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Phase-space treatment of the driven quantum harmonic oscillator
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Abstract. A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states
is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent
force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn
give the standard position and momentum wave functions, together with expressions for the ηth derivatives with
respect to q and p, respectively. Afterwards, general formulae for momentum, position and energy expectation
values are obtained, and the Ehrenfest theorem is verified. Subsequently, general expressions for the cross-
Wigner functions are deduced. Finally, a specific example is considered to numerically and graphically illustrate
some results.
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1. Introduction

In a previous paper [1] a formulation of quantum
mechanics in phase space was proposed in which pq

and qp representations are introduced in terms of
coherent states |θ, q, p〉, which differ from the norma-
lized Glauber coherent states |z〉 by phase factors [2]
and θ is a parameter with values 0 and 1, respec-
tively. In order to illustrate the application of the
method described in [1], it is useful to have a system
that can be solved explicitly. This is the case of the
driven quantum harmonic oscillator [3–10], which is
important in quantum physics, in particular for describ-
ing small oscillations about equilibrium positions.
Consider a one-dimensional (f = 1) quantum har-

monic oscillator of mass m0 and frequency ω0, with
Hamiltonian K̂ = p̂2/(2m0) + 1

2m0ω
2
0 q̂2 and energy-

eigenvalue equation K̂|n〉=(n+ 1
2)�ω0|n〉, for integers

n ≥ 0. When the system is driven by an arbitrary
force F(t) turned on at t = t0, the Hamiltonian of
the perturbed harmonic oscillator becomes Ĥ (t) =
H(q̂, p̂, t) = K̂ + V̂ (q̂, t), with V̂ (q̂, t) = −F(t)q̂.
The time evolution of the state, which is described

either by the ket |�(t)〉 or the density operator ρ̂(t), is
governed by the Schrödinger equation or the quantum
Liouville equation, depending on whether the system
is in a pure state or in a mixed state.
Now, let us include a short review of [1] on the topics

and equations required as basis for this work. Apropos,
the notation given in [1] is used, and the equations in
that article are quoted in the form [1, (#)], where (#) is
the equation number. Furthermore, from now on q0 =√
�/(m0ω0) and p0 = √

�m0ω0 are natural units of
length and momentum, and κ0 := 1/(q0

√
2) and χ0 :=

1/(p0
√
2) are auxiliary quantities.

If the system is in a normalized Glauber coherent
state |z 〉, then the position and momentum expectation
values are q and p, and one may write |z 〉 = |κ0q+
iχ0p 〉 = D̂(q, p) |0〉, where [1,2,11]

D̂(q, p) := exp

(
i

�
[pq̂ − qp̂]

)
(1)

is the Weyl operator assigned to the phase-space
point (q, p) ∈ R2. In the context of coherent states,
one associates two phase-space wave functions to
a pure state |�(t)〉, namely [1, (7)]: �(θ |q, p, t) :=

1
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w((2θ − 1)12q, p)〈κ0q + iχ0p|�(t)〉, with the phase
factor

w(q, p) := exp

(
i

�
qp

)
. (2)

Sometimes it is convenient to use an alternative nota-
tion by writing

�(θ |q, p, t)=

⎧⎪⎪⎨
⎪⎪⎩

�+(q,p, t),

if θ =1 (qp representation),
�−(q,p, t),

if θ =0 (pq representation),

(3)

and noting that the phase-space wave functions
�±(q, p, t) are linked with each other by the relation
�+(q, p, t) = w(q, p)�−(q, p, t).
In the case of a mixed state, the density operator

describing the mixture is defined as

ρ̂(t) :=
N∑

k=1
W[k]|�[k](t)〉〈�[k](t)|, (4)

where the notation [k] indicates that the state |�[k](t)〉
is an element of a statistical mixture of N independent
states, with statistical weight 0 < W(k) ≤ 1 such that∑N

k=1W(k) = 1, and each state |�[k](t)〉 is normalized
to unity.
For any pair of phase-space points, (qa, pa) and

(qb, pb), complex variables za = κ0qa + iχ0pa and
zb = κ0qb + iχ0pb, and Glauber coherent states |za 〉
and |zb 〉, the Liouville equation in the phase space is
expressed in terms of the function

ρ(θ |qa,pa,qb,pb, t) =
N∑

k=1
W[k]

[
�[k](θ |qa,pa, t)

]	
× �[k](θ |qb, pb, t), (5)

where 	 means complex conjugate. Thus, the density
operator ρ̂(t) allows for the pq (θ = 0) and qp (θ =
1) representations. One also notes that ρ(θ | qa , pa , qb,
pb, t) is a two-point phase-space function because it
depends, besides the time t , on two sets of independent
variables, (qa , pa) and (qb, pb).
In the next step, one introduces the mathematical

transform

(qb, pb) = (q ′, p′) + 1

2
(q, p),

(qa, pa) = (q ′, p′) − 1

2
(q, p), (6)

and considers the set {(qa, pa), (qb, pb)} of all points
(qa, pa) and (qb, pb) having the same middle point

(q ′, p′), so that this point can be treated as a parameter.
Under this condition, the pq and qp representations are
described by the one-point reduced function [1, (66)]

ρ(θ, q ′, p′|q, p, t)

:=ρ

(
θ |q ′− 1

2
q, p′− 1

2
p, q ′+ 1

2
q, p′+ 1

2
p, t

)
. (7)

Thus, for an ‘observer’ located at the parametric point
(q ′, p′), ρ(θ, q ′, p′|q, p, t) describes the state of the
system over phase-space (q, p), for any given value of
time t , as a weighted sum of the products of probability
amplitudes arising from a pair of points symmetri-
cally located with respect to the central point (q ′, p′),
i.e., ρ(θ, q ′, p′|q, p, t) is a measure of the interference
effects associated with those points.
Notwithstanding that each wave function �[k](θ |qa,

pa, t) in (5) is normalized to one, the functions ρ(θ |qa,

pa, qb, pb, t) and ρ(θ, q ′, p′|q, p, t) are neither real
nor normalized, except when the points (qa, pa)

and (qb, pb) coalesce. As commented after equation
[1, (73)], which defines generalized phase-space func-
tionsW(θ |q ′, p′, t), the indicated coalescence is at the
basis of the relation between ρ(θ, q ′, p′|q, p, t) and
the Wigner function (see eqs (68), (69) and (80)).
The pq and qp equations of motion for�(θ |q, p, t),

ρ(θ |qa, pa, qb, pb, t) and ρ(θ, q ′, p′|q, p, t) have been
deduced in [1]: eqs (54), (59) and (64), respectively. In
this paper, instead of solving these equations directly,
the definitions of these quantities and the time evolu-
tion operator are used to build the above functions. So,
one gets the functions and can verify their compliance
with the equations of motion, if desired.
The phase-space representations used in this paper

provide advantages and differences when they are
contrasted with methods developed in other contri-
butions [3–10]. Here are some of them: (a) In this
work, the evolution operator is used to construct the
complex-valued wave functions �(θ |q, p, t), which
describe the state of the system in the phase space,
whereas some other treatments deal with the coordi-
nate representation of the Schrödinger equation: e.g.,
the Kerner–Treanor method [8] assumes that�(q, t) =
φ(q, t) exp(qg(t)), where φ(q, t) and g(t) are gen-
eral, unspecified functions. (b) Here, after having
�(θ |q, p, t), one gets not only the coordinate and
momentum wave functions but also expressions for
their derivatives of any order, whereas conventional
methods start from the coordinate representation for
obtaining the momentum representation. (c) As a con-
sequence of the foregoing point, it is possible to obtain
analytical expressions not only for the momentum,
position and energy expectation values but also for the
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Husimi distribution and the cross-Wigner functions. (d)
The last ones include the familiar Wigner function as
a particular case and, to the best of my knowledge,
they are calculated for the first time for the system
studied in this contribution. (e) Finally, the functions
W(θ | q ′, p′, t) given by eqs (69) and (80) are at the ori-
gin of the cross-Wigner functions, a fact that can imply
a fresh point of view about the formulation of quantum
mechanics in phase space.
This work is arranged as follows. In §2, the evolu-

tion operator for a driven quantum harmonic oscillator
is deduced by using the interaction picture and the
Magnus expansion. In §3, the wave functions �±(q, p,
t) of the simultaneous values of position q and momen-
tum p are constructed in terms of pq and qp coherent
states which differ from the Glauber coherent states
and each other by well-defined phase factors. In this
section, the Husimi function associated with the state
|�(t)〉 is also constructed. In §4, the standard position
and momentum wave functions, �(q, t) and �̃(p, t),
are deduced, together with expressions for the ηth
derivatives (η = 0, 1, 2, . . .) of these functions eval-
uated at the points q and p, respectively. In §5, general
formulae for momentum, position and energy expecta-
tion values are obtained, and they are applied to verify
the Ehrenfest theorem. In §6, general expressions
for the cross-Wigner functions are produced. Finally,
in §7 the theoretical results are illustrated numerically
and are depicted for the case of harmonic oscillator in
an oscillating electric field, when the initial state is cho-
sen as a linear combination of the ground state and the
first excited state.

2. Evolution operator for a driven quantum
harmonic oscillator

In the Schrödinger picture, the state of the system at
time t is connected to a given initial state at time t0
by the relation |�(t)〉 = Û (t, t0) |�(t0)〉, where the
evolution operator Û (t, t0) is obtained by solving the
Schrödinger equation

i�
d

dt
Û (t, t0)=Ĥ (t)Û (t, t0), lim

t→t0
Û (t, t0)= 1̂. (8)

Here, one uses the Hamiltonian splitting Ĥ (t) = K̂+
V̂ (t), with K̂ = p̂2/(2m0) + 1

2m0ω
2
0 q̂2 and V̂ (q̂, t)

= −F(t)q̂, and Û0(t, t0) := exp(−iτ K̂/�) is the
time-evolution operator associated with the time-
independent Hamiltonian K̂ , where τ := t − t0. Thus,

with the help of the interaction picture and the Magnus
expansion [12], one obtains the expression

Û (t, t0) = exp

(
i

�
γ (t, t0)

)
exp

(
− i

�
τK̂

)
×D̂(Q(t, t0), P (t, t0)), (9)

which involves the Weyl operator assigned to the point
(Q(t, t0), P (t, t0)) in phase-space.
In (9), one has auxiliary quantities of position and

momentum,

Q(t, t0) = − 1

m0ω0

∫ t

t0

F(t ′) sin(ω0(t ′ − t0))dt
′, (10)

P(t, t0) :=
∫ t

t0

F(t ′) cos(ω0(t ′ − t0))dt
′ (11)

and the phase-factor

γ (t, t0) = 1

2m0ω0

∫ t

t0

dt ′′
∫ t ′′

t0

dt ′F(t ′′)F (t ′)

× sin(ω0(t ′′ − t ′)). (12)

Equation (9) can be reorganized by moving the
operator Û0(t, t0) := exp(−iτ K̂/�) to the right of
the Weyl operator D̂(Q(t), P (t)). Thus, one finds the
time-dependent operators

Q̂(τ ) := Û0(t, t0) q̂ Û+
0 (t, t0) = cos(ω0τ)q̂

− 1

m0ω0
sin(ω0τ)p̂,

P̂ (τ ) := Û0(t, t0) p̂ Û+
0 (t, t0) = m0ω0 sin(ω0τ)q̂

+ cos(ω0τ)p̂, (13)

which satisfy the commutation relation [Q̂(τ ), P̂ (τ )] =
i�. As a result, one obtains

Û (t, t0) = exp

(
i

�
γ (t, t0)

)
D̂(Q(t, t0),P(t, t0))

× exp
(

− i

�
τK̂

)
, (14)

where (Q(t, t0),P(t, t0)) is a point in the phase space
with coordinates

Q(t, t0) := cos(ω0τ)Q(t, t0)+ 1

m0ω0
sin(ω0τ)P (t, t0),

P(t, t0) := −m0ω0 sin(ω0τ)Q(t, t0)

+ cos(ω0τ)P (t, t0). (15)

In what follows, if there is no ambiguity, the notation
can be simplified by writing Q(t) and P(t) instead of
Q(t, t0) and P(t, t0), respectively.
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The transform (14) allows to write the state of the
system at time t as

|�(t)〉 = exp

(
i

�
γ (t, t0)

)
D̂(Q(t),P(t))

× exp
(

− i

�
τK̂

)
|�(t0)〉. (16)

Thus, notwithstanding that (9) and (16) are equiva-
lent, (16) has the merit that exp(−(i/�)τ K̂) |�(t0)〉
can be interpreted as the propagation of the initial state
|�(t0)〉 under the action of the evolution operator asso-
ciated with the unperturbed system. The so-generated
state is then moved in the phase space by the action of
the Weyl operator, D̂(Q(t),P(t)).
At this point, it is to be noted that (15), (10) and (11)

imply the equations of motion

dQ(t)

dt
= P(t)

m0
,
dP(t)

dt
=−m0ω

2
0Q(t)+F(t), (17)

with the initial conditionQ(t0, t0) = P(t0, t0) = 0.
One wonders if the method described in this section

can be generalized to other systems beyond the driven
harmonic oscillator. Appendix E is included in order to
shed light on this theme.

3. Phase-space wave functions, �−(q, p, t)

and �+(q, p, t)

By following [1, (12)], the pq and qp coherent states
are defined by

|θ,q,p〉=
{|p,q〉 :=D̂(0, p)D̂(q,0)|0〉, if θ =0
|q,p〉=D̂(q,0)D̂(0,p) |0〉, if θ =1, (18)

which differ from the Glauber coherent state |z〉, and
each other, by a phase factor. In particular, it fol-
lows that |p, q〉 = w(q, p)|q, p〉 and the wave func-
tions �(θ |q, p, t) defined in (3) can be rewritten as
�(θ |q, p, t) = 〈θ, q, p|�(t)〉.
According to Glauber [2,13], to each complex num-

ber z = κ0q + iχ0p corresponds a normalized coherent
state |z〉 = |κ0q + iχ0p〉 given by
|z〉 = D̂(q, p)|0〉 = [(π�)f/2M̃(p)M(q)]1/2

×
∞∑

n=0

zn

√
n! |n〉, (19)

where |n〉 are the eigenkets of the number operator
N̂ = â+â, and the Gaussian functions

M(q) = (q0
√

π)−1/2 exp(−(κ0q)2),

M̃(p) = (p0
√

π)−1/2 exp(−(χ0p)2), (20)

are related to each other by Fourier transforms
[1, (4) and (5)]. It is seen that

M2(q) = (q0
√

π)−1 exp(−(q/q0)
2)

and

M̃2(p) = (p0
√

π)−1 exp(−(p/p0)
2).

Inserting (16) into the relation �(θ |q, p, t) = 〈θ, q,
p|�(t)〉 = �±(q, p, t), and using the rule for the
product of two Weyl operators

D̂(q ′, p′)D̂(q ′′, p′′) = w

(
1

2
q ′′, p′

)
w	

(
1

2
q ′, p′′

)
× D̂(q ′+q ′′, p′+p′′), (21)

one gets

�±(q, p, t) = exp

(
i

�
γ (t, t0)

)
w

(
±1
2
q, p

)
×w	

(
1

2
Q(t),p

)
w

(
q,
1

2
P(t)

)
×〈Z(t)| exp

(
− i

�
τK̂

)
|�(t0)〉, (22)

with Z(t) := κ0[q − Q(t)] + iχ0[p − P(t)], and the
Glauber coherent state

|Z(t)〉 = D̂(q − Q(t), p − P(t)) |0〉
= (π�)1/4 M̃1/2 (p − P(t)) M1/2 (q − Q(t))

×
∞∑

n=0

Zn(t)√
n! |n〉. (23)

Notwithstanding that �+(q, p, t) and �−(q, p, t)

only differ from each other by the factors w(±1
2q, p),

their overall phase factors can be written in terms of the
auxiliary quantities

A±(q,p, t) :=w

(
±1
2
q,p

)
w	

(
1

2
Q(t),p

)
w

(
q,
1

2
P(t)

)
,

which are given by

A+(q, p, t)

= w

(
q− 1

2
Q,P(t)

)
w

(
1

2
(q−Q), p−P(t)

)
,

A−(q, p, t)

=w	

(
Q(t), p− 1

2
P

)
w	

(
q−Q,

1

2
(p−P(t))

)
. (24)

The conclusive effect is that

A±(q, p, t) = exp(± i ζ±(q, p, t)/�),

with phases

ζ+(q, p, t) = 1

2
(q − Q(t))p + 1

2
P(t)q,

ζ−(q, p, t) = 1

2
(p − P(t))q + 1

2
Q(t)p. (25)
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To conclude, the phase-space wave functions can be
written in a unified way, as

�±(q, p, t) = exp

(
i

�
γ (t, t0)

)
A±(q, p, t)

×M1/2(q − Q(t))M̃1/2(p − P(t))

×
∞∑

n=0

1√
n! {κ0[q − Q(t)]−iχ0[p − P(t)]}n

×an(t−t0). (26)

Here, the probability amplitude, at time t , of finding
the system in state |n〉 of the unperturbed harmonic
oscillator is given by the coefficient

an(τ ) := exp

(
− i

�
τεn

)
〈n|�(t0)〉, τ := t−t0. (27)

In contrast with the standard formulation of quan-
tum mechanics where one has wave functions �(q, t)

and �(p, t) in position space q and momentum
space p, respectively, the phase-space wave func-
tions �±(q, p, t) display the probability amplitudes
simultaneously in the q and p variables.
From (26), the squared magnitude of the phase-space

wave functions �±(q, p, t) gives the Husimi function
associated with the state |�(t)〉,
ρH(q,p, t) = |�±(q,p, t)|2=M(q−Q(t))M̃(p −P(t))

×
∣∣∣∣∣

∞∑
n=0

1√
n! {κ0[q − Q(t)]

− iχ0[p − P(t)]}nan(τ )

∣∣∣∣∣
2

, (28)

which can be explicitly written as a double sum, with
sum indices m and n.
From what follows, it is useful to write Z(t) :=

κ0[q −Q(t)] + iχ0[p − P(t)] = x + iy and w(q −Q,
1
2(p − P)) = exp(ixy), with the auxiliary dimension-
less quantities

x := κ0[q − Q(t)], y = χ0[p − P(t)],
Q(t) := κ0Q(t), P(t) := χ0P(t). (29)

4. Position and momentum wave functions

Adopting the notation �(η)(q, t) := ∂η�(q, t)/∂qη,
the ηth derivatives of the position (θ = 1) and momen-
tum (θ = 0) wave functions evaluated at points q and
p, respectively, are given by [1, (22) and (25)]

�(η)(q, t) = (2p0
√

π)−1/2(−iq0
√
2)−η(2π�)−1/2

×
∫

Hη(χ0p)�+(q, p, t)dp (30)

and

�̃(η)(p, t) = (2q0
√

π)−1/2(+ip0
√
2)−η(2π�)−1/2

×
∫

Hη(κ0q)�−(q, p, t)dq. (31)

The idea here is to use eqs (26) and (29), and the
binomial theorem [14a]

(x ± iy)n = 1

2n

n∑
m=0

(±i)m
(

n

m

)
Hn−m(x)Hm(y)

= 1

2n

n∑
m=0

(±i)n−m

(
n

m

)
Hm(x)Hn−m(y),

(32)

where Hm(x) are the Hermite polynomials of order m.

4.1 Position wave function, �(q, t)

After inserting the function �±(q, p, t) given by (26)
into (30), one defines the integral

Bmη(x,P) :=
∫ ∞

−∞
exp(ixy) M̃1/2(y)Hm(y)Hη(χ0p)dp,

(33)

and uses (29) for changing the integration variable
from p to y. Thus, with the help of formulae (A.1),
(A.2) and (A.4), the integral Bmη(x,P) is turned into

Bmη(x,P) = χ−1
0 (p0

√
π)−1/4

√
2π (q0

√
π)1/4M1/2(x)︸ ︷︷ ︸

×
η∑

k=0
(+i)m+k

(
η

k

)
(2P)η−k

min(m,k)∑
r=0

(−2)r

× r!
(

m

r

)(
k

r

)
Hm+k−2r (x), (34)

where, according to (20), the quantity within the brace
is equal to exp

(− 1
2(κ0q)2

)
.

Consequently, �(η)(q, t) can be written as

�(η)(q, t) = exp
(

i

�
γ (t, t0)

)
w

(
q− 1

2
Q, P(t)

)

×M(q−Q(t))

∞∑
n=0

an(t−t0)

2n
√

n! Xn, η(q, t), (35)

where

Xn, η(q, t)

:= (−iq0
√
2)−η

η∑
k=0

(+i)k
(

η

k

)
[2χ0P(t)]η−k

×�n,k(κ0[q − Q(t)]) (36)
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and �n,k(x) is the polynomial (see Appendix B)

�n,k(x) :=
n∑

λ=0

(
n

λ

)
Hn−λ(x)

min(λ,k)∑
r=0

(−2)rr!
(

λ

r

)(
k

r

)

×Hλ+k−2r (x). (37)

Here, please note that the sum over r on the right-
hand side of (37) only differs by the sign factor (−2)r
from the formula (A.2) for the product of two Hermite
polynomials.
If η = 0, with the help of summation formula (A.3),

one finds that

�n,0(x) =
n∑

λ=0

(
n

λ

)
Hn−λ(x)Hλ(x)

= 2n/2Hn(x
√
2) (38)

and

Xn,0(q, t)=�n,0(κ0[q−Q(t)])
=2n/2Hn

(
q−Q(t)

q0

)
. (39)

Therefore, the position wave function �(q, t) = �(0)

(q, t) can be rewritten as

�(q, t) = exp
(

i

�
γ (t, t0)

)
w

(
q− 1

2
Q, P(t)

)

× M(q−Q(t))

∞∑
n=0

an(t−t0)

2n/2
√

n! Hn

(
q−Q(t)

q0

)
,

(40)

whereM(p) is the function defined by (20). As a check
on the results, if the initial state is an eigenstate of the
harmonic oscillator, |�(t0)〉 = |ν〉, and the system is
not driven, F(t) = 0, then (40) reproduces the coor-
dinate wave function for the νth state of the harmonic
oscillator (see e.g., [1, (26)]).
Here it is important to recall that �+(q, p, t) can be

reconstructed as [1, (20) and (21)]

�+(q, p, t) = (2π�)1/2
∞∑

η=0

1

η!�
(η)(q, t)J̃η(p) (41)

with p-dependent coefficients

J̃η(p) =
(

−i
q0√
2

)η

Hη(χ0p)M̃(p). (42)

4.2 Momentum wave function, �̃(p, t)

For the calculation of �̃(η)(p, t), one rearranges the
function �−(q, p, t) given by (26) by using the iden-
tity (x − iy)n = (−i)n(y + ix)n, and inserts the

resulting expression into (31). Following a procedure
similar to the one in §4.1, one defines the integral

B̃mη(y,Q) := κ−1
0

∫ ∞

−∞
exp(−ixy)M1/2 (x/κ0) Hm(x)

× Hη(x + Q(t))dx, (43)

that can be written as

B̃mη (y,Q) = κ−1
0 (q0

√
π)−1/4

√
2π(p0

√
π)1/4M̃1/2(y)︸ ︷︷ ︸

×
η∑

k=0
(−i)m+k

(
η

k

)
(2Q)η−k

×
min(m,k)∑

r=0
(−2)rr!

(
m

r

)(
k

r

)
× Hm+k−2r (y), (44)

where, according to (20), the quantity within the brace
is equal to exp

(− 1
2(χ0p)2

)
.

As a result, the ηth derivative �̃(η)(p, t) of the
momentum wave function becomes

�̃(η)(p, t) = exp

(
i

�
γ (t, t0)

)
w	

(
Q(t), p − 1

2
P

)

×M̃(p−P(t))

∞∑
n=0

(−i)n an(t − t0)

2n
√

n!
×Yn, η(p, t), (45)

where

Yn, η(p,t) := (+ ip0
√
2)−η

η∑
k=0

(−i)k
(

η

k

)

× [2κ0Q(t)]η−k �n,k(χ0[p−P(t)]), (46)

and �n,k(x) is the polynomial defined by (37).
For the particular case η = 0, one gets the momen-

tum wave function

�̃(p, t) = exp

(
i

�
γ (t, t0)

)
w	

(
Q(t), p − 1

2
P

)

× M̃(p−P(t))

∞∑
n=0

(−i)nan(t − t0)

2n/2
√

n!

×Hn

(
p − P(t)

p0

)
, (47)

where the function M̃(p) is given by (20).
Notice also that one can reconstruct the phase-space

wave function [1, (53) and (54)]

�−(q, p, t) = (2π�)1/2
∞∑

η=0

1

η!�̃
(η)(p, t)Jη(q), (48)

using q-dependent coefficients

Jη(q) =
(

+i
p0√
2

)η

Hη(κ0q)M(q). (49)
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5. Momentum, position and energy expectation
values

In this section, (35) and (45) are applied to get explicit
expressions for the momentum, position and energy
expectation values. The results are then used to scru-
tinize in some detail the Ehrenfest theorem and the
expression for the energy expectation value.

5.1 Calculation of 〈�(t)| p̂η |�(t)〉
By using the completeness relation for the posi-
tion eigenkets |q 〉 and recalling that −i�∂/∂q is the
momentum operator p̂ in position representation, the
expectation value

〈�(t)| p̂η |�(t)〉=(−i�)η
∫ ∞

−∞
�	(q, t)�(η)(q, t)dq

(50)

gives the overlap between the wave function �(q, t)

and its η-derivative, �(η)(q, t). Similarly, using the
completeness relations for the momentum eigenkets
|p 〉 and the momentum wave function �̃(p, t), given
by (47), one also finds that

〈�(t)| p̂η |�(t)〉 =
∫ ∞

−∞
pη|ψ̃(p, t)|2dp

= p
η
0

∞∑
m=0

∞∑
n=0

(+i)m−nC(m, n, t)

×G(m, n, η; Y). (51)

In the foregoing equation, one has coefficients (m ≥
0, n ≥ 0 and τ = t − t0)

C(m, n, t) := exp(i(m − n)ω0τ)

2(m+n)/2
√

m!n! 〈�(t0)|m〉
×〈n|�(t0)〉 = C	(n, m, t), (52)

and defines, for n ≥ 0, m ≥ 0 and η ≥ 0, the auxiliary
quantity

G(m, n, η; Y) = G(n, m, η; Y)

:=
∫ ∞

−∞

(
p

p0

)η

[M̃(p − P(t))]2Hm

(
p − P(t)

p0

)

×Hn

(
p − P(t)

p0

)
dp

= 1√
π

∫ ∞

−∞
Hm(y)Hn(y)(y + Y)η exp(−y2)dy

=
η∑

r=0

(
η

r

)
Yη−r�(m, n, r), (53)

where the change of variables y := [p − P(t)]/p0 and
the abbreviation Y(t) := P(t)/p0 have been used. The
integral involved in this equation is given by [15, (46)
and (52)]

�(m, n, r) := 1√
π

∫ ∞

−∞
Hm(y)Hn(y) yr exp(−y2)dy

=
{
0 if (r − n − m) is odd
λ(m, n, r) otherwise,

(54)

where, with s := 1
2(r − n − m),

λ(m, n, r) = λ(n, m, r)

= r! 2m+n−r

min(m,n)∑
ν=max(0,−s)

(
m

ν

)(
n

ν

)
ν!

2ν(s+ν)! .

(55)

If the initial state |�(t0)〉 = ∑N
ν=0 aν |ν 〉 is formed

by a finite number N of eigenkets |ν 〉 of the harmonic
oscillator, then the orthogonality relation 〈n|ν〉 = δn,ν

implies a finite number of nonvanishing coefficients
C(m, n, t) in (52) and summands (51).

5.2 Calculation of 〈�(t)| q̂η |�(t)〉
Similar to the procedure in §5.1, one writes

〈�(t)| q̂η|�(t)〉=(i�)η
∫ ∞

−∞
�̃	(p, t)�̃(η)(p, t)dp

(56)

and with X(t) := Q(t)/q0 , one obtains the expression

〈�(t)| q̂η |�(t)〉 =
∫ ∞

−∞
qη |ψ(q, t)|2 dq

= q
η
0

∞∑
m=0

∞∑
n=0

C(m,n,t)G(m,n,η;X).

(57)

5.3 Ehrenfest theorem

For a quantum system with Hamiltonian H(q̂, p̂, t) =
p̂2/(2m0)+V (q̂, t), the Ehrenfest theorem asserts that
the mean position and momentum evolve according
to equations which formally are reminiscent of their
classical counterparts [16,17]:

d

dt
〈�(t)| q̂ |�(t)〉 = 1

m0
〈�(t)| p̂|�(t)〉,

d

dt
〈�(t)| p̂ |�(t)〉 = −

〈
∂V (q̂, t)

∂q̂

〉
. (58)
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One can perform a direct check of the Ehrenfest the-
orem by using (57) and (51), when η = 1. To do this,
one verifies that {G(m, n, 1; Y)|m, n = 1, 2, . . .} is a
tridiagonal matrix such that, for a given m, the only
nonzero elements of G(m, n, 1; Y) = �(m, n, 0)Y +
�(m, n, 1) are those corresponding to the columns: (i)
n = m, m + 1, if m = 0 and (ii) n = m − 1, m, m + 1,
if m ≥ 1. Then, one writes

〈q̂〉(t) = q0

∞∑
m=0

Mm(X(t), t),

〈p̂〉(t) = p0

∞∑
m=0

M̃m(Y (t), t), (59)

with the auxiliary quantities

Mm(X(t), t) :=
m+1∑

n=m−1
C(m, n, t)G(m, n, 1; X(t))

(60)

and

M̃m(Y (t), t) :=
m+1∑

n=m−1
(+i)m(−i)nC(m, n, t)

×G(m, n, 1; Y(t)), (61)

where, as before, X(t) := Q(t)/q0 and Y(t) :=
P(t)/p0.

5.4 Expectation value of the energy

To elucidate the structure of this quantity, one starts
from the formula

〈Ĥ(t)〉 = 1

2m0
〈�(t)| p̂2 |�(t)〉+ 1

2
m0ω

2
0〈�(t)| q̂2 |�(t)〉

−F(t) 〈�(t)| q̂ |�(t)〉, (62)

where the expectation values on the right-hand side of
(62) are given by the first equation (59), and the rela-
tions (57) and (51) are evaluated when η = 2. For a
givenm, the only nonzero elements ofG(m, n, 2; Y) =
�(m, n, 2) + 2�(m, n, 1)Y + �(m, n, 0)Y 2 are those
corresponding to the columns: (i) n = m, m+1, m+2,
if m = 0, (ii) n = m − 1, m, m + 1, m + 2, if
m = 1 and (iii) n = m − 2, . . . , m + 2, if m ≥
2. The first values of G(m, n, 2; Y) are shown in
table 1.

5.5 A particular case, |�(t0)〉 = |m〉
It is instructive to consider the νth eigenstate as initial
state of the unperturbed harmonic oscillator, |�(t0)〉 =
|ν 〉. In this case, the coefficients C(m, n, t) defined
by (52) reduce to C(m, n, t) = δm,ν δn,ν/(2νν!),
where δm,ν is the Kronecker delta. Therefore, from
(59)–(61) one obtains 〈�(t)| q̂ |�(t)〉 = Q(t) and
〈�(t)|p̂ |�(t)〉 = P(t). Similarly, from (53) it follows
thatG(ν, ν, 2; Y)=�(ν, ν, 2)+�(ν, ν, 0)Y 2 (see also
table 1), where

�(ν, ν, 0)

2ν ν! = 1,
�(ν, ν, 2)

2ν m! = 1

2
(2ν + 1). (63)

Then, (57) and (51) give

〈�(t)| q̂2 |�(t)〉=q20

[
1

2
(2ν + 1) +

(
Q(t)

q0

)2]
,

〈�(t)| p̂2|�(t)〉=p20

[
1

2
(2ν + 1) +

(
P(t)

p0

)2]
. (64)

Having 〈�(t)| q̂η |�(t)〉 and 〈�(t)| p̂η |�(t)〉, for η =
1 and 2, one proceeds according to the rules of statistics

Table 1. Values of G(m, n, 2; Y ) = �(m, n, 2) + 2�(m, n, 1)Y + �(m, n, 0)Y 2. On the
mth row, the only nonzero contributions correspond to the columns: (i) n = m, m+1, m+2,
if m = 0, (ii) n = m − 1, m, m + 1, m + 2, if m = 1 and (iii) n = m − 2, . . . , m + 2, if
m ≥ 2.

m\n 0 1 2 3 4 5 6 7

0 1
2 + Y 2 2Y 2 0 0 0 0 0

1 2Y 3+ 2Y 2 8Y 12 0 0 0 0
2 2 8Y 20+ 8Y 2 48Y 96 0 0 0
3 0 12 48Y 168+ 48Y 2 384Y 960 0 0
4 0 0 96 384Y 1728+ 384Y 2 3840Y 11520 0

. . . 0 0 0 . . . . . . . . . . . .
. . .
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and calculate the mean-square deviations or fluctua-
tions in q̂ and p̂, which are given by

(�q)2 = 〈�(t)| q̂2 |�(t)〉 − (〈�(t)|q̂|�(t)〉)2
=

(
ν + 1

2

)
q20 ,

(�p)2 = 〈�(t)| p̂2 |�(t)〉 − (〈�(t)|p̂|�(t)〉)2
=

(
ν + 1

2

)
p20 , (65)

for ν = 0, 1, 2, . . . . After recalling that q0p0 = �, one
gets the Heisenberg uncertainty relation (�q)(�p) =
(ν + 1

2)� ≥ �/2. For the particular case |�(t0)〉 =
|ν 〉, one obtains that the expectation value of energy is
given by

〈Ĥ (t)〉 =
(

ν + 1

2

)
�ω0 +

[
P2(t)

2m0
+ 1

2
m0ω

2
0Q

2(t)

]
−F(t)Q(t). (66)

Therefore, the expectation value of energy is the sum
of the quantized energy �ω0

(
ν + 1

2

)
plus the classical

energy of the driven harmonic oscillator.

6. Cross-Wigner functions

As already commented, the two-point function ρ(θ | qa ,
pa , qb, pb, t) given by eq. (5) provides a representa-
tion of the Liouville equation in the phase space. In this
section, in order to maintain the treatment as simple as
possible, considerations are restricted to the case of a
pure state described by the density operator ρ̂(t) =
|�(t)〉〈�(t)|, so that (5) becomes ρ(θ | qa , pa , qb,
pb, t) = [�(θ | qa, pa, t)]	�(θ |qb, pb, t), and (7)
reduces to

ρ(θ, q ′, p′|q, p, t)

=
[
�

(
θ | q ′ − 1

2
q, p′ − 1

2
p, t

)]	

× �

(
θ | q ′ + 1

2
q, p′ + 1

2
p, t

)
. (67)

Here, the components of (q ′, p′) are treated as param-
eters, whereas (q, p) are the independent variables.
In addition, one has two representations for the wave
function �(θ | · · · ): (i) pq, θ = 0, �−(q, p, t) as
given by (48) and (ii) qp, θ = 1, �+(q, p, t) as given
by (41).
In this section, I wish to illustrate that the

phase-space formulation in terms of wave functions
�±(q, p, t) and the Wigner approach to quantum

mechanics are directly linked. To do this, the starting
point is given by the phase-space functions [1, (72)]

W(θ | q ′, p′, t) = 1

2π�

∫
w(q ′, p)w	(q, p′)

× ρ(θ, q ′, p′|q, p, t)dqdp. (68)

6.1 Phase-space function W(θ | q ′, p′, t) in the pq

representation, θ = 0

One begins by recalling the expression [1, (74)]

W(0| q ′, p′, t) =
∞∑

μ=0

∞∑
η=0

1

μ! η!ρμη(q
′, p′, t)

×J̃μη(q
′, p′), (69)

where the cross-Wigner functions [1, (75)]

ρμη(q
′, p′, t)

:=
∫

w(q ′, p)

[
�̃(μ)

(
p′ − 1

2
p, t

)]	

×�̃(η)

(
p′ + 1

2
p, t

)
dp

=
(

+ i

�

)μ (
− i

�

)η

×
∫

w	(q, p′)
(

q ′ − 1

2
q

)μ (
q ′ + 1

2
q

)η

×
〈
q ′ + 1

2
q

∣∣∣∣ ρ̂(t)

∣∣∣∣q ′ − 1

2
q

〉
dq. (70)

are escorted by the referential functions J̃μη(q
′, p′)

[1, (76)]. Here, ρμη(q
′, p′, t) = ρ	

ημ(q ′, p′, t) can be
calculated using either the expressions (45)–(46) for
the ηth derivative �̃(η)(p, t) of the momentum wave
function or the expression (40) for the position wave
function �(q, t). Henceforth, the indices (m, μ, �,M)
and (n, η, k, N) will be associated with �	(· · · ) and
�(· · · ), respectively.

6.1.1 Cross-Wigner functions ρμη(q
′, p′, t) based on

the eq. (70). After inserting (45) into eq. (70), it is
desirable to define the quantity

Ym,μ,n,η(q
′ − Q(t), p′, t)

:=
∫

w(q ′−Q(t), p) exp

(
−1
4

[
p

p0

]2)

×Y	
m,μ

(
p′− 1

2
p, t

)
Yn, η

(
p′+ 1

2
p, t

)
dp. (71)
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The expression (46) and the change of integration
variable y = 1

2χ0p allow us to write

Ym,μ,n,η(q
′ − Q(t), p′, t)

= 2 (+i)μ−ηχ
μ+η−1
0

μ∑
�=0

η∑
k=0

(+i)�−k

(
μ

�

) (
η

k

)

× [2κ0Q(t)]μ+η−�−k

∫
exp(iχy)

× exp(−ay2)�m,�(−y−b)�n,k(y+c)dy, (72)

where�n,k(x) are the polynomials defined in (37), and
{χ, a, b, c} are the parameters

χ = 4κ0(q
′ − Q(t)), a = 2,

b = −c = −χ0(p
′ − P(t)). (73)

Now, using (B.3) one calculates the integral in (72) and
finds that

Ym,μ,n,η(q
′ − Q(t), p′, t)

= 2 (+i)μ−ηχ
μ+η−1
0

μ∑
�=0

η∑
k=0

(+i)�−k

(
μ

�

)(
η

k

)

× [2κ0Q(t)]μ+η−�−k
m+�∑
M=0

n+k∑
N=0

× θM(m, �) θN(n,k)(−1)MF	
MN(X , a, b, c).

(74)

The procedure for calculating θM(m, �) and θN(n, k) is
explained in Appendix B, and the integral FMN (X , a,
b, c) is defined and evaluated in Appendix C. In (74),
please note the presence of the complex conjugate of
FMN(χ, a, b, c).
Finally, for the cross-Wigner functions one obtains

the expression

ρμη(q
′, p′, t) = [M̃(p′ − P(t))]2

×
∞∑

m=0

∞∑
n=0

(+i)m−n a	
m(τ)an(τ )

2m+n
√

m!n!
×Ym,μ,n,η(q

′ − Q(t), p′, t).
(75)

6.1.2 Cross-Wigner functions ρμη(q
′, p′, t) based

on eq. (70). After inserting (40) into the eq. (70)

and using the transform x = q/(2q0), the cross-Wigner
function ρμη(q

′, p′, t) can be written as

ρμη(q
′, p′, t) = 2q0 (+i)μ−η

p
μ+η
0

[M(q ′ − Q)]2

×
∞∑

m=0

∞∑
n=0

a	
m(τ)an(τ )

2(m+n)/2
√

m!n!(−1)
m+μ

×F(μ, m, η, n|X , a, b, c, �, λ),

(76)

where the parameters {χ, a, b, c} take the values

X = 2
p′ − P

p0
, a = 1, � = −λ = − q ′

q0
,

b = −c = −q ′ − Q(t)

q0
. (77)

The integral F(μ, M, η, N |X , a, b, c, �, λ) is defined
and evaluated in Appendix D.

6.1.3 Properties of ρμη(q
′, p′, t). The functions

ρμη(q
′, p′, t) have the following properties [1, (77) and

(78)]:

1

2π�

∫
ρμη(q

′, p′, t)dq ′ = [�̃(μ)(p′, t)]	

×�̃(η)(p′, t) (78)

and

1

2π�

∫
ρμη(q

′, p′, t)dp′ = (+i)μ−η

(
q ′

�

)μ+η

×〈q ′| ρ̂(t)|q ′〉. (79)

In particular, for μ = η = 0 and for any time t ≥ t0,
the right-hand sides of (78) and (79) give the quan-
tum probability densities for momentum and position,
respectively, i.e., |�̃(p′, t)|2 and |�(q ′, t)|2.

6.2 Phase-space function W(θ | q ′, p′, t) in the qp

representation, θ = 1

In this case, instead of (69) one has the phase-space
function [1, (81)]

W(1| q ′, p′, t) =
∞∑

μ=0

∞∑
η=0

1

μ! η! ρ̃μη(q
′, p′, t)

×Jμη(q
′, p′), (80)
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with the cross-Wigner functions [1, (82)]

ρ̃μη(q
′, p′, t)

:=
∫

w	(q, p′)
[
�(μ)

(
q ′ − 1

2
q, t

)]	

×�(η)

(
q ′ + 1

2
q, t

)
dq

=
(

− i

�

)μ (
+ i

�

)η

×
∫

w(q ′, p)

(
p′ − 1

2
p

)μ (
p′ + 1

2
p

)η

×
〈
p′ + 1

2

∣∣∣∣ ρ̂(t)

∣∣∣∣p′ − 1

2
p

〉
dp, (81)

and the referential functions Jμη(q
′, p′) [1, (83)].

From a comparison between (81) and (70), one
concludes that momentum and position wave func-
tions interchange their roles in the definitions of the
phase-space functions ρ̃μη(q

′, p′, t) and ρμη(q
′, p′, t).

Therefore, one may proceed by following a similar
treatment to the one described in §6.1. The results are
shown in the following.

6.2.1 Cross-Wigner functions based on the first equal-
ity of eq. (81). In this case, one uses the expression
(35) for �(η)(q, t), and obtains

ρ̃μη(q
′, p′, t) = [M(q ′ − Q(t))]2

×
∞∑

m=0

∞∑
n=0

a	
m(τ)an(τ )

2m+n
√

m! n!
×Xm,μ,n,η(q

′, p′ − P(t), t), (82)

where

Xm,μ,n,η(q
′, p′ − P(t), t)

:=
∫

w	(q, p′ − P(t)) exp

(
−

[
q

2q0

]2 )
×X	

m,μ

(
q ′−1

2
q, t

)
Xn,η

(
q ′ + 1

2
q, t

)
dq (83)

is an auxiliary quantity that can be expressed in the
form

Xm,μ,n,η(q
′, p′ − P(t), t) := 2(−i)μ−η κ

μ+η−1
0

×
μ∑

�=0

η∑
k=0

(−i)�−k

(
μ

�

) (
η

k

)
[2χ0P(t)]μ+η−�−k

×
m+�∑
M=0

n+k∑
N=0

θM(m, �) θN(n, k)(−1)M

×FMN(X , a, b, c). (84)

Here, FMN(X , a, b, c) is given in Appendix C, and the
set {χ, a, b, c} takes the values
χ = 4χ0[p′ − P(t)], a = 2,

b = −c = κ0[q ′ − Q(t)]. (85)

6.2.2 Cross-Wigner functions based on the second
equality of eq. (81). Similarly, one writes the result
as

ρ̃μη(q
′, p′, t) = 2p0 (−i)μ−η

q
μ+η
0

[M̃(p′−P(t))]2

×
∞∑

m=0

∞∑
n=0

(+ i)m−na	
m(τ)an(τ)

2(m+n)/2
√

m! n! (−1)m+μ

×F	(μ,m,η,n|X ,a,b,c,�,λ), (86)

with

X = 2
q ′ − Q

q0
, a = 1, b = −c = −p′ − P(t)

p0
,

� = −λ = − p′

p0
. (87)

In (86), one notes the presence of the complex con-
jugate of F(· · · ), which is a consequence of the def-
inition of F(· · · ) in terms of the exponential function
exp(−iXy) (see eq. (D.1)).

6.2.3 Properties of ρ̃μη(q
′, p′, t). The cross-Wigner

function ρ̃μη(q
′, p′, t) implies the expressions [1, (84)

and (85)]:

1

2π�

∫
ρ̃μη(q

′, p′, t)dp′ = [�(μ)(q ′, t)]	

× �(η)(q ′, t) (88)

and

1

2π�

∫
ρ̃μη(q

′, p′, t)dq ′ = (−i)μ−η

(
p′

�

)μ+η

×〈p′| ρ̂(t)|p′〉. (89)

Similar to (78) and (79), when μ = η = 0, inte-
grating ρ̃μη(q

′, p′, t) over momentum produces the
space probability distribution |�(q ′, t)|2, and inte-
grating over position gives the momentum probability
distribution |�̃(p′, t)|2.

6.3 Diagonal cross-Wigner functions

Consider the functions W(θ | q ′, p′, t) given by (69)
and (80), with θ = 0 and 1. These functions act as
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bridges connecting ρ(θ, q ′, p′|q, p, t) with the cross-
Wigner functions ρμη(q

′, p′, t) and ρ̃μη(q
′, p′, t).

When the diagonal elements μ = η are considered
in (70) and (81), one finds that the cross-Wigner func-
tions ρμμ(q ′, p′, t) and ρ̃μμ(q ′, p′, t) are real-valued
quantities, so that the usual definition of the Wigner
function is obtained for μ = 0. Thus, the method for-
mulated in [1], that has been also used in this paper,
is consistent with theoretical methods and numeri-
cal approaches described in the literature, in which
real-valued Wigner functions defined in phase space
are used.
However, the method presented in this paper leads to

additional possibilities, e.g., for μ 
= η, the function
ρμη(q

′, p′, t), given in (70), is a weighted measure of
the interference pattern generated at the point (q ′, p′)
and time t , by the overlaps between the components
�̃

(μ)
[k]

(
p′ − 1

2p, t
)
and �̃

(η)
[k]

(
p′ + 1

2p, t
)
of the states

in the mixture ρ̂(t). In other words, ρμη(q
′, p′, t)

describes the cumulative contributions, at the orders μ

and η, originating from N pure states in ρ̂(t).

7. Harmonic oscillator in an oscillating
electric field

As an example, consider a one-dimensional harmonic
oscillator of charge e0 exposed to a time-dependent
electric field E(t) = E0 cos(�t + ϑ), for t0 < t ≤ tf ,
and E(t) = 0, otherwise, which is polarized in the
direction of motion of the oscillator. The constants
E0 > 0, � > 0 and ϑ are the amplitude, the angular
frequency and the phase of the electric field, respec-
tively. The external driven force is given by F(t) :=
F0 cos(�t + ϑ), where F0 = e0E0 and T0 = 2π/�

is the period. In detail, the Hamiltonian of the sys-
tem under consideration is given by Ĥ (t) = K̂+V̂ (t),
with K̂ = p̂2/(2m0) + 1

2m0ω
2
0 q̂2 and V̂ (q̂, t) = −F0

cos(�t + ϑ)q̂.

7.1 Functions Q(t, t0), P(t, t0) and γ (t, t0)

For the calculation of functions Q(t, t0) and P(t, t0)

given by (15), one requires the functions Q(t, t0)

and P(t, t0). When F(t) is substituted into (10)–(12),
one gets

Q(t, t0) = Q0

[
2 cos(�t0 + ϑ)

− �+
ω0

cos(�−t + ω0t0 + ϑ)

+�−
ω0

cos(�+t − ω0t0 + ϑ)

]
(90)

and

P(t, t0) = P0

[
− 2 sin(�t0 + ϑ)

+ �+
�
sin(�−t + ω0t0 + ϑ)

+�−
�
sin(�+t − ω0t0 + ϑ)

]
. (91)

Similarly, from (12) one obtains the phase factor

γ(t, t0) = �Eq

�+�−

[
− �(t−t0)−cos(�(t + t0)+2ϑ)

× sin(�(t−t0))+ ��+
2ω0�−

sin(�−(t−t0))

− ��−
2ω0�+

sin(�+(t−t0))

+ �

ω0
cos(�(t + t0) + 2ϑ) sin(ω0(t−t0))

]
.

In the foregoing equations, the following auxiliary
quantities have been introduced:

�± := � ± ω0, Q0 = F0

2m0�+�−
,

P0 = F0�

2�+�−
, Eq = F 2

0

4m0�2
, (92)

where Eq is the so-called ponderomotive (or quiver)
energy.
Hereinafter, an electron is considered, atomic units

(a.u.) are used, and data from ref. [18] are chosen,
namely, mass m0 = 1, charge e0 = −e = −1, natural
frequency ω0 = 0.01, field frequency � = 1, phase

t( )

t( )
a

b

c

d

Figure 1. Parametric plot ofQ(t) and P(t) as a function of
time t (24π ≤ t ≤ 32π ), for the peak field strength E0, in
a.u.: (a) 0.01, (b) 0.04, (c) 0.16 and (d) 0.64.
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ϑ = 0, and the peak field strength E0 = 0.64 a.u. The
initial state is chosen as a linear combination of the
ground state and the first excited state of the harmonic
oscillator: |�(t0)〉 = a0(t0) |0〉+a1(t0) |1〉, with coef-
ficients such that |a0(t0)|2+|a1(t0)|2 = 1, e.g. a0(t0) =
3i/5 and a1(t0) = 4/5. In general, a time interval
of 16 field cycles is considered, 0 ≤ t ≤ 32π a.u.
The function γ (t, t0) given in (92) can be divided

into a linear term −γ0(t − t0), where γ0 = Eq �2/

(�+�−), plus periodic nonlinear contributions γ (t, t0)+
γ0(t − t0) on time t − t0. From (26), (40) and (47),
one notes that, with increasing time, the linear term
−γ0(t − t0) induces large oscillations in the phases of
the wave functions �±(q, p, t), �(q, t) and �̃(p, t).
Notwithstanding the fact that the presence of γ (t, t0) is
essential to solve the Schrödinger equation, this phase
factor does not play any role in the calculation of
expected values or in the calculation of cross-Wigner
functions.

Figure 1 shows, over the time interval 24π ≤ t ≤
32π , parametric curves of the functions Q(t) and P(t)

– defined by eqs (15), (90) and (91) – for several values
of peak field strength E0: (a) 0.01, (b) 0.04, (c) 0.16 and
(d) 0.64. As expected, the biggest tours of (Q(t),P(t))

in the phase space are held when E0 = 0.64.

7.2 Husimi and phase-space wave function
�+(q, p, t)

For E0 = 0.64, and for the phase-space points (q, p) =
(0.4, 0.6) and (0.4, 0.8), the Husimi function and
the phase-space wave function �+(q, p, t) given by
(28) and (26), respectively, are shown in figure 2. In
general, at each point (q, p) of the phase space, the
behaviour of the Husimi function ρH(q, p, t) and the
wave functions �±(q, p, t) stem from the time depen-
dence of the quantum Hamiltonian (non-conservation

t

(q, p) = (0.4, 0.6)

ρ H
(q

, p
, t

)

(q, p) = (0.4, 0.6)
Im

[Ψ
+(

q,
 p

, t
)]

Re[Ψ+(q, p, t)]

t

(q, p) = (0.4, 0.8)

ρ H
(q

, p
, t

)

(q, p) = (0.4, 0.8)

Im
[ Ψ

+(
q,

 p
, t

)]

Re[Ψ+(q, p, t)]

Figure 2. Husimi function (left panels) and phase-space wave function �+(q, p, t) (right panels) evaluated at the points
(q, p) = (0.4, 0.6) and (q, p) = (0.4, 0.8) as a function of time t , for a peak field strength E0 = 0.64 a.u. The parametric
plots are generated with the real and imaginary parts of �+(q, p, t), and the arrows indicate the direction in which the
patterns are generated.
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of energy) and from the phase-factors A±(q, p, t) =
exp(± i ζ±(q, p, t)/�), whose phases ζ±(q, p, t) are
given by (25). In the right panels of figure 2, the para-
metric representation of the phase-space wave function
�+(q, p, t) displays in the plane Re[�+(q, p, t)]−
Im[�+(q, p, t)] a structure of leaves that gradually
appears over time and, for the values of (q, p) used
in the examples, the global patterns are generated in
clockwise direction.

(q, p) = (0.4, 0.8)

Re[Ψ±(q, p, t)]

Im
[Ψ

±(
q,

 p
, t

)]

+

+

-

-

Figure 3. Graphical representation of transform (93)
for a time interval 0 ≤ t ≤ 12 a.u. In the course of time,
a clockwise rotation over an angle qp/� moves each
point (Re[�+(q, p, t)], Im[�+(q, p, t)]) to the position
(Re[�−(q, p, t)], Im[�−(q, p, t)]).

By virtue of the relation �−(q, p, t) = w	(q, p)

�+(q, p, t), one can write[
Re[�−(q, p, t)]
Im[�−(q, p, t)]

]
=

[
cos(qp/�) sin(qp/�)

− sin(qp/�) cos(qp/�)

]

×
[

Re[�+(q, p, t)]
Im[�+(q, p, t)]

]
(93)

and, therefore, for time t and phase-space point (q, p),
the parametric representation of �−(q, p, t) can be
obtained from the one of �+(q, p, t) by a clockwise
rotation around the z-axis over an angle qp/� while
keeping the phase-space axes fixed (active rotation). In
figure 3, this property is illustrated by considering a
time interval 0 ≤ t ≤ 12 a.u. and the phase-space point
(q, p) = (0.4, 0.8) a.u.

7.3 Position and momentum marginal probability
distributions

The position and momentum wave functions are given
by expressions (40) and (47), respectively: �(q, t) and
�̃(p, t). One verifies that these functions are normal-
ized to unity, and plots the position and momentum
probability density functions for any value of time
t ≥ t0, as shown in figure 4 at four time points. For
the superposition state consisting of the ground state
and the first excited state of the harmonic oscillator,
one has

|�(q, t)|2 = [M(q − Q(t))]2

×
[
|a0(0)|2 + 2 |a1(0)|2

(
q − Q(t)

q0

)2

+ I+(t − t0)
q − Q(t)

q0

]
(94)

Figure 4. Position and momentum probability density functions, |�(q, t)|2 and |�̃(p, t)|2, at four time points: (a) t = 0,
(b) t = 27, (c) t = 77 and (d) t = 100 a.u.
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and

|�̃(p, t)|2 = [M̃(p − P(t))]2

×
[

|a0(0)|2 + 2 |a1(0)|2
(

p − P(t)

p0

)2

− i Ĩ−(t − t0)

(
p − P(t)

p0

) ]
, (95)

with the interference terms

I±(τ ) := √
2 a	

0(0)a1(0) exp

(
− i

�
ω0τ

)
±√

2 a0(0)a	
1(0) exp

(
+ i

�
ω0τ

)
. (96)

It is apparent from eqs (94) and (95) that the position
and momentum probability distributions have the form
f (x) := exp(−x2)[A0+2A1x

2+A2x], where x can be
identified either with (q − Q(t))/q0 or (p − P(t))/p0,
and the coefficients A0 and A1 are time-independent
whereas A2(τ ) is time-dependent. Because the relation
df (x)/dx = 0 implies the cubic equation −4A1x

3 −
2A2x

2 + (4A1 − 2A0)x + A2 = 0, in each case,
interior to the domains of the functions |�(q, t)|2 and
|�̃(p, t)|2, there are three relative extrema (figure 4),
i.e., two maxima and one minimum.

As time passes, the relative extrema of the probabil-
ity density function |�(q, t)|2 change their positions
in the coordinate q according to a triplet of functions,
q1(t)< q2(t)< q3(t), whose behaviours are illustrated
in the left panel of figure 5. The q-separation between
the relative extrema of |�(q, t)|2 over a long time
exhibits a periodic behaviour, as shown in the right

panel of figure 5, in which the distances q3(t) − q2(t),
q2(t)−q1(t) and q3(t)−q1(t) are plotted. The inset in
the right panel shows the overall pattern formed by the
functions q1(t), q2(t) and q3(t) during the time inter-
val 0 ≤ t ≤ 650.0 a.u. At this point, it is to be noted
that Q(t, t0) and Q(t, t0) are both functions of time,
and that the local and overall patterns are determined
by the frequencies ω0, � and �±.

At this point, with the help of eq. (95) a similar
procedure leads to the patterns generated by the prob-
ability density function |�̃(p, t)|2, which are shown in
figure 6.

7.4 Cross-Wigner functions

Starting with the initial state |�(0)〉 = a0(0) |0〉 +
a1(0) |1〉, with a0(0) = 3i/5 and a1(0) = 4/5, the
real-valued cross-Wigner functions ρ00(q, p, t) and
ρ11(q, p, t) are calculated by applying eqs (76) and
(77), and the results are shown in figures 7 for the
time t ≈ 15.71 a.u. In figure 8, a parametric represen-
tation of the complex-valued function ρ01(q, p, t) =
ρ	

10(q, p, t) is shown for the time interval 0≤ t ≤100.5
a.u. and the phase-space points (q, p) = (0.4, 0.6) and
(q, p) = (0.4, 0.8).

Functions ρμη(q, p, t) can take either positive and
negative values, and they satisfy the relations (78)
and (79). Thus, except by proportionality factors
involved in these equations, (i) integrating the diag-
onal cross-Wigner function ρμμ(q, p, t) over q leads
to the marginal quantity |�̃(μ)(p, t)|2 and (ii) integrat-
ing the non-diagonal (μ 
= η) cross-Wigner function

Figure 5. At each time t , the probability density function |�(q, t)|2 has three relative extrema (left panel), whose positions
in coordinate q are given by the functions qc(t): q1(t) < q2(t) < q3(t). In the right panel, the distances q3(t) − q2(t),
q2(t) − q1(t) and q3(t) − q1(t) are plotted over a long time interval, t0 ≤ t ≤ 640.0 a.u. The inset is the overall pattern
formed by qc(t), when 0 ≤ t ≤ 100π a.u.
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Figure 6. At each time t , the probability density function |�̃(p, t)|2 has three relative extrema (left panel), whose positions
in coordinate p are given by the functions pc(t): p1(t) < p2(t) < p3(t). In the right panel, the distances p3(t) − p2(t),
p2(t) − p1(t) and p3(t) − p1(t) are plotted over a long time interval, t0 ≤ t ≤ 640.0 a.u. The inset is the overall pattern
formed by pc(t), when 0 ≤ t ≤ 100π a.u.

Figure 7. Plot of cross-Wigner functions ρ00(q, p, t) and ρ11(q, p, t) for t ≈ 15.71 a.u., when the system starts from an
initial state |�(0) 〉 = a0(0) |0 〉 + a1(0) |1 〉, with a0(0) = 3i/5 and a1(0) = 4/5. Note the negative values.

Figure 8. Parametric plot of the cross-Wigner function ρ01(q, p, t) for 0 ≤ t ≤ 100.5 a.u., when the system starts from an
initial state |�(0) 〉 = a0(0) |0 〉 + a1(0) |1 〉, with a0(0) = 3i/5 and a1(0) = 4/5.
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ρμη(q, p, t) over q gives the product [�̃(μ)(p, t)]	
�̃(η)(p, t), whereas if one integrates ρμη(q, p, t) over
p, one gets (q)μ+η|�(q, t)|2.

8. Summary and conclusion

As a general conclusion, the phase-space representa-
tions of quantum mechanics using Glauber coherent
states is an appropriate and efficient method for deal-
ing with physical systems, in particular for getting an
exact treatment of the driven harmonic oscillator. This
approach is an alternative and a complement to other
methods described in the literature, e.g. [3–10].

Notwithstanding the mandatory consequences of
the uncertainty relation for position and momentum,
�q�p ≥ �/2, a pure state of the driven harmonic
oscillator can be described by the complex-valued
wave functions �(θ |q, p, t) in the phase space, in
terms of the pq (θ = 0) and qp (θ = 1) representa-
tions. Similarly, in the general case of a mixed state, the
weighted mixture of pure states represented in eq. (7)
by the function ρ(θ, q ′, p′|q, p, t) gives account of the
state of the system at time t . Incidentally, eqs (6)
define a two-dimensional cell in phase space, which
is centred at the point (q ′, p′) and has edge lengths q

and p. In the case of a pure state, ρ(θ, q ′, p′|q, p, t)

becomes the product of probability amplitudes
[�(θ |q ′ − 1

2q, p′ − 1
2p, t)]	�(θ |q ′ + 1

2q, p′ + 1
2p, t).

The usual Wigner function, the cross-Wigner func-
tions and the Husimi distribution arise in a very natural
way, and (§6) analytical expressions has been deduced
for them. The results obtained in this paper reinforce
and encourage the treatment of quantum systems in
phase space using either wave functions or cross-Wigner
functions.

A final comment is relevant. In classical mechanics
(cm), if one establishes that at time t0 the solution curve
or trajectory of the driven classical harmonic oscilla-
tor passes through the phase-space point (Q(t0),P(t0)),
then the solution of the equations of motion (17) is
given by[
Q(t)

P(t)

]
cm

=
[

cos(ω0τ) sin(ω0τ)/(m0ω0)

−m0ω0 sin(ω0τ) cos(ω0τ)

]

×
[
Q(t0) + Q(t, t0)

P(t0) + P(t, t0)

]
, (97)

where Q(t, t0) and P(t, t0) are defined by (10) and
(11). Thus, comparing (97) and (15), one concludes
that the classical trajectory with initial condition
(Q(t0),P(t0)) = (0, 0) is the only one relevant for the
quantum treatment described in this work.
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Appendix A. Some formulae used in this work

The Hermite polynomials satisfy the following
relations:

1. [19, Section 5.6.4],

Hη(y + σ) =
η∑

k=0

(
η

k

)
Hk(y)(2σ)η−k

=
η∑

k=0

(
η

η − k

)
Hη−k(σ )(2y)k. (A.1)

2. [14(b)],

Hm(y)Hk(y) =
min(m,k)∑

r=0

2r r!
(

m

r

) (
k

r

)
×Hm+k−2r (y). (A.2)

3. [20, 8.958.2],

n∑
m=0

(
n

m

)
Hn−m(x)Hm(y) = 2n/2Hn

(
x + y√

2

)
.

(A.3)

4. The Fourier transformation of the Hermite polyno-
mials is given by∫ ∞

−∞
exp(ixy) exp

(
−1

2
y2

)
Hm(y)dy

= (+i)m
√

2π exp

(
−1

2
x2

)
Hm(x). (A.4)

5. Then, given a Hermite polynomial Hn(y + c), one
can write the identity

(y + b)mHn(y+c)=
[n/2]∑
k=0

(−1)k n! 2n−2k

k! (n − 2k)!
×(y + b)m(y + c)n−2k

=
[n/2]∑
k=0

m+n−2k∑
�=0

(−1)k n! 2n−2k

k! (n − 2k)!
× A�(m,n−2k;b,c)y�, (A.5)
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where the coefficients A�(m, n− 2k; b, c) are given by
expression (D.2).

Appendix B. On the polynomials �n,k(x)

From the definition of �n,k(x) given by (37), and
formula (A.2), it follows that

�n,k(x) :=
n∑

λ=0

min(λ,k)∑
r=0

(
n

λ

)
(−2)rr!

(
λ

r

)(
k

r

)
Hn−λ(x)

×Hλ+k−2r (x)

=
n∑

λ=0

min(λ,k)∑
r=0

min(n−λ,λ+k−2r)∑
u=0

�(n, k; λ; r, u)

×Hn+k−2r−2u(x), (B.1)

with coefficients

�(n, k; λ; r, u) := (−1)r2r+ur!u!
(

n

λ

)(
λ

r

)(
k

r

)
×

(
n − λ

u

)(
λ+k−2r

u

)
. (B.2)

Equation (B.1) can be written in a more elegant way,
namely

�n,k(x) =
n+k∑
N=0

θN(n, k)HN(x),

�n,k(−x) = (−1)n+k �n,k(x), (B.3)

where the values θN(n, k) are determined by equating
the coefficients of xN in both sides of the equality

n+k∑
N=0

θN(n,k)xN =
n∑

λ=0

min(λ,k)∑
r=0

min(n−λ,λ+k−2r)∑
u=0

×�(n,k;λ; r,u)xn+k−2r−2u. (B.4)

After exploring various examples, one finds that
θN(n, k) = 0, if (n + k) is even and N is odd, or
if (n + k) is odd and N is even. Using this fact and
the reflection formula HN(−x)= (−1)NHN(x) for the
Hermite polynomials, one confirms that the polynomial
�n,k(x) is even or odd depending on the value of n+k.

At this point, in (B.3) and (B.4) consider the partic-
ular situation in which k = 0 and, from (38), recall
that �n,0(x) = 2n/2Hn(x

√
2). Then, a formula linking

the Hermite polynomials Hn(x
√

2) with HN(x) [14(c)]
allows one to write

�n,0(x) = 2n/2Hn(x
√

2) =
[n/2]∑
j=0

n!
j !(n − 2j)!2

n−j

×Hn−2j (x). (B.5)

Hence, by comparing this relation with (B.3), one finds
the coefficients

θN(n, 0) = θj (n) := n!
j !(n − 2j)! 2n−j , (B.6)

if N = n−2j and j = 0, . . . , [n/2], and θN(n, 0) = 0,
otherwise.

Appendix C. Evaluation of the integral
FMN(X , a, b, c)

For a > 0, consider the integral

FMN(X , a, b, c)

:=
∫ ∞

−∞
dy exp(−iXy) exp(−ay2)

×HM(y + b)HN(y + c). (C.1)
By using (A.1) and (A.2), and the integral∫ ∞

−∞
exp(−ixy) yk exp(−ay2)dy

= (−i)k
√

π

a

(
1

2
√

a

)k

exp

(
−x2

4a

)
Hk

(
x

2
√

a

)
,

(C.2)

one finds that

FMN(X , a, b, c) =
√

π

a
exp

(
−X 2

4a

)

×
M∑

k=0

N∑
�=0

(
M

M−k

)(
N

N − �

)(
− i√

a

)k+�

× Hk+�

( X
2
√

a

)
HM−k(b)HN−�(c). (C.3)

Note that FMN(−X , a, b, c)=F	
MN(X , a, b, c), where

	 denotes the complex conjugate.

Appendix D. Evaluation of the integral
F(m, M, n, N |X , a, b, c, �, λ)

F(μ, M, η, N |X , a, b, c, �, λ)

:=
∫ ∞

−∞
exp(−iXy) exp(−ay2)(y + �)μ

× HM(y + b)(y + λ)ηHN(y + c)dy. (D.1)

On the one hand, for μ = η = 0, one has F(0, M, 0,

N |X , a, b, c, �, λ) = FMN(X , a, b, c). On the other
hand, using the binomial theorem followed by a change
of indices � := μ + ν, for μ and η integers, one gets
the relation

(y + �)μ(y + λ)η =
μ+η∑
r=0

Ar(μ, η; �, λ)yr, (D.2)



Pramana – J. Phys. (2017) 88: 54 Page 19 of 20 54

where, for � 
= 0 and λ 
= 0, the coefficients Ar(μ, η;
�, λ) are given by

Ar(μ, η; �, λ)=
r∑

j=0

(
μ

j

)(
η

r−j

)
�μ−jλη−r+j . (D.3)

In addition, the following special cases should be
considered: (i) for � = 0 and λ 
= 0,

Ar(μ,η;0,λ) =
(

η

r − μ

)
λη−r+μ, if μ ≤ r ≤ μ + η,

(D.4)

(ii) for � 
= 0 and λ = 0,

Ar(μ,η;�,0)=
(

μ

r − η

)
�η−r+μ, if η ≤ r ≤ μ + η,

(D.5)

(iii) for � = 0 and λ = 0,

Ar(μ, η; 0, 0) = 1 if r = μ + η, (D.6)

where Ar(μ, η; �, λ) = 0, otherwise.
Then, the identity (i∂/∂X )r exp(−iXy)= yr

× exp(−iXy) implies that

F(μ, M, η, N |X , a, b, c, �, λ)

=
μ+η∑
r=0

Ar(μ, η; �, λ)

(
i

∂

∂X
)r

FMN(X , a, b, c).

(D.7)

Thus, because FMN(X , a, b, c) is given by expres-
sion (C.3), one can define an auxiliary function
Gk+�,r (χ, a) by the relation

Gk+�,r(χ,a) := exp

(
+χ2

4a

)(
i

∂

∂X
)r

F (X )Gk+�(X )

=
(

i

2
√

a

)r r∑
s=0

(
r

s

)
θ(k + � − s)

× 2s(k + �)!
(k + � − s)!(−1)r−s Hr−s

(
χ

2
√

a

)
× Hk+�−s

(
χ

2
√

a

)
, (D.8)

where F(X ) = exp(−χ2/(4a)) and Gk+�(X ) =
Hk+�(χ/(2

√
a )). For getting (D.8), one uses Leibnitz’s

rule for the rth derivative of a product of functions,
Rodrigues’s formula for the Hermite polynomials, and
the expression(

∂

∂x

)s

Hk+�(x)=θ(k + � − s)
2s(k + �)!
(k + � − s)!Hk+�−s(x)

(D.9)

for the sth derivative of the Hermite polynomial
Hk+�(x). Here, θ(y) is the unit step function: it is
equal to 0 for y < 0 and 1 for y ≥ 0.

To summarize, the result of the calculation can be
cast into the form

F(μ, M, η, N |X , a, b, c, �, λ) =
√

π

a
exp

(
−χ2

4a

)

×
M∑

k=0

N∑
�=0

(
M

M − k

) (
N

N − �

) (
− i√

a

)k+�

×
[ μ+η∑

r=0

Ar(μ, η; �, λ)Gk+�,r (χ, a)

]

×HM−k(b)HN−�(c). (D.10)

From (C.3) and (D.10) it is immediately verificable that
F(0, M, 0, N |X , a, b, c, �, λ) = FMN(X , a, b, c),
because (D.8) implies that Gk+�, 0(χ, a) = Hk+� ×
(X /(2

√
a )).

Appendix E. A system with Hamiltonian
Ĥ (t) = K̂ + V (t)

Instead of the driven harmonic oscillator, consider now
a system with a Hamiltonian Ĥ that splits into a time-
independent unperturbed part K̂ and a perturbation
V̂ (t), that is, Ĥ = K̂ + V̂ (t). Instead of eq. (9), one
write the Schrödinger evolution operator in the form,
with τ = t − t0,

Û(t, t0)=exp

(
− i

�
τK̂

)
ÛI(t, t0), UI(q̂, p̂; t0, t0)= 1̂,

(E.1)

where ÛI(t, t0) is the evolution operator in the inter-
action picture and Û0(t, t0) := exp(−iτ K̂/�) is the
time-evolution operator associated with the Hamilto-
nian K̂ . By inserting the identity 1̂ = exp(+ i

�
τK̂) ×

exp
(− i

�
τK̂

)
to the right-hand side of ÛI(t, t0), the

generalization of (14) is given by

Û(t, t0)= [Û0(t, t0)ÛI(t, t0)Û
+
0 (t, t0)]

× exp

(
− i

�
τK̂

)
. (E.2)

Formally, the solution of the equation of motion gov-
erning the time evolution of ÛI(t, t0) can be expressed
as ÛI(t, t0) := U(q̂, p̂; t, t0), where U(q̂, p̂; t, t0) is
a function of the position and momentum operators q̂
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and p̂, beside the time dependence due to V̂ (t). Now,
according to the Weyl prescription, one can write

U(q̂, p̂; t, t0) = 1

(2π�)f

∫
UW(q ′, p′; t, t0)

×D̂(q ′, p′)dq ′dp′, (E.3)

where the scalar function UW(q ′, p′; t, t0) = Tr(U(q̂,

p̂; t, t0)D̂(−q ′, −p′)) is the Weyl symbol associated
with U(q̂, p̂; t, t0) and D̂(q, p) is the Weyl operator
defined in (1).

Consequently, the evolution operator in the
Schrödinger picture can be written as

Û (t, t0)=
[

1

(2π�)f

∫
UW(q ′, p′; t, t0)

×D̂•(q ′, p′, τ )dq ′dp′
]

exp

(
− i

�
τK̂

)
, (E.4)

where D̂•(q ′, p′, τ ) is the time-dependent Weyl opera-
tor defined by the relation

D̂•(q ′, p′, τ ) := exp

(
i

�
[p′Q̂(τ ) − q ′P̂ (τ )]

)
, (E.5)

and

Q̂(τ ) := Û0(t, t0) q̂ Û+
0 (t, t0) = Q(q̂, p̂; τ),

P̂ (τ ) := Û0(t, t0) p̂ Û+
0 (t, t0) = P(q̂, p̂; τ) (E.6)

are time-dependent operators, which satisfy the com-
mutation relation [Q̂(τ ), P̂ (τ )]= i�. Thus, for a sys-
tem with Hamiltonian Ĥ=K̂+V̂ (t), the state of the
system at time t takes the form

|�(t)〉 =
[

1

(2π�)f

∫
UW(q ′, p′; t, t0)D̂•(q ′, p′, τ )

×dq ′dp′
]

exp

(
− i

�
τK̂

)
|�(t0)〉. (E.7)

This generalization of eq. (16) is of course formal
as long as explicit expressions of the operators Q̂(τ )

and P̂ (τ ), the function U(q̂, p̂; t, t0) and the corre-
sponding Weyl symbol UW(q ′, p′; t, t0) are in general
not known, and they can be difficult to obtain for a
given specific system beyond the system discussed in
this paper.
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