY(t)+dB(t)],
B(t+1)=B(t)(1−μ)+μ[cY (t)+kR(t)+dG(t)].

(3)

Now, we shall find all the differences between the
number of balls of different colours and how these
differences evolve. For instance, we have the differ-
ence between red and yellow balls at time, (t + 1),
�RY (t+1) = R(t+1)−Y(t+1)which on substitutions
of R(t + 1) and Y(t + 1) gives

�RY (t + 1) = �RY (t)[1−μ(1 + p)]
+ μ[G(t)(q−m)+B(t)(k−c)]. (4)

Similarly, for the other colours,

�YG(t + 1) = �YG(t)[1 − μ(1 + m)]
+ μ[B(t)(c − d) + R(t)(p − q)],

�GB(t + 1) = �GB(t)[1 − μ(1 + d)]
+ μ[R(t)(q − k) + Y(t)(m − c)],

�BR(t + 1) = �BR(t)[1 − μ(1 + k)]
+ μ[Y(t)(c − p) + G(t)(d − q)],

�RG(t + 1) = (1 − μ)�RG(t) + μ(p − m)Y(t)

+ μ(q + 1)G(t) + μ(k − d)B(t).

(5)

�YB(t + 1) will also involve three more terms in addi-
tion to (1− μ)�YB(t). To solve for all the differences,

one of the ways is to try to write the equations as linear
equations in the differences alone. In the next section,
we show how to do this.

2. Exact coupled linear equations for �’s

First, we need to rewrite the above equations in a dif-
ferent form and manipulate them further. Adding and
subtracting B(t)(q − m) in the expression of �RY (t +
1), we have

�RY (t + 1) = [1 − μ(1 + p)]�RY (t)

+ μ(q − m)�GB(t)

+ b(t)(q − m + k − c). (6)

Similarly, we need to add and subtract G(t)(c − p)

in the expression of �BR(t + 1), R(t)(m − c) in the
expression of�GB(t+1), B(t)(p−q) in the expression
of �YG(t + 1). Thus,

�BR(t + 1) = [1 − μ(1 + k)]�BR(t)

+ μ(c − p)�YG(t)

+ g(t)(c − p + d − q), (7)

�GB(t + 1) = [1 − μ(1 + d)]�GB(t)

− μ(m − c)�RY (t)

+ r(t)(q − k + m − c), (8)

�YG(t + 1) = [1 − μ(1 + m)]�YG(t)

− μ(p − q)�BR(t)

+ b(t)(c − d + p − q). (9)

Now, the equations for �RY (t + 1), �BR(t + 1),
�GB(t +1) and �YG(t +1) can be further rewritten as
follows:

�BR(t+1)=[1−μ(1+k)]�BR(t)

+ μ(c−d)�YG(t)+y(t)(c−p+d−q),

�RY (t+1)=[1−μ(1+p)]�RY (t)

− μ(k−c)�GB(t)+g(t)(q−m+k−c),

�GB(t+1)=[1−μ(1+d)]�GB(t)

+ μ(q−k)�RY (t)+y(t)(q−k+m−c),

�YG(t+1)=[1−μ(1+m)]�YG(t)

+ μ(c−d)�BR(t)+r(t)(c−d+p−q).

(10)
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Equations for �BY (t + 1) and �RG(t + 1):

�BY (t + 1) = �BR(t+1)−�RY (t+1)

= �BR(t)−μ(1+k)�BR(t)

+ μ(c−p)Y (t)+μ(d−q)G(t)

− �RY (t)+μ(1+p)�RY (t)

− μ(q−m)G(t)−μB(t)(k−c)

= �BY (t)−μ[�BR(t)+k�BR(t)

− �RY (t)−p�RY (t)]
+ μY(t)(c−p)−μB(t)(k−c)

+ μG(t)(d−2q+m)

= �BY (t)−μ[�BY (t)+k�BR(t)

− p�RY (t)]+μ[Y(t)(c−p)

− B(t)(k−c)+G(t)(d−2q+m)]
= �BY (t)−μ[B(t)−Y(t)+kB(t)

− kR(t)−pR(t)+pY(t)+Y(t)(c−p)

− B(t)(k−c)+G(t)(d−2q+m)]
= �BY (t)−μ[B(t)(1+c)−Y(t)(1+c)

− R(t)(k+p)+G(t)(d−2q+m)]
= �BY (t)−μ(1+c)�BY(t)

+ μ[R(t)(k+p)−G(t)(d−2q+m)]
= �BY (t)[1−μ(1+c)]+μ[R(t)(k+p)

− G(t)(d−2q+m)]. (11)

This can be rewritten after simple manipulations in the
following form:

�BY (t + 1) = �BY (t)[1 − μ(1 + c)]
+ μ(d + m − 2q)�RG(t)

+ r(t)(k + p + d + m − 2q). (12)

Similar manipulations can be carried out for �RG(t +
1), resulting in

�RG(t + 1) = �RG(t)[1 − μ(1 + q)]
− μ(d + k − 2c)�BY (t)

+ y(t)(p + m − d − k + 2c)

= �RG(t)[1 − μ(1 + q)]
− μ(m + p)�BY (t)

+ b(t)(p + m − d − k + 2c). (13)

We can invoke the conditions: k = m, p = d, c = q

in �RG(t + 1):

�RG(t + 1) = �RG(t)[1 − μ(1 + c)]
− μ(p + k − 2c)�BY (t) + 2cy(t),

= �RG(t)[1 − μ(1 + c)]
− μ(k + p)�BY (t) + 2cb(t). (14)

In the same manner, other �’s can be rewritten as

�BY (t + 1) = �BY (t)[1 − μ(1 + c)]
+ μ(k + p)�RG(t) + 2cg(t),

= �BY (t)[1 − μ(1 + c)]
+ μ(k + p − 2c)�RG(t)

+ 2(k + p − c)r(t), (15)

�RY (t + 1) = �RY (t)[1 − μ(1 + p)]
+ μ(c − k)�GB(t), (16)

�BR(t + 1) = �BR(t)[1 − μ(1 + k)]
+ μ(c − p)�YG(t), (17)

�GB(t + 1) = �GB(t)[1 − μ(1 + p)]
− μ(k − c)�RY (t), (18)

�YG(t + 1) = �YG(t)[1 − μ(1 + k)]
− μ(p − c)�BR(t). (19)

Now, we observe that the extra inhomogeneous
terms 2cb(t) and 2cg(t) still remain in the equations
for �RG(t + 1) and �BY (t + 1). We simplify further
by subtracting �BY (t + 1) from �RG(t + 1):

�RG(t + 1) − �BY (t + 1) = [�RG(t) − �BY (t)]
× [1 − μ(1 + c + k + p)] + 2c[b(t) − g(t)].

(20)

Denoting �RG − �BY = β and substituting b(t) =
μB(t) and g(t) = μG(t) in (20), we get

β(t + 1) = β(t)[1 − μ(1 + c)] + β(t)μ(p + k)

− 2cμ�GB(t). (21)

We have therefore reduced the equations for the dif-
ference in colours into a set of equations which can be
cast as a matrix equation:⎡
⎢⎢⎢⎢⎣

�RY (t + 1)
�BR(t + 1)
�GB(t + 1)
�YG(t + 1)

β(t + 1)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

M11 0 M13 0 0
0 M21 0 M24 0

M13 0 M11 0 0
0 M24 0 M21 0
0 0 −2μc 0 M55

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

�RY (t)

�BR(t)

�GB(t)

�YG(t)

β(t)

⎤
⎥⎥⎥⎥⎦ , (22)

where M11 = [1−μ(1+p)], M13 = μ(c− k), M21 =
[1 − μ(1 + k)], M24 = μ(c − p), M55 = [1 − μ(1 +
c − p − k)].
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Eigenvalues of the matrix are

λ1 = 1−μ[1−c+k+p], λ2=1−μ[1+c+k−p],
λ3 = 1−μ[1−c+k+p], λ4=1−μ[1+c−k+p],
λ5 = 1−μ[1+c−k−p]. (23)

Eigenvectors corresponding to the above eigenvalues
are

λ1e = (0, 1, 0, 1, 0), λ2e = (0, −1, 0, 1, 0),

λ3e = (((p + k)/c) − 1, 0, ((k + p)/c) − 1, 0, 1),

λ4e = (−p/c, 0, p/c, 0, 1), λ5e = (0, 1, 0, 1, 0).

(24)

Now, eigenvalue equations are as follows:

ψ1(t) = �BR(t) + �YG(t),

ψ2(t) = �YG(t) − �BR(t),

ψ3(t) = [((p + k)/c) − 1]�RY (t)

+ [((p + k)/c) − 1]�GB(t) + β(t),

ψ4(t) = (p/c)[�GB(t) − �RY (t)] + β(t),

ψ5(t) = β(t) = �RG(t) − �BY (t). (25)

Adding ψ1(t) and ψ2(t), we have

�YG(t) = [ψ1(t) + ψ2(t)]/2. (26)

Subtracting ψ2(t) from ψ1(t), we have

�BR(t) = [ψ1(t) − ψ2(t)]/2. (27)

Adding ψ3(t) and ψ4(t), we have

ψ3(t) + ψ4(t) = �RY (t)[(k/c)−1]
+ �GB(t)[((2p+k)/c)−1]+2β(t).

(28)

Subtracting ψ4(t) from ψ3(t), we have

�RY (t)[((2p + k)/c) − 1] + �GB(t)[(k/c) − 1]
= ψ3(t) − ψ4(t). (29)

To see how ψi(t), i = 1, 2, ..., 5 behaves with time,
we need to specify the initial conditions in terms of
initial numbers of coloured balls. Specifically, we have

ψ1(0) = B(0) − R(0) + Y(0) − G(0),

ψ2(0) = Y(0) − G(0) + R(0) − B(0),

ψ3(0) =
(

p + k

c

)
[R(0) − B(0)]

−
[(

p + k

c

)
− 2

]
[G(0) − Y(0)],

ψ4(0) =
(
1 − p

c

)
[R(0) − G(0)]

+
(
1 + p

c

)
[Y(0) − B(0)],

ψ5(0) = R(0) − G(0) + Y(0) − B(0). (30)

The behaviour of ψi(t) as a function of time for
different values of parameters is shown in figure 1.

So we have established that beginning with balls of
different colours, and some probabilities for changes of
colours occurring across the marked sites, eventually,
the number of balls of different colours become equal.
We can define the Boltzmann H -function which varies
monotonically with time. For the cases in figure 1,
entropy is defined as

S(t) = −
∑
j

ψj (t) logψj(t). (31)

The monotonic variation of S(t) for the cases consid-
ered in figure 1 is shown convincingly in figure 2.
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Figure 1. From the left, we present the following cases: (a) The probabilities are equal, p, k, c, q, m, d are equal to 1/6,
the fraction of marked sites is μ = 1/10. Initial values are R(0) = 100, Y (0) = G(0) = B(0) = 0; (b) The probabilties are
p = 1/6, k = 1/5, c = 1/4, μ = 1/10. Balls are initially R(0) = 100, Y (0) = 200, G(0) = B(0) = 0. In both cases, we
see that all the colours become equally likely with time.
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Figure 2. Entropy is plotted as a function of time. The monotonic variation of entropy is seen although with four colours
and finite number of sites, there must be Poincaré recurrence.

For the case of two colours, it is clear that the
Poincaré recurrence time is two times the number of
sites, N . As recurrence in the case of two colours is
exact, the entropy becomes a periodic function of time
with period, 2N . However, in the present case where
we have four colours, the recurrence time will be much
longer. What is indeed instructive is the fact that by
just adding two more colours, the degree of complex-
ity is increased many-fold. Recently, time evolution
of entanglement 4N [4] in a quantum version of the
Kac’s ring was studied where they have replaced clas-
sical markers by two spin chains and quantum gates.
In this model, the entanglement evolution was under-
stood by considering the ensemble of Kac’s rings. The
model thus eludicated the relation between distribu-
tion of measurement results in classical and quantum
systems. It would be interesting to develop a quantum

version for the case of four colours. It is worth recall-
ing that for this case the transfer matrix turned out to
be non-Hermitian, possessing real eigenvalues. This
mathematical twist is also owing to the increase in
colours. To conclude, we have seen an interesting
development of the classical states under Boltzmann
equation with stosszahlansatz for Kac’s ring with four
colours.
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