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Abstract. We have investigated the influence of electron–phonon (e–p) interaction and hydrogenic donor impu-
rity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes
and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element
method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy differ-
ence and binding energy decrease by changing the impurity position with and without e–p interaction. The dipole
matrix elements have complex behaviours in the presence of impurity with and without e–p interaction. The
refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a1
with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes
enhance and shift toward higher energies when e–p interaction is considered.
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1. Introduction

Recently, with the rapid development of material pro-
duction technology, the physical properties of low-
dimensional semiconductor materials have aroused
great interest. Among the low-dimensional structures,
there has been a great deal of interest in the investi-
gation of quantum wires. So far, many investigators
studied the properties of quantum wires using several
theoretical and experimental methods [1–8]. The study
of quantum wires has been revolutionary in the fun-
damental sciences due to the potential applications of
these structures in the technology of electronic and
optoelectronics devices [9–11].

We know that Sakaki et al [12] proposed the con-
cept of quantum wires for the first time in 1975.
After this, with the advances in nanofabrication tech-
nologies, researchers could fabricate quantum wires
of nanometre size with various cross-sections such as
circular, V-shape, triangular, parallelogram, T-shape,
and hexagonal shape [13–17]. For the past several
years there has been a lot of interest in semiconduc-
tor quantum wires with complicated cross-sectional

shapes, and considerable efforts have been devoted to
study the physical properties of the wires. For example,
Mohan et al [18] investigated the spectrum of lumines-
cent hexagonal superlattice, formed by InP/InAs/InP
nanotubes with the transversal cross-section of right
hexagon shape. Vorobiev et al [19] studied the energy
spectrum of an electron confined in the hexagonal-
shaped quantum well. Makhanets et al [20] investi-
gated the exciton spectrum in a multishell hexagonal
semiconductor nanotube.

The physics of impurity states in semiconductors
is very interesting because the physical properties of
semiconductor devices are modified by hydrogenic
impurities. The presence of Coulomb centre within
the semiconductor nanostructures can have important
effect on the physical properties of samples under
study. After Bastard’s pioneering work on the donor
impurity in a semiconductor quantum well [21], many
studies have been performed on impurity states in
nanostructures [22–25].

The effects of impurity and the interaction between
electrons and phonons on the physical properties of
semiconductor nanostructures are interesting problems
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in condensed matter physics. Low-dimensional semi-
conductor structures with and without impurity have
been considered as potential candidates for new active
electro-optical devices due to their unique properties
resulting from the strength of the confinement poten-
tial. These structures show changed optical suscepti-
bilities compared to those of the bulk semiconductors.
As is known, among the optical properties, the study of
refractive index changes, absorption coefficients, and
third harmonic generations in nanostructures has been
of great interest for researchers.

So far, many investigations have been done on the
optical properties in quantum dots, quantum wells,
and quantum wires under impurity effect and in the
presence of electron–phonon interaction. For example,
Maikhuri et al [26] have investigated the dependence
of the linear and nonlinear intraband optical proper-
ties of ZnO quantum dots embedded in SiO2 matrix.
Recently, we have studied the optical absorption coef-
ficients and refractive index changes in spherical quan-
tum antidots with hydrogenic donor impurity at the
centre [27]. Third harmonic generation in InAs/GaAs
self-assembled quantum wires was studied by Sauvage
et al [28]. Guo and Chen [29] presented the polaron
effects on second-harmonic generation in quantum
well within an electric field. Wang [30] calculated third
harmonic generation in cylindrical parabolic quantum
wires under an applied electric field.

To our knowledge, the effects of hydrogenic impuri-
ties and electron–phonon interaction on optical prop-
erties of a hexagonal-shaped quantum wire have not
been investigated so far due to its particular shape
(see figure 1). Therefore, the purpose of this arti-
cle is to investigate the optical absorption coefficients
and refractive index changes of a hexagonal-shaped
(GaAs/Ga0.5In0.5As) quantum wire with and without
impurity in the presence of electron–phonon interac-
tion by using the finite-element method (FEM). We
have used GaAs/Ga0.5In0.5As because its parameters
are known.

2. Theory and model

In the effective mass approximation, the Hamiltonian
of an electron which interacts with bulk light phonons
in the presence of hydrogenic donor impurity located
at position r0 in a hexagonal core shell quantum wire
is given by (see figure 1):

H = He + He−p − e2

ε|r − r0| , (1)

Figure 1. Geometric scheme of a hexagonal-shaped quan-
tum wire.

with

He = − h̄2

2m∗ ∇2 + V (x, y). (2)

Here m∗ is the effective mass of the electron and the
confining potential V (x, y) is given by (see figure 1):

V(x, y) =
⎧⎨
⎩

0 region 1 (0 < r < a1)

V0 region 2 (a1 < r < a2)

∞ region 3 (r ≥ a2)

, (3)

where V0 is the band offset between the conduction
bands of semiconductors ‘1’ and ‘2’.

The second term representing the optical phonon
Hamiltonian is given by

He−p = σe

∑
q

√
h̄q

2ρV cl

(bq,l + b+
−q,l)e

iq · R. (4)

Here bq,l (b
+
−q,l) are the annihilation (creation) phonon

operators, ρ is the material density, σe is the defor-
mation potential, V is the volume of the crystal, cl

is the sound velocity, and q = (qx, qy, qz) are the
three-dimensional phonon wave vectors.

The last term in eq. (1) stands for the Coulomb
interaction between the electron and the hydrogenic
donor impurity. It is fully known that the calculation of
energy levels and wave functions of a hexagonal core–
shell quantum wire, analytically, is a nontrivial task.
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Therefore, we intend to numerically find energy lev-
els and wave functions of the Hamiltonian of eq. (1)
with and without impurity, because these are required
to calculate the optical properties.

In this work, we intend to employ the FEM to obtain
wave functions and energy levels of the system numer-
ically. The FEM is a numerical procedure for finding
approximate solutions of differential equations [31].
FEM includes the use of mesh generation techniques
for dividing a complex problem into small elements.
The complex problem is usually a physical system with
the underlying physics such as the Schrödinger equa-
tion, Poisson equation, or the Navier–Stokes equations
expressed in the form of partial differential equation
(PDF). It can be said that FEM is a powerful tech-
nique for numerically solving the partial differential
equations.

We consider a volume of some material with known
physical properties. The volume represents the domain
of a boundary value problem to be solved. We con-
struct a grid in real space using a discrete number of
points. The eigenenergies and eigenstates of the elec-
trons confined in a quantum wire are evaluated by
solving the three-dimensional Schrödinger equation

− h̄2

2m∗

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
φ(x, y, z)

+ V(x, y, z) φ(x, y, z) = Eφ(x, y, z), (5)

where f and E are the wave function and energy levels.
Also, V(x, y, z) = V conf +V int where V conf is the con-
fining potential and V int(x, y, z) = −e2/(ε|r − r0|).

The operator ∇2 is properly discretized by applying
the standard three-point finite-difference approxima-
tion. In order to perform simulation numerically, one
needs to discretize two-dimensional Schrödinger equa-
tion. The spatial derivative is approximated for all
discretized space except on boundaries and is given by

[
∂2

∂x2
+ ∂2

∂y2
+ V(x, y) + V int(x, y)

]
φ(int,out)(x, y)

≈ 1

�x2
[φ(int,out) (i + 1, j)

− 2φ(int,out) (i, j) + φ(int,out)(i − 1, j)]
+ 1

�y2
[φ(int,out) (i, j + 1) − 2φ(int,out) (i, j)

+ φ(int,out)(i, j − 1)]
+ [V(i, j) + V int(i, j)]φ(int,out)(i, j). (6)

The notation φ(int,out)(i, j) is used as φ(int,out)(i�x,

j�y) where �x and �y are spatial spacings. Also, the
superscripts ‘int’ and ‘out’ represent the wave function
inside and outside the quantum wire. The continuity
of the wave function on the quantum wire boundary is
expressed by

φint(x, y)|in the boundary = φout(x, y)|in the boundary. (7)

Also, the derivative of the wave function on the quan-
tum wire boundary is given by

1

m∗
1
n̂ · �∇φint|in the boundary = 1

m∗
2
n̂ · �∇φout|in the boundary.

(8)

Using eqs (6)–(8), the eigenvalue problem can be
rewritten as[

A11 A12
A21 A22

] [
φint

φout

]
= E

[
φint

φout

]
. (9)

The eigenvalues and eigenfunctions of the system can
be obtained by the diagonalization of eq. (9). After
obtaining the eigenfunctions numerically, we have
employed the perturbation theory. The wave function
of the system can be calculated from the unperturbed
wave functions as

|�i〉 = |φi〉 +
∑
i 
=j

〈φi |He−p|φj 〉
Ei − Ej

|φi〉. (10)

3. Optical absorption coefficients
and refractive index changes

In order to calculate the optical properties of our sys-
tem, we first consider the interaction of a polarized
monochromatic electromagnetic field with the system.
Then, we use the density matrix formalism for com-
puting the absorption coefficients and refractive index
changes related to an optical transition.

The electromagnetic field vector with frequency ω

can be expressed by

E(t) = Eeiωt + E∗e−iωt . (11)

With respect to the time-dependent interaction of elec-
tromagnetic field with the system, the time evolution of
the matrix elements of the one-electron density opera-
tor, ρ, is given by the von-Neumann equation [32–34]

∂ρij

∂t
= 1

ih̄
[H0 − erE(t), ρ]ij − 
ij (ρ − ρ(0))ij , (12)

where ρ(0) is the unperturbed density matrix, H0 is
the Hamiltonian of this system without the electro-
magnetic field E(t), and q is the electronic charge.
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The symbol [ , ] is the quantum mechanical commu-
tator, 
 is the phenomenological operator responsible
for damping due to collisions among electrons, etc.
We can solve eq. (12) by applying the standard itera-
tive method [35]. After obtaining the density matrix,
we can determine the electronic polarization P(t) and
susceptibility χ(t) as

P(t) = ε0χ
(1)
ω Ẽeiωt + ε0χ

(2)
2ω Ẽ2e2iωt + ε0χ

(2)
0 Ẽ2

+ ε0χ
(3)
3ω Ẽ3e3iωt + cc, (13)

where χ
(1)
ω , χ

(2)
2ω , χ

(2)
0 , and χ

(3)
3ω are the linear sus-

ceptibility, second-harmonic generation, optical recti-
fication, and third-harmonic generation, respectively.
The electronic polarization of the nth order electronic
polarization is as follows:

P (n)(t) = 1

V
Tr(ρ(n)qr), (14)

where V and ρ are the volume of the system and the
one-electron density matrix. Also ε0 is the permittivity
of free space, and the symbol Tr (trace) denotes the
summation over the diagonal elements of the matrix.

In this paper, we have used the linear and the third-
order nonlinear refractive index changes which are
expressed as [36]

�n(1)(ω)

nr

= σ 2
ν e2 |M21|2

2n2
r ε0

×
[

E21 − h̄ω

(E21 − h̄ω)2 + (h̄
12)2

]
, (15)

�n(3)(ω)

nr

= −σνe
4 |M21|2
4n3

r ε0

μcI

[(E21 − h̄ω)2 + (h̄
12)2]2

×
[

4(E21−h̄ω)|M21|2− (M22−M11)
2

(E21)2+(h̄
12)2

× {(E21 − h̄ω)[E21(E21 − h̄ω)−(h̄
12)
2]

−(h̄
12)
2(2E21 − h̄ω)}

]
, (16)

where σν is the carrier density, μ is the permeabil-
ity, Eij = Ei − Ej is the energy difference, and
Mij = |〈i|x|j 〉| is the electric dipole moment matrix
element. Using eqs (15) and (16), one can write the
total refractive index change as

�n(ω)

nr

= �n(1)(ω)

nr

+ �n(3)(ω)

nr

. (17)

The absorption coefficient α(ω) is also calculated from
the imaginary part of the susceptibility χ(ω) as

α(ω) = ω

√
μ

εR

Im [ε0χ(ω)] . (18)

The linear and third-order nonlinear absorption coeffi-
cients can be written as [32]

α(1)(ω) = ω

√
μ

εR

[
σνe

2h̄
12 |M21|2
(E21 − h̄ω)2 + (h̄
12)2

]
, (19)

α(3)(ω, I ) = −ω

√
μ

εR

(
Ie4

2nrε0c

)

× σνh̄
12 |M21|2
[(E21 − h̄ω)2 + (h̄
12)2]2

×
{

4 |M21|2

−(M22 − M11)
2[3E2

21 − 4E21h̄ω + h̄2(ω2−
2
12)]

(E21)2 + (h̄
12)2

}
,

(20)

where c is the speed of light in free space and I is the
optical intensity of the incident wave, and it is given by

I = 2
√

εR

μ
|E(ω)|2 . (21)

Using eqs (19) and (20), one can express the total
absorption coefficient as

α(ω, I) = α(1)(ω) + α(3)(ω, I ). (22)

4. Results and discussion

In this section, the energy difference E21, binding
energy, dipole matrix elements, absorption coefficients,
and refractive index changes of a hexagonal-shaped
quantum wire (GaAs/Ga0.5In0.5As) have been pre-
sented. The calculations have been performed with and
without impurity in the presence of electron–phonon
(e–p) interaction for various sizes of inner a1 and outer
a2 hexagons. Here, we have selected a2 = 2a1. The
parameters used in this present work are [36]: m∗

GaAs =
0.067m0, m∗

GaInAs = 0.045m0, V0 = 0.35 eV, and h̄
=
0.4 meV.

The geometrical scheme of a hexagonal-shaped
quantum wire with sizes a1 and a2 respectively for the
inner and outer hexagons is shown in figure 1.

Figure 2 shows the energy difference E21 of a
hexagonal-shaped quantum wire as a function of impu-
rity position y0 with and without e–p interaction for
a1 =8 nm and a2 =16 nm. One can see from the figure
that energy difference is decreased by increasing the
impurity position until 6 nm and then it increases. It
is observed that the energy difference with e–p inter-
action is higher than without e–p interaction. It is
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obvious that the energy difference with e–p interaction
is obtained by using second-order perturbation.

Figure 3 displays the binding energy of a hexagonal-
shaped quantum wire as a function of impurity location
y0 with and without e–p interaction for a1 = 8 nm and
a2 = 16 nm. The binding energy is decreased when y0
is increased. This behaviour is due to the enhancement
of the distance between the impurity location and the
position of maximum probability density of electron.
When the distance is increased, the electron becomes
less bound to the impurity. The binding energy with
e–p interaction is lower than without e–p effect.

In figures 4 and 5, we have presented the dipole
matrix elements of a hexagonal-shaped quantum wire
as a function of impurity location y0 with and without
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Figure 2. The energy difference E21 as a function of impu-
rity position for a1 = 8 nm and a2 = 16 nm.
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Figure 3. The binding energy vs. impurity position for
a1 = 8 nm and a2 = 16 nm.

e–p interaction for a1 = 8 nm and a2 = 16 nm. It is
observed from the figure that the dipole matrix ele-
ments with e–p interaction are enhanced. It is fully
known that in the calculation of the dipole matrix ele-
ments there are two wave functions. We know that the
dipole matrix element corresponds to the overlap of
the wave function. With e–p interaction, the overlap
between two different wave functions is increased.

One can observe from the figure that the dipole
matrix elements have complex behaviours. But, ap-
proximately, all of them have two minima around y0 =
2 and 5 nm and a maximum around y0 = 3 nm. These
behaviours correspond to the position of maximum
probability density of electron in different states.

Figures 6–8 show linear, nonlinear, and total refrac-
tive index changes of a hexagonal-shaped quantum
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Figure 4. The dipole matrix elements (M22 − M11) as a
function of impurity position for a1 =8 nm and a2 =16 nm.
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Figure 5. The dipole matrix element M21 as a function of
impurity position for a1 = 8 nm and a2 = 16 nm.
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Figure 6. Linear refractive index changes vs. photon energy
with and without e–p interaction for central impurity.
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Figure 7. Nonlinear refractive index changes vs. photon
energy with and without e–p interaction for central impurity.
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Figure 8. Total refractive index changes vs. photon energy
with and without e–p interaction for central impurity.
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Figure 9. Linear absorption coefficients vs. photon energy
with and without e–p interaction for central impurity.
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Figure 10. Nonlinear absorption coefficients vs. photon
energy with and without e–p interaction for central impurity.
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with and without e–p interaction for central impurity.
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wire as a function of photon energy with and without
e–p interaction for different values of a1 with central
impurity. In the figures, we have selected a2 = 2a1.
It is seen from the figures that the refractive index
changes enhance and shift towards higher energies by
considering e–p interaction. As we see from the pre-
vious figures, the energy difference and dipole matrix
elements increase by considering e–p interaction. Also,
the refractive index changes increase and shift toward
lower energies by increasing a1. It is fully known
that the quantum confinement and thereby the energy
spacing is decreased by enhancing a1. Therefore, the
refractive index changes and absorption coefficients
shift towards lower energies.

In figures 9–11, we have presented the linear, non-
linear, and total absorption coefficients of a hexagonal-
shaped quantum wire as a function of photon energy for
different values of a1 with and without e–p interaction
for central impurity. One can see from the figures that
the absorption coefficients raise and shift towards lower
energies by increasing a1. It should be noted that the
absorption coefficients enhance and shift towards higher
energies by considering e–p interaction.

5. Conclusions

In this paper, we have presented the numerical results
concerning the electronic and optical properties of a
hexagonal-shaped quantum wire using FEM. In this
regard, we have calculated energy difference, binding
energy, refractive index changes, and absorption coeffi-
cients with and without e–p interaction in the presence
of hydrogenic donor impurity. According to the results,
it is found that the absorption coefficients and refractive
index changes increase and shift towards lower ener-
gies by increasing a1. But, the absorption coefficient
and refractive index changes enhance and shift toward
higher energies by considering e–p interaction. Also,
the binding energy decreases by increasing the impu-
rity positions. The dipole matrix elements have com-
plex behaviours in the presence of impurity. In general,
the sizes of inner a1 and outer a2 hexagons, impurity
position, and e–p interaction have considerable effect
on dipole matrix elements, energy difference and so
the optical properties of a hexagonal-shaped quantum
wire. It is worth mentioning that the results of this
paper can be used to improve interpretations of the
experimental data concerning the physical phenomena
taking place in a subsurface level of the semiconductor
materials with hexagonal-shaped structures.
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