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Abstract. For the Benjamin Ono equation, the Hirota bilinear method and long wave limit method are applied
to obtain the breathers and the rogue wave solutions. Bright and dark rogue waves exist in the Benjamin Ono
equation, and their typical dynamics are analysed and illustrated. The semirational solutions possessing rogue
waves and solitons are also obtained, and demonstrated by the three-dimensional figures. Furthermore, the hybrid
of rogue wave and breather solutions are also found in the Benjamin Ono equation.
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1. Introduction

In recent years, the phenomena of rogue waves, that
appear from nowhere and disappear without a trace
[1], have generated a hot debate on both experimental
observation and theoretical analysis in different fields
including Bose–Einstein condensates [2,3], optical sys-
tem [4–6], ocean [7], superfluids [8], plasma [9,10]
and so on. The simplest rogue wave (i.e., the first-
order rogue waves) solution of the NLS equation was
first discovered by Peregrine [11]. The amplitude of the
first-order rogue waves reaches three times the height
of the background, and then decays algebraically to
the background finally. Recently, different kinds of
rogue waves in the NLS equation have been shown
in other articles [12–16]. What is more, the hierar-
chy of rogue wave solutions for other soliton equations
have also been reported in refs [17–22], demonstrating
that the higher-order rogue waves are also localized in
both space and time and can exhibit higher main peak
in fundamental patterns. For example, the maximum
amplitude of the n-order rogue waves of the NLS equa-
tion is 2n+1 times the background. Two recent articles
[23,24] have provided a good review on rogue waves
from the physical point of view. Besides, the research
about the rogue wave solutions of generating nonlinear
evolution equations in different branches of science is

an interesting topic. Especially, the interaction between
rogue waves and solitons or breathers is a very inter-
esting and important topic, and great research has been
done on them [25–28]. But most of them are complex
systems, and to the author’s best knowledge, research
on the interaction between rogue waves and solitons or
breathers has not been done before.

In this paper, we focus on the Benjamin Ono (BO)
equation

utt + β(u2)xx + γ uxxxx = 0, (1)

where β and γ are real non-zero constants. The BO
equation is one of the important nonlinear equation in
physics [29,30]. By means of travelling wave method,
the exact solutions of the BO equation were obtained.
Based on an improved projective Riccati equation
method, the travelling wave solutions of single variable
were found [31]. Applying the F-expansion method
and the Jacobi elliptic function expansion method to
the BO equation, a series of periodic wave solutions
was obtained [32]. Applying the bilinear method and
extended homoclinic test approach [33–36], first-order
rogue waves, periodic solitary waves and doubly peri-
odic solutions for the BO equation were obtained
[37].

The outline of the paper is as follows: In §2, the bright
rogue waves and dark rogue waves of the BO equation
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are obtained by the Hirota linear method and long wave
limit, and their typical dynamics are analysed and illus-
trated. In §3, the dynamics of the interaction between
rogue waves and solitons have been demonstrated, and
the hybrids of rogue waves and breathers have been
shown. Section 4 contains summary and discussion.

2. The rogue wave solutions of the Benjamin
Ono equation

In this section, we present rational solutions of the Ben-
jamin Ono equation. Before that, we have to obtain
N th-order solitons and breather solutions of the Ben-
jamin Ono equation. Equation (1) can be transformed
into the bilinear form

(D2
t + 2βu0D

2
x + γD4

x)f · f = 0, (2)

through the dependent variable transformation

u = u0 + 6γ

β
(ln f )xx. (3)

Here u0, β and γ are real constants, f is a real
function with respect to variables x and t , and the
operator D is the Hirota’s bilinear differential oper-
ator [38] defined by P(Dx, Dy, Dt)F (x, y, t, . . .) ×
G(x, y, t, . . .) = P(∂x − ∂x′, ∂y − ∂y′, ∂t − ∂t ′, . . .)
×F(x, y, t, . . .)G(x′, y′, t ′, . . .)|x′=x,y′=y,t ′=t , where
P is a polynomial of Dx , Dy , Dt, . . . .

By the Hirota direct method [38], the N th-order
soliton solutions of eq. (1) can be obtained as

u = u0 + 6γ

β
(lnf )xx, (4)

where

f =
∑

μ=0,1

exp

⎛
⎝ N∑

i<j

μiμjAij +
N∑

i=1

μiηi

⎞
⎠ (5)

and

exp(Aij)=−γ(pi−pj)
4+2u0 β(pi −pj)

2+(ki−kj)
2

γ(pi+pj)4+2u0 β(pi +pj)2+(ki +kj)2
,

ηi =pix+kit+η0i , ki =
√
−p2

i γ −2βμ0 pi (6)

Here N, pi and η0i are arbitrary constants.
To get first-order breather solutions in eq. (1), apply-

ing similar transformation to the soliton solutions in
the BO equation as in ref. [39], and taking parameter
constraints

N = 2, p1 = p∗
2, η01 = η∗

02, (7)

two types of corresponding breather solutions (i.e.,
bright breathers and dark breathers) are obtained which
are shown in figure 1.

As first-order rogue waves can be treated as the limi-
tation of first-order breathers, two types of rogue waves
(i.e., bright rogue waves and dark rogue waves) should
exist in eq. (1). To get the first-order rational solutions,
we use the long-wave limit on second-order soliton
solutions in (4) and (5). Putting N = 2, p1 = α1ε, p2 =
α2ε, η01 = iπ , η02 = −iπ and taking the limits ε → 0,
we obtain the following rational solutions of eq. (1):

u = u0 − 24u0γ(−4u2
0 βt2 + 2u0βx2 + 3γ )

(4u2
0 β2t2 + 2u0βx2 − 3γ )2

. (8)

It is easy to find that the rational solutions u (8) is
nonsingular when γ < 0, u0β > 0. To discuss those
nonsingular rational solutions u (8) further, we present
the critical points of u:

A1 = (x1, t1)=(0,0), A2 =(x2, t2)=
(

3
√
− γ

2βu0
,0

)
,

A3 = (x3, t3)=
(

−3
√

− γ

2βu0
, 0

)
.

Setting

H(x, t) = ∂2u2

∂x2
, 	(x, t) = ∂2u2

∂x2

∂2u2

∂t2
−

(
∂2u2

∂x∂t

)2

,

then

H(x1, t1) = −32u2
0 β

γ
, 	(x1, t1) = 2048

3

u5
0 β3

γ 2
,

H(x2, t2) = H(x3, t3) = u2
0 β

γ
,

	(x2, t2) = 	(x3, t3) = 8

3

u5
0 β3

γ 2
.

Figure 1. Two types of the first-order breather solutions u

of eq. (1): (a) The bright breathers with η01 = 0, η02 =
0, p1 = 1 + 4i, p2 = 1 − 4i, u0 = 0, β = −1, γ = −1 and
(b) the dark breathers with η01 = 0, η02 = 0, p1 = 1 + 4i,
p2 = 1 − 4i, u0 = 0, β = 1, γ = −1.
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According to the above discussions on Ai (1 ≤ i ≤ 3),
H and 	, those nonsingular rational solutions u (8) can
be classified into two patterns:

(a) The bright rogue waves: when u0 < 0, β < 0,

γ<0, u has one global maximum point (point A1)
and two global minimum points (point A2 and
point A3), the maximum value of u is −7u0, and
the minimum value of u is 2u0.

(b) The dark rogue waves: when u0>0, β>0, γ<0,
u has two global maximum points (point A2 and
point A3), and one global minimum point (point
A1), the maximum value of u is 2u0, and the
minimum value of u is −7u0.

Figures 2 and 3 show two types of rogue waves in
eq. (1). Obviously, the parameter u0 controls the height

of the rogue waves and this property is demonstrated
vividly in figure 2, and the parameters γ and β also
have a close relationship with localization characters,
which are shown in figure 3. It is noticed that the height
and the proportion of the first-order rogue waves in
eq. (1) could be arbitrary, that is very different from
the localization character of complex MKDV equation
discussed by He et al [40] which is constant. This may
be a big difference between rogue waves in complex
systems and real systems.

3. The hybrid solutions of the Benjamin
Ono equation

It may be interesting to examine the interaction between
the rogue wave solutions and the solitons. First, we
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Figure 2. Two types of rogue waves (8) with γ = −1. Top row: first-order bright rogue waves with β = −1 and different
u0; bottom row: first-order dark rogue waves with β = 1 and different u0.

−5

0

5

−5

0

5

−2

0

2

4

6

xt

u

(a) β = −2

−5

0

5

−5

0

5

−2

0

2

4

6

xt

u

(b) β = − 4
3

−5

0

5

−5

0

5

−2

0

2

4

6

xt

u

(c) β = −1

−5

0

5

−5

0

5

−2

0

2

4

6

x
t

u

0

2

4

6

(d) β = − 2
3

−5

0

5

−5

0

5

−6

−4

−2

0

2

xt

u

(e) γ = − 2
3

−5

0

5

−5

0

5

−6

−4

−2

0

2

xt

u

(f) γ = −1

−5

0

5

−5

0

5

−6

−4

−2

0

2

xt

u

(g) γ = − 4
3

−5

0

5

−5

0

5

−6

−4

−2

0

2

xt

u

−6

−4

−2

0

2

(h) γ = −2

Figure 3. Two types of rogue waves (8). Top row: first-order bright rogue waves with u0 = −1 , γ = −1 and different β;
bottom row: first-order dark rogue waves with u0 = 1 , β = 1 and different γ .
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consider a solution consisting of a first-order rogue wave
and a first-order soliton obtained from the conventional
three-soliton solutions, where pi, η0i are taken in the
same way for i = 1, 2 as the derivation of eq. (8). For
simplicity, setting p3 = √−(2βu0/γ ), β = u0 =
±1, γ = −1, we obtain the following equation:

f = (4t2+2x2+3)+(4t2+2(x−3
√

2)2+3)e
√

2x+η03

(9)

and the corresponding solutions describe a first-order
rogue wave on a first-order soliton background as
shown in figure 4. As can be seen, when rogue waves
interact with the soliton, amplitudes of the soliton and
the rogue wave change. For the bright rogue waves
on the bright soliton background, when soliton trav-
els closer to the soliton, a higher peak appears on
the soliton (see figure 4b). When the rogue wave is
located on the soliton, the amplitudes of the rogue
waves become lower while the peaks on the soliton
become higher (see figure 4c). When soliton and rogue
waves are separated completely, the peak on the soli-
ton disappears keeping the amplitude of the rogue wave
constant. In the case of dark rogue waves on the dark
soliton background, when rogue wave is located on the
dark soliton background, the amplitude of the rogue
wave becomes higher and the peak on the soliton also
becomes higher (see figure 4g). But, when the rogue
wave travels far from the soliton, the soliton and the
rogue wave remain in the original state, i.e., peaks on
the soliton and amplitude of the rogue wave will not
be constant.

Apparently, the parameter η03 controls the shift of
the soliton in space and time, and both rogue waves
and solitons have the phase shift on the collision area.

The existence of the phase shifts is a distinctive phe-
nomenon and their occurrence would be catastrophic
in physical systems.

Secondly, taking pi, η0i in the same way for i = 1, 2
as the derivation of eq. (8) and keeping p3, p4 real
parameters, we obtain the hybrid of a first-order rogue
wave and a second-order soliton from the fourth-order
soliton solutions. As shown in figure 5, these hybrid
solutions have qualitatively similar behaviours, except
that more permanent soliton line waves interact with
the localized rogue waves, and more complicated wave
fronts will be formed in the interaction region.

(a) η04 = −12π (b) η04 = 12π

(c) η04 = −12π (d) η04 = 12π

Figure 5. The dynamics of the interaction between the
rogue waves and the second-order solitons. Top row: the
hybrid of bright rogue wave and second-order bright soli-
tons with p3 = √−(2βu0/γ ), p4 = √

2, u0 = −1, β = −1,
γ = −1, η03 = η04 and different η04; bottom row: the hybrid
of dark rogue waves and first-order dark solitons with p3 =√−(2βu0/γ ), p4 = √

2, u0 = 1, β = 1, γ = −1, η03 = η04
and different η04.

(a) η03 = 4π (b) η03 = 2π (c) η03 = 1
2π (d) η03 = −2π

(e) η03 = 4π (f) η03 = 2π (g) η03 = 1
2π (h) η03 = −2π

Figure 4. Two types of hybrid solutions of eq. (1). Top row: the hybrid of bright rogue waves and first-order bright solitons
with p3 = √−(2βu0/γ ), u0 = −1, β = −1, γ = −1 and different η03; bottom row: the hybrid of dark rogue waves and
first-order dark solitons with p3 = √−(2βu0/γ ), u0 = 1, β = 1, γ = −1 and different η03.
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(a) η04 = 2π (b) η04 = − 3
2π

(c) η04 = 2π (d) η04 = − 3
2π

Figure 6. The dynamics of the interaction between rogue
waves and breathers. Top row: the hybrid of bright rogue
waves and first-order bright breathers with p3 = i

2 , p4 =
− i

2 , u0 = −1, β = −1, γ = −1, η03 = η04 and different
η04; bottom row: the hybrid of dark rogue waves and first-
order dark breathers with p3 = i

2 , p4 = − i
2 , u0 = 1, β = 1,

γ = −1, η03 = η04 and different η04.

Lastly, taking pi , η0i in the same way for i = 1, 2
as the derivation of eq. (8) and keeping the parame-
ters p3, p4 satisfied (p∗

3 = p4, η03 = η04), we can
obtain the hybrid solutions consisting of first-order
rogue waves and first-order breathers from the fourth-
order soliton solutions. For example, with parameters
p3 = i

2 , p4 = − i
2 , the corresponding solutions are

shown in figure 6. As can be seen, the interaction
between the dark rogue waves and the dark breathers
and interaction between the bright rogue waves and
the bright breathers are demonstrated, and the transient
solution patterns become more intricate and funny.
Specially, when the breather moves closer to the rogue
wave, the rogue wave is completely immersed into the
breather, and these solutions feature a breather posses-
sing different wave patterns (see figures 6b and 6d).

These hybrid solutions may have been reported in
many multicomponent systems, but to the author’s best
knowledge, was never reported in a single-component
real system before. It is a pity that we cannot obtain
higher-order rogue waves in eq. (1). We hope we can
get higher-order rogue waves interacting with higher-
order solitons in future.

4. Summary and discussion

In summary, the dynamics of both bright rogue waves
and dark rogue waves on multisoliton background
in the Benjamin Ono equation are demonstrated in
this paper. Firstly, N-th order soliton solutions of the
Benjamin Ono equation are obtained by the Hirota

bilinear method. And then, by the long wave limit
on the second-order soliton solutions, the bright and
dark rogue waves are obtained, and typical dynamics
of the obtained rogue waves are analysed and illus-
trated. Furthermore, the hybrid solution of rogue waves
and first-order solitons can also be obtained through
long wave limit method, and the interaction between
the rogue waves and higher-order solitons have also
been shown. To the author’s best knowledge, the inter-
action of rogue waves with multisoliton in real systems
have not been reported before. Finally, from the fourth-
order soliton solutions, the hybrid solutions of the
rogue waves and breathers are obtained. What is more,
typical dynamics of these hybrid solutions are also
analysed and demonstrated.
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