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Abstract. The general class of Bianchi cosmological models with dark energy in the form of modified Chaply-
gin gas with variable � and G and bulk viscosity have been considered. We discuss three types of average scale
factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact
solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity (ξ ), cosmo-
logical constant (�), gravitational parameter (G) and deceleration parameter (q) for different equations of state.
The model describes an accelerating Universe for large value of time t , wherein the effective negative pressure
induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.
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1. Introduction

Recent observations of the luminosity of type-Ia super-
novae [1,2] indicate an accelerated expansion of the
Universe and lead to the search for a new type of matter
which violates the strong energy condition, i.e. ρ + 3
p < 0 is satisfied. The matter content responsible for
such a condition to be satisfied at a certain stage of
evolution of the Universe is referred to as dark energy.
There are a number of candidates for dark energy
[3–5]. The type of dark energy represented by a scalar
field is often called quintessence [6,7]. The simplest
candidate of dark energy is the cosmological constant.
[8–10]. There are other candidates such as phantom
field (a scalar field with a negative sign of the kinetic
term) [11–13], a quintom (a combination of quintes-
sence and phantom) [14–20] etc. Cosmological models
including Chaplygin gas are usually used for unifi-
cation of dark matter and dark energy. As we know,
Chaplygin gas behaves as dark matter at the early
Universe while it behaves as a cosmological constant
at the late time. Chaplygin gas [20,21] is one of the
candidates of the dark energy models to explain the
accelerated expansion of the Universe. The Chaplygin

gas obeys an equation of state p = −A1/ρ [21,22],
where p and ρ are respectively the pressure and energy
density and A1 is a positive constant. Subsequently,
the above equation of state was modified to the form
p = −A1/ρ

α with 0 < α ≤ 1. This model gives
cosmological evolution from initial dust-like matter
to an asymptotic cosmological constant and a fluid
obeying an equation of state p = γρ. This general-
ized model has been studied by several researchers
[23–25]. The simplest form of Chaplygin gas model,
called the standard Chaplygin gas (SCG), was used
to explain the accelerated expansion of the Universe
[26]. The SCG has been extended to the generalized
Chaplygin gas (GCG) [27–29]. Subsequently, the GCG
is also extended to the modified Chaplygin gas (MCG)
[30–34], which can show a radiation era in the early
Universe. Also, the dissipative effects in GCG model
using the framework of the non-causal Eckart theory
[35] have been studied. Zhai et al [36] have investi-
gated the viscous GCG model by assuming that there
is bulk viscosity in the linear barotropic fluid and GCG.

Among all the possible alternatives, the simplest and
most theoretically appealing possibility for dark energy
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is the energy density stored in the vacuum state of all
the existing fields in the Universe, i.e.

ρv = �

8πG
,

where � is the cosmological constant. However, the
constant � cannot explain the huge difference between
the cosmological constant inferred from observation
and the vacuum energy density resulting from quantum
field theories. In an attempt to solve this problem, vari-
able � was induced such that � was large in the early
Universe and then decayed with evolution. Variation
of Newton’s gravitational parameter G was originally
suggested by Dirac [37] on the basis of his large num-
bers hypothesis (LNH). It seems reasonable to consider
G = G(t) in an evolving Universe when one consid-
ers � = �(t). Many extensions of general relativity
with G = G(t) have been made ever since Dirac first
considered the possibility of a variable G. Sattar and
Vishwakarma [38] have suggested the conservation of
energy–momentum tensor which consequently renders
G and � as coupled fields. This leaves Einstein’s field
equations formally unchanged. Bonanno and Reuter
[39] have considered the scaling of G(t) and �(t)

arising from an underlying renormalization group flow
near an infrared attractive fixed point. The result-
ing cosmology [40] explains the high redshift SNe
Ia and radiosource observations successfully. Gravita-
tional theories with variable G have been discussed
by Zee [41], Smolin [42] and Alder [43] in the con-
text of induced gravity model where G is generated by
means of a non-vanishing vacuum expectation value
of a scalar field. Recently, a constraint on the vari-
ation of G has been obtained by using WMAP and
the big-bang nucleosynthesis observations by Copi
et al [44], which comes out to be −3 × 10−13 yr−1 <

(Ġ/G)today < 4 × 10−13 yr−1.
The present day Universe is homogeneous and

isotropic on large scales, which is defined by FRW
models. However, the latest observational data of the
CMB by WMAP satellite show hints of anomalies that
the isotropy seems broken in cosmological data [45].
Large-angle anomalies in the CMB can provide a very
important role to understand the very early Universe
and the effects of the early Universe on the present day
large-scale structure. According to the theories pro-
posed by Misner [46] and Gibbons and Hawking [47],
anisotropy at the early stage of the Universe turns into
an isotropic present Universe and initial anisotropies
die away.

Several researchers [48–50] have suggested that
anisotropic Bianchi Universes can play important roles

in observational cosmology (see also [46,51–54]). The
WMAP data [55–57] seem to require, in addition to
the standard cosmological model, a positive cosmolog-
ical constant that bears a resemblance to the Bianchi
morphology [58–60]. According to this, the Universe
should have a slightly anisotropic spatial geometry in
spite of the inflation, contrary to generic inflationary
models [61–65].

Singh and Chaubey [66] have studied the evolution
of a homogeneous anisotropic Universe filled with vis-
cous fluid, in the presence of cosmological constant �.
Pradhan et al [67–69] have discussed various viable
cosmologies for homogeneous and anisotropic cosmo-
logical model. Singh and Chaubey [70] also studied the
evolution of a homogeneous anisotropic Universe with
varying �, G and shear (σ 2) simultaneously. Recently,
Chaubey [71,72] has studied the modified Chaplygin
gas and generalized gas in the background of Bianchi
type-I space–time. Fayaz et al [73] have studied the
dark energy and viscous fluid cosmology with variable
G and � in an anisotropic space–time by consid-
ering constant deceleration parameter (Berman law).
Khurshundyan et al [74] have studied three models
of f (R) modified gravity including higher-order terms
based on different equation of state parameters in the
presence of variable G and �. In order to obtain a com-
prehensive model, we also add two modifications to
the ordinary model. First, we consider a fluid which
obeys the varying equation of state (EoS) and sec-
ond, we consider time-varying � and G. The variation
of G and � leads to the modification of Einstein’s
field equations and the conservation laws [74–76]. This
is because, if we allow G and � to be variables in
Einstein’s equations, the energy conservation law is
violated. Therefore, the study of varying G and � can
be done through modified field equations and modi-
fied conservation law [75,76]. In this paper, we have
considered the dark energy and viscous fluid cosmol-
ogy with variable G and � in Bianchi type-III, V,
VI0 and VIh space–times with a variable deceleration
parameter, which is the generalization of Berman law.

The present paper is organized as follows. In §1, a
brief introduction is given. Section 2 deals with the
basic equations of cosmological model. Cosmological
parameters are also defined in this section. In §3, we
have obtained cosmological solutions of our model for
modified Chaplygin gas in three different subcases. In
each case, we have obtained the cosmological parame-
ters, density and pressure for t → 0 and t → ∞. The
paper ends with a conclusion given in §4.
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2. Model and basic equations

A gravitational action with Ricci scalar curvature R

containing a variable gravitational constant G(t) and
cosmological constant �(t) is given by

I = −
∫

d4x
√−g

[
1

16πG(t)
(R − 2�(t)) + Lm

]
,

(1)

where g is the determinant of the four-dimensional
tensor metric gij and Lm represents the matter
Lagrangian.

The simplest models for a uniformly expanding Uni-
verse are the FRW models. The main justification of
these models was their mathematical simplicity and
tractability [77]. Theoretical arguments and possible
indications from recent experimental data support the
existence of an isotropic phase. The WMAP data have
indicated that the Universe was not isotropic at early
times. It has been also demonstrated [78,79] that the
Universe is not isotropic for all time. The Bianchi mod-
els must be considered which are models with less
symmetry than standard FRW model. Such models
should be examined to include the effects of shear and
anisotropy in the early Universe.

The diagonal form of the metric of general class of
Bianchi cosmological model is given by

ds2 =dt2−a2
1dx2−a2

2e−2xdy2−a2
3e−2mxdz2. (2)

We have the additional classes of Bianchi models as
follows: type-III corresponds to m = 0, type-V corre-
sponds to m = 1, type-VI0 corresponds to m = −1,
and all other m give VIh, where m = h − 1.

Scale factors a1, a2 and a3 are the functions of cos-
mic time t . These scale factors are in three anisotropic
directions.

A very interesting generalization of Einstein’s theory
of gravitation was proposed by Lau [80] with time-
dependent cosmological and gravitational parameters
which is consistent with Dirac’s large number hypoth-
esis (LNH) [81]. The field equations of this theory are

Rij − 1

2
Rgij − �(t)gij = −8πG(t)Tij , (3)

where the cosmological parameter � and the grav-
itational parameter G are functions of time. Other
symbols have their usual meaning. By appealing to
Dirac cosmology, Lau found specific forms for � and
G. Other generalized theories with variable � and
constant G include those proposed by Ozer and Taha
[82–85]. Der Sarkissian [86] has presented some new
cosmological models based on the field eq. (3) with

variables � and G as functions of time. He has claimed
that energy conservation cannot occur unless both �

and G are constants. But this claim is not entirely
correct [87].

The divergence of eq. (3) leads to

�,j gij = G,j T ij + GT ij ;j . (4)

It can be seen from eq. (3) that energy conservation
is possible when

�,j gij = G,j T ij . (5)

For an example of this type of cosmological model,
please refer Dirac [81]. Thus, contrary to the claim of
Beesham [87], it is possible to have energy conserva-
tion even though both � and G vary with time.

It is assumed that the matter is a perfect fluid with
bulk viscosity and dark energy. Then the energy–
momentum tensor is

Tij = ρuiuj + p̃hij . (6)

Here ρ is the total energy density of dark energy and
a perfect fluid and p̃ is the corresponding total pressure.
The projection tensor is defined as hij = gij +uiuj and
ui is the flow vector satisfying uiu

j = 1.
We first define the expressions for the average scale

factor and volume scale factor. We define the general-
ized Hubble parameter H in analogy with a flat FRW
model.

The average scale factor a and spatial volume V of
the general class of Bianchi cosmological model eq. (2)
are defined by

V = a3 = a1a2a3. (7)

We define the generalized Hubbles parameter H in
terms of spatial volume and scale factor as

H = 1

3

V̇

V
= 1

3
(H1 + H2 + H3)

= ȧ

a
= 1

3

(
ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
, (8)

where H1 = ȧ1/a1, H2 = ȧ2/a2 and H3 = ȧ3/a3 are
the directional Hubble’s parameters. The overhead dot
denotes differentiation with respect to cosmic time t .

From eqs (2) and (5), the field eq. (3) leads to

ȧ1ȧ2

a1a2
+ ȧ2ȧ3

a2a3
+ ȧ3ȧ1

a3a1
−m2+m+1

a2
1

=8πGρ+�, (9)

ä2

a2
+ ä3

a3
+ ȧ2ȧ3

a2a3
− m

a2
1

=−8πGp̃+�, (10)

ä1

a1
+ ä3

a3
+ ȧ1ȧ3

a1a3
−m2

a2
1

=−8πGp̃+�, (11)
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ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
− 1

a2
1

=−8πGp̃+�, (12)

(m+1)
ȧ1

a1
− ȧ2

a2
−m

ȧ3

a3
=0. (13)

Let us introduce the dynamical scalars such as
expansion parameter (θ), shear scalar (σ 2) and the
mean anisotropy parameter (A) as

θ = ui;i = 3H, (14)

σ 2 = 1

2
σijσ

ij , (15)

A = 1

3

3∑
i=1

(

Hi

H

)2

, (16)

where 
Hi = Hi − H, i = 1, 2, 3.
From eqs (9)–(13), we obtain

3H 2 = 8πGρ + σ 2 + � + m2 + m + 1

a2
1

(17)

H 2(2q−1)=8πGp̃−�+σ 2−m2+m+1

3a2
1

(18)

σ̇ +3Hσ − (m2+m+1)H

σa2
1

=0. (19)

The total pressure p̃ is related to equilibrium pres-
sure p by

p̃ = p − ξθ, (20)

where ξ is the coefficient of viscosity. In most of the
investigations involving bulk viscosity, it is assumed
that bulk viscosity is a power function of the energy
density [88–90] given by

ξ = ξ0ρ
r, ξ0 ≥ 0, (21)

where ξ0 and r are constants. The covariant conserva-
tion equation is given by

ρ̇ + θ(ρ + p̃) = −ρ
Ġ

G
− �̇

8πG
. (22)

We assume conservation of matter, viz.

ρ̇ + 3H(ρ + p) = 0. (23)

From eqs (5), (20), (22), (23), we have

8πρĠ + �̇ = 8πGξθ2. (24)

From eqs (17) and (18), we obtain the deceleration
parameter q as

q = 1

2
+

3

(
8πGp̃+σ 2−�− m2+m+1

a2
1

)

2

(
8πGρ+σ 2+�+ m2+m+1

a2
1

) . (25)

From eq. (25), it is observed that the deceleration
parameter q is a function of cosmic time t . Here we
take the deceleration parameter q as linear in time
with a negative slope, proposed by Akarsu and Dereli
[91]. This law covers the law of Berman (where the
deceleration parameter is constant) used for obtain-
ing exact cosmological models, in the context of dark
energy, to account for the current acceleration of the
Universe. This new law gives an opportunity to gener-
alize many of these dark energy models having better
consistency with the cosmological observations. The
linearly varying deceleration parameter q is defined as

q = −aä

ȧ2
= d

dt

(
1

H

)
− 1

= − Ḣ

H 2
− 1 = −kt + n − 1, (26)

where k and n are positive constants. The sign of q

indicates whether the model inflates or not. The pos-
itive sign of q corresponds to standard decelerating
model whereas the negative sign indicates accelerated
expansion. For n > 1 + kt , q > 0. Therefore, the
model represents a decelerating Universe whereas for
kt < n ≤ 1 + kt , we get −1 ≤ q < 0 which describes
an accelerating model of the Universe.

Solving eq. (26) for the scale factor, we obtain the
law of variation for average scale factor a as

a = (nlt + c1)
1/n, k = 0, n > 0, (27)

a = c2elt , k = 0, n = 0, (28)

a = c3e
2
n

tanh−1( kt
n

−1), k > 0, n > 1, (29)

where c1, c2 and c3 are constants of integration. Equa-
tion (25) implies that the condition for the expanding
Universe is n = (q + 1 + kt) > 0.

3. Modified Chaplygin gas model

In this section, we consider the case where the dark
energy is represented by a modified Chaplygin gas
(MCG). The EoS of the MCG model [92–94] is,

p = γρ − A1

ρα
, where 0 < α < 1. (30)

The modified Chaplygin gas EoS corresponds to a
mixture of ordinary matter and dark energy. For ρ =
(A1/γ )1/(1+α) the content of the matter is dust, i.e.
p = 0.

It has already been suggested that for α = 1, MCG
reduces to standard Chaplygin gas (SCG) [95,96].



Pramana – J. Phys. (2017) 88: 61 Page 5 of 13 61

In SCG model, when the co-moving volume of the
Universe is small (ρ → ∞) and γ = 1/3, this equa-
tion of state corresponds to a radiation-dominated era.
When density tends to zero, the equation of state corre-
sponds to a cosmological fluid with negative pressure
(the dark energy). Chaplygin gas plays a dual role at
different epochs of the history of the Universe: at early
time it behaves like a dust (i.e., for small scale factor a)
and at late times it behaves as a cosmological constant
(i.e., for large values of a).

Case 1. When k = 0, n > 0 and a3 = V b, where b is
any constant, then from eqs (7), (13) and (27), we get

a1(t) = (nlt + c1)
(3+3mb−3b)/n(m+2) (31)

a2(t) = (nlt + c1)
(3+3m−3b−6mb)/n(m+2) (32)

a3(t) = (nlt + c1)
3b/n. (33)

The directional Hubble parameters H1, H2 and H3 have
values

H1 =
(

3 + 3mb − 3b

m + 2

)
l

nlt + c1
(34)

H2 =
(

3 + 3m − 3b − 6mb

m + 2

)
l

nlt + c1
(35)

H3 = 3bl

nlt + c1
. (36)

From eq. (8), the average generalized Hubble param-
eter H has the value

H = l

nlt + c1
. (37)

From eqs (14), (15) and (16), the dynamical scalars
are given by

θ = 3l

nlt + c1
(38)

σ 2 = [3 + 3m − 18b − 18mb + 27mb2

− 18m2b + 27m2b2 + 27b2 + 3m2]

× l2

(m + 2)2(nlt + c1)2
(39)

A = [2 + 2m − 12b − 12mb + 18mb2

− 12m2b + 18m2b2 + 18b2 + 2m2]

× 1

(m + 2)2
. (40)

Using eqs (27) and (30) into energy conservation
eq. (23), we obtain the energy density

ρ =
(

A1 − (nlt + c1)
−3(1+γ )(1+α)

n

1 + γ

) 1
1+α

. (41)

From eq. (30), the pressure is given by

p = γ

(
A1 − (nlt + c1)

−3(1+γ )(1+α)
n

1 + γ

) 1
1+α

− A1(1 + γ )
1

1+α(
A1 − (nlt + c1)

−3(1+γ )(1+α)
n

) 1
1+α

. (42)

From eq. (21), the coefficient of viscosity is

ξ = ξ0

(
A1 − (nlt + c1)

−3(1+γ )(1+α)
n

1 + γ

) r
1+α

. (43)

Using eqs (42), (43) and (38) in eq. (20), the total
pressure p̃ is given by

p̃ =
(nlt + c1)

{
γ (1 + γ )

n−1
1+α

[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
] 2

1+α − A1(1 + γ )
n+1
1+α

}
(nlt + c1)(1 + γ )

n
1+α

[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
] 1

1+α

−
3ξ0l

[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
] n+1

1+α

(nlt + c1)(1 + γ )
n

1+α

[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
] 1

1+α

. (44)
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Using eqs (41) and (43) in eqs (17) and (24), we can
obtain G(t) and �(t) respectively as follows:

G =
(1+γ )

n
1+α

[
A1−(nlt+c1)

−3
n

(1+γ )(1+α)
] α

1+α
{

Xnl3−3nl3(m+2)2

(m+2)2(nlt+c1)
+ 3l(m2+m+1)(1+mb−b)

(m+2)(nlt+c1)
6(1+mb−b)

n(m+2)
−1

}

12πl
{
(1+γ )

n+α
1+α (nlt+c1)

−3
n

(1+γ )(1+α)+1+3ξ0l
[
A1−(nlt+c1)

−3
n

(1+γ )(1+α)
] n+α

1+α
} (45)

and

� = −
2(1 + γ )

n−1
1+α

[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
]{

Xnl3−3nl3(m+2)2

(m+2)2(nlt+c1)
+ 3l(m2+m+1)(1+mb−b)

(m+2)(nlt+c1)
6(1+mb−b)

n(m+2)
−1

}

3l
{
(1 + γ )

n+α
1+α (nlt + c1)

−3
n

(1+γ )(1+α)+1 + 3ξ0l
[
A1 − (nlt + c1)

−3
n

(1+γ )(1+α)
] n+α

1+α
}

+
{

l2(3(m + 2)2 − X)

(m + 2)2(nlt + c1)2
− (m2 + m + 1)

(nlt + c1)
6(1+mb−b)

n(m+2)

}
. (46)

where

X = (3 + 3m − 18b − 18mb + 27mb2 − 18m2b

+ 27m2b2 + 27b2 + 3m2).

Here we observe that, the spatial volume V is zero at
t = t0 = −c1/nl. The energy density and pressure
are infinite at this epoch. The rate of expansion and
the mean anisotropy parameter are infinite as t → t0.
From eqs (36)–(38), the directional Hubble’s parame-
ters H1, H2, H3 are infinite at the initial time t = t0.
Thus, the Universe starts evolving with zero volume at
t = t0 and expands with cosmic time t . From eqs (40)
and (41), limt→∞(σ 2/θ) = 0. So the model approaches
isotropy for large cosmic time t . From eq. (40), it
is observed that when b = 1/3 the anisotropy of the
present model becomes zero for all values of m and
the model becomes free from anisotropy, which is
acceptable as a dark energy model. The conditions of
homogeneity and isotropization, formulated by Collins
and Hawking [77], are satisfied in the present model.

For A1 = (nlt + c1)
−3(1+γ )(1+α)

n we have |p| → ∞.
From eqs (41) and (42), one can see that for large value
of time,

ρ =
[

A1

1 + γ

] 1
1+α

and p = −
[

A1

1 + γ

] 1
1+α

,

which shows an accelerating Universe. From eq. (45),
it is observed that the cosmological term �(t) tends
zero for large cosmic time t . We also note that G tends
to be a constant for large value of cosmic time t . Thus,
the cosmological constant term is very small today. It is

also observed that the energy conditions are satisfied
for this model when

t ≥ t� = 1

nl

[(
1

A1

) n
3(1+γ )(1+α) − c1

]
.

Here t� ∼ 10−24 for suitable choices of constraints.
For suitable choices of constraints (α = 0.5, γ =

1/3) in figure 1, red curve (with dots) represents the
variation of Ġ/G with evolution of Universe for n = 1,
while green curve (with circles) and blue curve (with
stars) represent the variation of Ġ/G with evolution
of the Universe for n = 2 and 3 respectively. From
figure 1, it is interesting to note that, the value of
Ġ/G satisfies Viking Landers on Mars data [97] (i.e.
(Ġ/G) ≤ 6) and PSR B1913+16 and PSR B1855+09
data [98] (i.e. (Ġ/G) ≤ 9) for large cosmic time t .

Case 2. When k = 0, n = 0 and a3 = V b, where b is
any constant, we have

a1(t) = c2
3+3mb−3b

m+2 e
(3+3mb−3b)lt

m+2 (47)

a2(t) = c2
3+3m−3b−6mb

m+2 e
(3+3m−3b−6mb)lt

m+2 (48)

a3(t) = c3b
2 e3blt . (49)
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The directional Hubble’s parameters H1, H2 and H3
have values

H1 = (3 + 3mb − 3b)l

m + 2
(50)

H2 = (3 + 3m − 3b − 6mb)l

m + 2
(51)

H3 = 3bl. (52)

From eq. (8), the average generalized Hubble’s
parameter H has the value given by

H = l. (53)

From eqs (14), (15) and (16), the dynamical scalars are
given by

θ = 3l (54)

1 2 3 4 5 6 7 8 9 10
−10

−5

0

5

10

Figure 1. Ġ/G vs. t for n = 1, 2, 3.

σ 2 = 3 + 3m − 18b − 18mb + 27mb2 − 18m2b + 27m2b2 + 27b2 + 3m2

(m + 2)2
l2 (55)

A = 2 + 2m − 12b − 12mb + 18mb2 − 12m2b + 18m2b2 + 18b2 + 2m2

(m + 2)2
. (56)

Using eqs (28) and (30) in energy conservation
eq. (23), we obtain the energy density ρ as

ρ =
(

A1 − exp(−3lt (1 + γ )(1 + α))

1 + γ

) 1
1+α

. (57)

From eq. (30), the pressure p is given by

p = γ

(
A1 − exp(−3lt (1 + γ )(1 + α))

1 + γ

) 1
1+α

− A1(1 + γ )
1

1+α

(A1 − exp(−3lt (1 + γ )(1 + α)))
1

1+α

. (58)

From eq. (21), the coefficient of viscosity ξ is given
by

ξ =ξ0

(
A1−exp(−3lt (1+γ )(1+α))

1+γ

) r
1+α

. (59)

Using eqs (58), (59) and (54) in eq. (20), we obtain

p̃ = γ (1 + γ )
n−1
1+α
[
A1 − exp(−3lt (1 + γ )(1 + α))

] 2
1+α − A1(1 + γ )

n+1
1+α

(1 + γ )
n

1+α
[
A1 − exp(−3lt (1 + γ )(1 + α))

] 1
1+α

− 3ξ0l
[
A1 − exp(−3lt (1 + γ )(1 + α))

] n+1
1+α

(1 + γ )
n

1+α
[
A1 − exp(−3lt (1 + γ )(1 + α))

] 1
1+α

. (60)
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Using eqs (57) and (59) in eqs (17) and (24), we can
obtain G(t) and �(t) respectively as follows:

G =
{
(m2 + m + 1)(1 + mb − b)(1 + γ )

n
1+α (A1 − exp(−3lt (1 + γ )(1 + α)))

α
1+α

}/
{

4π(m + 2)c
6(1+mb−b)

(m+2)

2 exp

(
6(1 + mb − b)lt

(m + 2)

)[
3ξ0l {A1 − exp(−3lt (1 + γ )(1 + α))} n+α

1+α

+ (1 + γ )
n+α
1+α exp(−3lt (1 + γ )(1 + α))

] }
(61)

and

� =
{
−2(m2 + m + 1)(1 + mb − b)(1 + γ )

n−1
1+α (A1 − exp(−3lt (1 + γ )(1 + α)))

}/
{

3(m + 2)c
6(1+mb−b)

(m+2)

2 exp

(
6(1 + mb − b)lt

(m + 2)

)[
3ξ0l

{
A1 − exp(−3lt (1 + γ )(1 + α))

} n+α
1+α

+ (1+γ )
n+α
1+α exp(−3lt (1+γ )(1 + α))

]}
+ 3(m+2)2−X

(m+2)2
l2− m2+m+1

c
6(1+mb−b)

(m+2)

2 exp

(
6(1+mb−b)lt

(m+2)

) . (62)

Here we observe that, the spatial volume V is finite
at t = 0. The energy density and pressure are infi-
nite at this epoch. The rate of expansion and the mean
anisotropy parameter are infinite at t = 0. Thus, the
Universe starts evolving with finite volume at t = 0
and expands with cosmic time t . Collins et al [99]
have pointed out that for spatially homogeneous met-
ric, the normal congruence to the homogeneous space
satisfies the relation (σ/θ) = constant. From eq. (56),
it is observed that when b = 1/3 the anisotropy of
the present model becomes zero for all values of m

and the model becomes free from anisotropy, which is
acceptable as a dark energy model. From eqs (52) and
(53), it is observed that, Collins condition is satisfied.
As t → ∞, the scale factor becomes infinitely large,
whereas the shear scalar tends to zero.

For A1 = exp(−3lt (1 + γ )(1 + α)) we have |p| →
∞. From eqs (57) and (58), we see that for large value
of time,

ρ =
[

A1

1 + γ

] 1
1+α

and p = −
[

A1

1 + γ

] 1
1+α

,

which shows an accelerating Universe. From eq. (62),
it is observed that the cosmological term �(t) tends to
zero for large cosmic time t . We also note that G tends
to a constant for large value of cosmic time t . Thus,
the cosmological constant term is very small today. It
is also observed that the energy conditions are satisfied
for this model when

t ≥ t� = 1

3l(1 + γ )(1 + α)
ln

(
1

A1c
3(1+γ )(1+α)

2

)
.

Here t� ∼ 10−24 for suitable choices of constraints.
For suitable choices of constraints (n = 1, γ = 1/3)

in figure 2, red curve (with dots) represents the varia-
tion of Ġ/G with evolution of Universe for α = 0.1,
while blue curve (with circles) and green curve (with
stars) represent the variation of Ġ/G with evolution
of Universe for α = 0.5 and 0.9 respectively. From
figure 2, it is interesting to note that, the value of
Ġ/G satisfies Viking Landers on Mars data [97] (i.e.
(Ġ/G) ≤ 6) and PSR B1913+16 and PSR B1855+09
data [98] (i.e. (Ġ/G) ≤ 9) for large cosmic time t .
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Case 3. When k > 0, n > 1 and a3 = V b, where b is
a constant, we have

a1(t) = c3
3+3mb−3b

m+2 e
2(3+3mb−3b)

n(m+2)
tanh−1( kt

n
−1) (63)

a2(t) = c3
3+3m−3b−6mb

m+2 e
2(3+3m−3b−6mb)

n(m+2)
tanh−1( kt

n
−1) (64)

a3(t) = c3b
3 e

6b
n

tanh−1( kt
n

−1). (65)

The directional Hubble’s parameters H1, H2 and H3
have values

H1 = 2(3 + 3mb − 3b)

t (2n − kt)(m + 2)
(66)

H2 = 2(3 + 3m − 3b − 6mb)

t (2n − kt)(m + 2)
(67)

H3 = 6b

t (2n − kt)
. (68)

From eq. (8), the average Hubble’s parameter H has
the value

H = 2

t (2n − kt)
. (69)

From eqs (14), (15) and (16), the dynamical scalars
are given by

θ = 6

t (2n − kt)
(70)

σ 2 = 12(1 + m − 6b − 6mb + 9mb2 − 6m2b + 9m2b2 + 9b2 + m2)

t2(2n − kt)2(m + 2)2
(71)

A = 2(1 + m − 6b − 6mb + 9mb2 − 6m2b + 9m2b2 + 9b2 + m2)

(m + 2)2
. (72)

Using eqs (29) and (30) in energy conservation
eq. (23), we obtain the energy density ρ as

ρ =

⎡
⎢⎢⎢⎢⎣

A1 −
(

kt

2n − kt

)−3(1+γ )(1+α)
n

1 + γ

⎤
⎥⎥⎥⎥⎦

1
1+α

. (73)

From eq. (30), the pressure p is given by

p = γ

⎡
⎢⎢⎢⎢⎣

A1 −
(

kt

2n − kt

)−3(1+γ )(1+α)
n

1 + γ

⎤
⎥⎥⎥⎥⎦

1
1+α

− A1(1 + γ )
1

1+α⎛
⎝A1 −

(
kt

2n − kt

)−3(1+γ )(1+α)
n

⎞
⎠

1
1+α

. (74)

From eq. (21), the coefficient of viscosity ξ is given by

ξ = ξ0

⎡
⎢⎢⎢⎢⎣

A1 −
(

kt

2n − kt

)−3(1+γ )(1+α)
n

1 + γ

⎤
⎥⎥⎥⎥⎦

r
1+α

. (75)

Using eqs (74), (75) and (70) in eq. (20), we obtain

p̃ =
t (2n − kt)

⎧⎪⎨
⎪⎩γ (1 + γ )

n−1
1+α

[
A1 −

(
kt

2n − kt

)−3
n

(1+γ )(1+α)
] 2

1+α

− A1(1 + γ )
n+1
1+α

⎫⎪⎬
⎪⎭

t (2n − kt)(1 + γ )
n

1+α

[
A1 −

(
kt

2n − kt

)−3
n

(1+γ )(1+α)
] 1

1+α

−
6ξ0

[
A1 −

(
kt

2n − kt

)−3
n

(1+γ )(1+α)
] n+1

1+α

t (2n − kt)(1 + γ )
n

1+α

[
A1 −

(
kt

2n − kt

)−3
n

(1+γ )(1+α)
] 1

1+α

. (76)
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Using eqs (73) and (75) in eqs (17) and (24), we can
obtain G(t) and �(t) respectively as follows:

G=
(1+γ )

n
1+α

[
A1−

(
kt

2n−kt

)−3
n

(1+γ )(1+α)
] α

1+α

⎧⎪⎨
⎪⎩

(12+B)(kt−n)

t (2n−kt)
+ 3(m2+m+1)(1+mb−b)t (2n−kt)

(m+2)c
6(1+mb−b)

(m+2)

3 e
12(1+mb−b)

n(m+2)
tanh−1

(
kt
n

−1
)
⎫⎪⎬
⎪⎭

12π

⎧⎨
⎩kt2(1+γ )

n+α
1+α

(
kt

2n−kt

)−3
n

(1+γ )(1+α)−1

+ 6ξ0

[
A1−

(
kt

2n−kt

)−3
n

(1+γ )(1+α)
]n+α

1+α

⎫⎬
⎭

(77)

and

� = −
4(1+γ)

n−1
1+α

[
A1−

(
kt

2n−kt

)−3
n

(1+γ )(1+α)
]⎧⎪⎨
⎪⎩

(12+B)(kt−n)

t (2n−kt)
+ 3(m2+m+1)(1+mb−b)t (2n−kt)

(m+2)c
6(1+mb−b)

(m+2)

3 e
12(1+mb−b)

n(m+2)
tanh−1

(
kt
n

−1
)
⎫⎪⎬
⎪⎭⎧⎨

⎩6kt2(1+γ )
n+α
1+α

(
kt

2n−kt

)−3
n

(1+γ )(1+α)−1

+ 36ξ0

[
A1−

(
kt

2n−kt

)−3
n

(1+γ )(1+α)
] n+α

1+α

⎫⎬
⎭

+

⎧⎪⎨
⎪⎩

12−B

t2(2n−kt)2
− (m2+m+1)

c
6(1+mb−b)

(m+2)

3 e
12(1+mb−b)

n(m+2)
tanh−1

(
kt
n

−1
)
⎫⎪⎬
⎪⎭, (78)

where

B = 12(1 + m − 6b − 6mb + 9mb2 − 6m2b + 9m2b2 + 9b2 + m2)

(m + 2)2
.

Here we observe that the spatial volume V is finite at
t = t0 = 0. The energy density and pressure are infi-
nite at this epoch. The rate of expansion and the mean
anisotropy parameter are infinite at t = t0. Thus, the
Universe starts evolving with finite volume at t = t0
and expands with cosmic time t . From eqs (70) and
(71) limt→∞ σ 2/θ = 0. Thus, the model approaches
isotropy for large cosmic time t . From eq. (72), it
is observed that when b = 1/3 the anisotropy of the
present model becomes zero for all values of m and
the model becomes free from anisotropy, which is
acceptable as a dark energy model. The conditions of
homogeneity and isotropization, formulated by Collins
and Hawking [77], are satisfied in the present model.

As t → ∞, the scale factor becomes infinitely large,
whereas the shear scalar tends to zero. For

A1 =
(

kt

2n − kt

)−3(1+γ )(1+α)
n

we have |p| → ∞. From eqs (73) and (74), it is seen
that for large value of time,

ρ =
[

A1

1 + γ

] 1
1 +α

and p = −
[

A1

1 + γ

] 1
1 +α

,

which shows an accelerating Universe. From eq. (78),
it is observed that the cosmological term �(t) tends to
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Figure 2. Ġ/G vs. t for n = 1, γ = 1 and α = 0.1, 0.5, 0.9.
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Figure 3. Ġ/G vs. t for n = 1, α = 0.5 and γ = 0, 1/3, 1.

zero for large cosmic time t . We also note that G tends
to be a constant for large values of cosmic time t . Thus,
the cosmological constant term is very small today. It
is also observed that the energy conditions are satisfied
for this model when

t ≥ t� = n

k

[
tanh

(
2

n
ln(

1

A1c
3(1+γ )(1+α)

3

)

)
+ 1

]
.

Here t� ∼ 10−24 for suitable choices of constraints.
For suitable choices of constraints (n = 1, α = 0.5)

in figure 3, red curve (with dots) represents the vari-
ation of Ġ/G with evolution of Universe for γ =1, while
blue curve (with stars) and green curve (with circles)
represent the variation of Ġ/G with evolution of Uni-
verse for γ = 1/3 and 1 respectively. From figure 3,
it is interesting to note here that, the value of Ġ/G satis-
fies Viking Landers on Mars data [97] (i.e. (Ġ/G)≤6)
and PSR B1913+16 and PSR B1855+09 data [98]
(i.e. (Ġ/G) ≤ 9) for large cosmic time t .

4. Result and discussion

The evolution of homogeneous and anisotropic cos-
mological models is studied in the presence of dark
energy and bulk viscosity. We have considered dark
energy models with bulk viscosity and variable � and
G for general class of Bianchi cosmological models.
The dark energy is represented by modified Chaply-
gin gas (MCG). To find the solutions, we have taken
the deceleration parameter as linear in time with a neg-
ative slope. The exact solutions to the corresponding
field equations are obtained for all three cases of scale
factors in both scenarios of Chaplygin gas. In §3, we
have taken an alternative model of dark energy with an
exotic equation of state in three different cases of scale
factors. It has been shown in all three subcases that the
models have good agreement with current features of
the Universe. It is also shown that, the model repre-
sents a shearing, non-rotating and expanding Universe
with a very small finite volume and approaches asymp-
totically to isotropic model at late time. It is also noted
that the cosmological constant is a decreasing function
of cosmic time t and it tends to zero for large time
t . Thus, the cosmological constant term is very small
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today. Also during inflation the cosmological term and
energy density decrease with time.

5. Conclusions

This paper has dealt with a general class of Bianchi
cosmological models with dark energy and bulk vis-
cosity and variable � and G, where dark energy is
taken in the form of modified Chaplygin gas (MCG).
We have used the general class of cosmological models
for different values of m as follows: Bianchi type-
III, V, VI0 models correspond to m = 0, 1 and −1
and all other values of m give Bianchi type-VIh. The
exact solutions to the corresponding field equations
are obtained in quadrature form. Three different cases
have been discussed, depending on the nature of rela-
tion between the scale factor and the cosmic time
t . Here, we observed that viscosity plays the role of
an agent driving the present acceleration of the Uni-
verse. It is also observed that the cosmological term
becomes very small at late time. In all cases, the Uni-
verse starts from a non-singular initial state. In each
case, the spatial volume, expansion parameter, shear
scalar and mean anisotropic parameter tend to zero for
large cosmic time t . All the physical parameters have
been calculated and discussed for each model. In each
case, the cosmological model approaches isotropy for
large value of cosmic time t . These models represent a
shearing, non-rotating and expanding Universe, which
approaches isotropy for large value of t . We have also
shown that MCG model corresponds to an accelerated
Universe.

References

[1] N A Bachall, J P Ostriker, S Perlmutter and P J Steinhardt,
Science 284, 1481 (1999)

[2] S Perlmutter et al, Astrophys. J. 517, 565 (1999)
[3] L Amendo and S Tsujikawa, Dark energy (Cambridge Univ.

Press, 2010)
[4] E J Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D

15, 1753 (2006)
[5] K Bamba, S Capozziello, S Nojiri and S D Odintso,

arXiv:1205.3421 (2012)
[6] P J Peebles and B Ratra, Rev. Mod. Phys. 75, 559 (2003)
[7] J Kratochvil, A Linde, E V Linder and M Shmakova, J.

Cosmol. Astropart. Phys. 407, 001 (2004)
[8] R R Caldwell, R Dave and P J Steinhardt, Phys. Rev. Lett. 80,

1582 (1998)
[9] M S Turner and M White, Phys. Rev. D 56, R4439 (1997)

[10] T Chiba, Phys. Rev. D 60, 83508 (1999)
[11] R R Caldwell, Phys. Lett. B 545, 23 (2002)
[12] S Nojiri and S D Odinstov, Phys. Rev. D 72, 23003 (2005)

[13] R R Caldwell, M Kamionkowski and N N Weinberg, Phys.
Rev. Lett. 91, 71301 (2003)

[14] Z K Guo, Y Piao, X Zhang and Y Zhang, Phys. Lett. B 608,
177 (2005)

[15] J Q Xia, B Feng and X Zhang, Mod. Phys. Lett. A 20, 2409
(2005)

[16] M R Setare, Phys. Lett. B 641, 130 (2006)
[17] M R Setare, J Sadeghi and A R Amani, Phys. Lett. B 660, 299

(2008)
[18] J Sadeghi, M R Setare, A Banijamali and F Milani, Phys. Lett.

B 662, 92 (2008)
[19] M R Setare and E N Sridakis, Phys. Lett. B 668, 177 (2008)
[20] M R Setare and E N Sridakis, J. Cosmol. Astropart. Phys. 09,

026 (2008)
[21] A Kamenshchik, A Moschella and V Pasquier, Phys. Lett. B

511, 265 (2001)
[22] V Gorini, A Kamenshchik, U Moschella and V Pasquie,

arXiv:gr-qc/0403062 (2004)
[23] V Gorini, A Kamenshchik and U Moschella, Phys. Rev. D 67,

063509 (2003)
[24] U Alam, V Sahni, T D Saini and A A Starobinsky, Mon. Not.

R. Astron. Soc. 344, 1057 (2003)
[25] M C Bento, O Bertolami and A A Sen, Phys. Rev. D 66,

043507 (2002)
[26] N Bilic, G B Tupper and R D Viollier,

arXiv:astro-ph/0207423 (2002)
[27] M R Setare, Phys. Lett. B 654, 1 (2007)
[28] M R Setare, Phys. Lett. B 642, 421 (2006)
[29] M R Setare, Eur. Phys. J. C 52, 689 (2007)
[30] D Bazeia and R Jackiw, Ann. Phys. 270, 246 (1998)
[31] D Bazeia, Phys. Rev. D. 59, 085007 (1999)
[32] R Jackiw and A P Polychronakos, Commun. Math. Phys. 207,

107 (1999)
[33] N Ogawa, Phys. Rev. D 62, 085023 (2000)
[34] N Bilic, G B Tupper and R D Viollier, Phys. Lett. B 535, 17

(2002)
[35] C Eckart, Phys. Rev. 58, 919 (1940)
[36] X H Zhai, Y D Xu and X Z Li, arXiv:astro-ph/0511814 (2005)
[37] P A M Dirac, Nature 139, 323 (1937)
[38] Abdusattar and R G Vishwakarma, Class. Quant. Grav. (UK)

14, 945 (1997)
[39] A Bonanno and M Reuter, Phys. Rev. D 65, 043508 (2002)
[40] E Bentivegna, A Bonanno and M Reuter, J. Cosmol.

Astropart. Phys. 0401, 001 (2004)
[41] A Zee, Phys. Rev. Lett. 42, 1567 (1979)
[42] L Smolin, Nucl. Phys. B 160, 253 (1979)
[43] S Adler, Phys. Rev. Lett. 44, 1567 (1980)
[44] C J Copi, A N Davis and L M Krauss, Phys. Rev. Lett. 42,

171301 (2004)
[45] C L Bennett et al, APJS 148, 97 (2003)
[46] C W Misner, ApJ 151, 431 (1968)
[47] G W Gibbons and S W Hawking, Phys. Rev. D 15, 2738

(1977)
[48] G F R Ellis and H van Elst, NATO ASIC Proc. 541 (1999),

arXiv:gr-qc/9812046
[49] E W Kolb and M S Turner, The early Universe (Addison-

Wesley, 1990)
[50] C W Misner, K S Thorne and J A Wheeler, Gravitation (W.H.

Freeman, New York, 1973)
[51] B L Hu and L Parker, Phys. Rev. D 17, 933 (1978)
[52] S W Hawking and G F R Elli, The large scale structure of

space-time (Cambridge University Press, UK, 1973)
[53] V A Belinskii, I M Khalatnikov and E M Lifshitz, Adv. Phys.

19, 525 (1970)



Pramana – J. Phys. (2017) 88: 61 Page 13 of 13 61

[54] M A H Mac Callum, Anisotropic and inhomogeneous
relativistic cosmologies in General Relativity (Cambridge
University Press, UK, 1979) Chapter 11

[55] G Hinshaw et al, Astrophys. J. Suppl. 148, 135 (2003)
[56] G Hinshaw et al, Astrophys. J. Suppl. 288, 170 (2007)
[57] G Hinshaw et al, Astrophys. J. Suppl. 180, 225 (2009)
[58] J Jaffe et al, Astrophys. J. 629, L1 (2005)
[59] J Jaffe et al, Astrophys. J. 643, 616 (2006)
[60] J Jaffe et al, Astron. Astrophys. 460, 393 (2006)
[61] A H Guth, Phys. Rev. D 23, 347 (1981)
[62] A D Linde, Phys. Lett. B 108, 389 (1982)
[63] A D Linde, Phys. Lett. B 129, 177 (1983)
[64] A D Linde, Phys. Lett. B 259, 38 (1991)
[65] A D Linde, Phys. Lett. B 49, 748 (1994)
[66] T Singh and R Chaubey, Pramana – J. Phys. 68, 721 (2007)
[67] A Pradhan and K Jotania, Indian J. Phys. 85, 497 (2011)
[68] S Agarwal, R K Pandey and A Pradhan, Indian J. Phys. 86,

61 (2012)
[69] A Pradhan, R Zia and R P Singh, Indian J. Phys.,

DOI: 10.1007/s12648-013-0342-0 (2013)
[70] T Singh and R Chaubey, Proc. Natl Acad. Sci. Sec. A 79, 337

(2009)
[71] R Chaubey, Int. J. Theor. Phys. 48, 952 (2009)
[72] R Chaubey, Natl. Sci. 3(7), 90 (2011)
[73] V Fayaz, M R Setare and H Hossienkhani, Can. J. Phys. 91,

153 (2013)
[74] M Khurshudyan, B Paurhassan and A Pasqua, Can. J.

Phys. (Accepted) (2014), DOI: 10.1139/cjp/2014-0283,
arXiv:1401.6630

[75] M Khurshudyan, B Paurhassan and E O Kahy, Int. J. Geo.
Meth. Mod. Phys. 11, 1450061 (2014)

[76] J Sodeghi, M Khurshudyan, A Movsisyan and H Faraha, J.
Cosmol. Astropart. Phys. 12, 031 (2013)

[77] C B Collins and S W Hawking, Astrophys. J. 180, 317 (1973)

[78] A A Coley, Dynamical systems and cosmology (Kluwer
Academic, Dordrecht, 2003)

[79] U S Nilson, C Uggla, J Wainwright and W C Lim, Astrophys.
J. Lett. 522, L1 (1999)

[80] Y K Lau, Austr. J. Phys. 38, 547 (1985)
[81] P A M Dirac, Proc. R. Soc. London 165, 199 (1938)
[82] M Ozer and M O Taha, Phys. Lett. B 171, 363 (1986)
[83] M Ozer and M O Taha, Nucl. Phys. B 287, 776 (1987)
[84] P S Wesson, Cosmology and geophysics (Adam Hilger, Bris-

tol, UK, 1978)
[85] P S Wesson, Gravity particles and astrophysics (Reidel,

Dordrecht, Netherlands, 1980)
[86] M Der Sarkissian, Nuovo Cimento B 88, 29 (1985)
[87] A Beesham, Aust. J. Phys. 41, 833 (1988)
[88] W Zimdahl, Phys. Rev. D 53, 5483 (1996)
[89] D Pavon, J Bafaluy and D Jou, Class. Quant. Grav. 8, 357

(1991)
[90] R Maartens, Class. Quant. Grav. 12, 1455 (1991)
[91] O Akarsu and T Dereli, Int. J. Theor. Phys. 51, 612 (2012)
[92] M C Bento, O Bertolami and A A Sen, Phys. Rev. D 66,

43507 (2002)
[93] V Gorini, A Kamenshchik and U Moschella, Phys. Rev. D 67,

63509 (2003)
[94] U Alam, V Sahni, T D Saini and A A Starobinsky, Mon. Not.

R. Astron. Soc. 344, 1057 (2003)
[95] A Kamenshchik, U Moschella and V Pasquier, Phys. Lett. B

487, 7 (2000)
[96] A Kamenshchik, U Moschella and V Pasquier, Phys. Lett. B

511, 265 (2001)
[97] R W Hellings et al, Phys. Rev. Lett. 51, 1609 (1983)
[98] V M Kaspi, J H Taylor and M F Ryba, Astrophys. J. 428, 713

(1994)
[99] C B Collins, E N Glass and D A Wilkinson, Gen. Relativ.

Gravit. 12, 805 (1980)


