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The effect of nonlinearity on unstable zones of Mathieu equation
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Abstract. Mathieu equation is a well-known ordinary differential equation in which the excitation term appears
as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation.
The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the
stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations
using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results
show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. How-
ever, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude
of response leads to an increase in the unstable zone.
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1. Introduction

The parametric excitation arises in many phenomena in
physics and engineering, such as dynamic stability of
elastic columns, dynamics of meshing gears, stability
in ion trap spectrometer and so on. Mathematically,
theses problems led to the differential equation with
the time-varying coefficients [1]. In simple cases, the
governing equation (called Hill’s equation) of the sys-
tem is a homogeneous, linear, second-order differential
equation with the periodic coefficient, called [2]:

d2y

dt2
+ f̄ (t)y = 0; f̄ (t + T ) = f̄ (t), (1)

where T is the periodic time of f̄ (t). If f̄ (t) = δ +
2ε cos(2t), eq. (1) reduces to the classical Mathieu
equation [1]:

d2y

dt2
+ (δ + 2ε cos(2t))y = 0. (2)

For example, in vibration systems, δ is the frequency
of oscillation and 2ε cos(2t) represents the parametric
excitation of strength ε. The stability of the solution
depends on the amount of δ and ε. The curves, called
the transition curves, plotted on ε–δ plane, separate
the stable and unstable regions. Note that along the
transition curves, the solutions are periodic.

Nayfeh [1] determines the transition curves of eq. (2)
using the method of strained parameters and the
method of multiple scales. Broer and Simo [3] stud-
ied the transition curves, named resonance tongue,
using the geometric approach for the linear Mathieu
and Hill’s equations. Zhou et al [4] derived the
equation of motion for the ions within the practi-
cal quadrupole ion trap and characterized it by the
nonlinear Mathieu equation. They used the Poincare–
Lighthill–Kuo (PLK) method to determine the stabil-
ity regions of the Mathieu equation. Jazar et al [5]
derived the governing equations of the lateral vibra-
tion of a microcantilever resonator in a linear domain as
the forced Mathieu equation and used the energy-rate
method to determine the stability chart. In this method,
the transition curves are determined numerically based
on a computer program.

In this article, the effect of nonlinearity on transition
curves of Mathieu equation is examined. The transition
curves are determined by the perturbation homotopy
method which is an approximate analytical method.
The method proposes a general formula to construct an
infinite number of linear ordinary differential equations
from the original equation. Therefore, for any form of
the excitation term, the transition curves can be deter-
mined easier and faster than the perturbation methods.
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First, the homotopy perturbation method is described
briefly and the transition curves are then determined for
three cases of linear and nonlinear Mathieu equation.
The area of unstable zones are determined to examine
the effect of nonlinear term.

2. Homotopy perturbation method

In 1992, Liao [6] proposed an analytical method,
namely the homotopy method, with which the series
solutions of nonlinear ordinary differential equation
can be obtained. Six years later, Jihuan He [7] pro-
posed the homotopy perturbation method (HPM) by
which a large class of nonlinear differential problems
could be solved easily. The method has been worked
out and extended over a number of years by numerous
researchers.

In this paper, to determine the transition curves of the
following equation:

d2y

dt2
+ δy + f (t, y, ẏ, ÿ, ...) = 0 (3)

the homotopy equation is constructed as follows:

H(Y, t; p) = Ÿ (t; p) + �(p)Y

+pf (t, Y, Ẏ , Ÿ , ...) = 0, (4)

where f (t, Y, Ẏ , Ÿ , ...) is a periodic function and
Y(t; p) and �(p) are defined as

Y(t; p) = y0 +
∞∑

j=1

(
yj

pj

j !
)

, (5)

�(p) = δ0 +
∞∑

j=1

(
δj

pj

j !
)

, (6)

where p ∈ [0 1] is the embedding parameter which
monotonically increases from zero to unity. As p = 0,
the homotopy equation (4) reduces to

H(Y, t; 0) = Ÿ (t; 0) + ω2
0Y = 0, (7)

where ω2
0 = δ0 = �(0) and Y(t; 0) = y0 represents

the initial approximation of the solution. When p = 1,
eq. (4) deforms to the original differential equation:

H(Y, t; 1) = ÿ(t) + δy + f (t, y, ...) = 0, (8)

where

y(t) = Y(t; 1) = y0 +
∞∑

j=1

(yj /j !), (9)

δ = δ0 +
∞∑

j=1

(δj /j !). (10)

In order to find yj and δj , eqs (5) and (6) are sub-
stituted into (4) and the coefficients of each power of p

are then set to zero. Equation (7) will be obtained if the
coefficients of p0 is set to zero. The coefficients of pn

should be determined from the following equation:

∂nH

∂pn

∣∣∣∣
p=0

= ∂nY

∂pn
+

n∑
i=0

(
n

i

)
dn−i�

dpn−i

∂iY

∂pi
+n

∂n−1f

∂pn−1
=0,

(11)

where(
n

i

)
= n!

i!(n − i)! (12)

and

∂nY

∂pn

∣∣∣∣
p=0

= yn,
dn�

dpn

∣∣∣∣
p=0

= δn. (13)

In this way, the original differential equation is trans-
formed to an infinite number of sub-problems. Elimi-
nating the secular terms, the relations between δj and
other parameters can be obtained.

3. Transition curves

The transition curves separate the stable and unstable
solutions on δ–ε plane and along the curves, the solu-
tions are periodic. The periodic solutions of Mathieu
equation can be obtained for certain values of δ and
ε [1]. If the frequency of f (t, y, ...) is equal to 2m

(m = 1, 2, ...) the transition curves for linear Mathieu
equation start at (δ, ε) = ((m)2k2, 0) for all k ∈ N

[3,8]. In the next sections, for three cases of function
f (t, y, ...) the transition curves will be determined.

3.1 Case 1: f (t, y) = 2ε cos(mt)y

Consider eq. (3) as follows:

d2y

dt2
+ δy + 2ε cos(mt)y = 0. (14)

Using eq. (11), eq. (14) is transformed to a set of
ordinary differential equations with constant coeffi-
cients as follows:

ÿ0 + ω2
0y0 = 0, (15)

ÿ1 + ω2
0y1 = −2ε cos(mt)y0 − δ1y0 (16)

and

ÿn + ω2
0yn = −nε cos(mt)yn−1 −

n−1∑
i=0

(ni )δn−iyi (17)

etc.
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From eq. (15), y0 is calculated as

y0 = a cos(ω0t) + b sin(ω0t). (18)

Substituting eq. (18) into (16), we obtain

ÿ1 + ω2
0y1 = − εa cos(m + ω0)t − εa cos(m − ω0)t

− εb sin(m + ω0)t + εb sin(m − ω0)t

− δ1a cos(ω0t) − δ1a sin(ω0t). (19)

Neglecting the secular terms,

if ω0 �= m/2 ⇒ δ1 = 0 (20)

if ω0 = m/2 ⇒
{

a = 0 and δ1 = ε (a)
b = 0 and δ1 = −ε (b)

, (21)

from eqs (20) or (21) and eq. (19), y1 can be deter-
mined, respectively as follows:

ω0 �= m/2 ⇒ y1 = ε

m(m + 2ω0)
[a cos(m + ω0)

+ b sin(m + ω0)]

+ ε

m(m − 2ω0)
[a cos(m − ω0)

+ b sin(m − ω0)] , (22)

ω0 = m/2 ⇒

⎧⎪⎨
⎪⎩

y1 = εb

2m2
sin(3m/2t)

y1 = εa

2m2
cos(3m/2t)

. (23)

Consider n = 2 in eq. (17), using eqs (18) and (22)
or (23) and avoiding the secular term, the relations of
δ2 can be determined. The results are summarized as
follows:

δ =
(m

2

)2 + ε − ε2

2m2
+ O(ε3),

δ =
(m

2

)2 − ε − ε2

2m2
+ O(ε3),

δ = m2 − ε2

3m2
+ O(ε3),

δ = m2 + 5ε2

3m2
+ O(ε3). (24)

Equations (24), for m = 2, agree with ref. [1] in
which the multiple scale method is used.

3.2 Case 2: f (t, y) = 2ε(cos(mt) + cos(rmt))y

In this section, eq. (3) is considered as follows:

d2y

dt2
+ δy + 2ε(cos(mt) + cos(rmt))y = 0,

r = 2, 3, 4, ... . (25)

Same as in the previous section, using eq. (11) the
following equations are obtained:

ÿ0 + ω2
0y0 = 0,

ÿ1 + ω2
0y1 = −δ1y0 − 2ε(cos(mt) + cos(rmt))y0,

ÿ2 + ω2
0y2 = −δ2y0 − 2δ1y1 − 4ε(cos(mt)

+ cos(rmt))y1. (26)

The solution of the first equation is represented by
eq. (18). Substituting y0 into the second equation and
avoiding the secular terms, δ1 is calculated. y1 will be
calculated as follows:

For ω0 = m/2:

δ1 =ε⇒y1 =
(

εb

2m2

)
sin

(
3mt

2

)

+
(

εb

r(r + 1)m2

)
sin

(
(2r + 1)mt

2

)

−
(

εb

r(r − 1)m2

)
sin

(
(2r − 1)mt

2

)
,

δ1 = −ε ⇒ y1 =
( εa

2m2

)
cos

(
3mt

2

)

+
(

εa

r(r + 1)m2

)
cos

(
(2r + 1)mt

2

)

+
(

εa

r(r −1)m2

)
cos

(
(2r −1)mt

2

)
.

(27)

For ω0 = rm/2:

δ1 = ε ⇒ y1 =
(

εb

(r + 1)m2

)
sin

(
(r + 2)mt

2

)

−
(

εb

(1 − r)m2

)
sin

(
(r − 2)mt

2

)

+
(

εb

2r2m2

)
sin

(
3rmt

2

)
,

δ1 = −ε ⇒ y1 =
(

εa

(r + 1)m2

)
cos

(
(r + 2)mt

2

)

+
(

εa

(1 − r)m2

)
cos

(
(r − 2)mt

2

)

+
( εa

2r2m2

)
cos

(
3rmt

2

)
. (28)

Substituting y0 and y1 into the third equation of (26)
and eliminating the secular terms, δ2 is then calculated.
So the transition curves are obtained as follows:

δ =
(m

2

)2 + ε − ε2

2m2

r2 + 3

r2 − 1
+ O(ε3), r �= 2

δ =
(m

2

)2 − ε − ε2

2m2

r2 + 3

r2 − 1
+ O(ε3), r �= 2
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δ =
(m

2

)2 + ε − ε2

6m2
+O(ε3), r = 2

δ =
(m

2

)2 − ε − 13ε2

6m2
+O(ε3), r = 2

δ =
(rm

2

)2 + ε − ε2

2m2

1−5r2

r2(r2 −1)
+O(ε3), r �= 2

δ =
(rm

2

)2 − ε + ε2

2m2

3r2 +1

r2(r2 −1)
+O(ε3), r �= 2

δ = m2 + ε − 5ε2

24m2
+O(ε3), r = 2

δ = m2 − ε + 37ε2

24m2
+O(ε3), r = 2. (29)

3.3 Case 3: f (t, y) = 2ε cos(mt)(y + y3)

In this section, the nonlinear Mathieu equation is
considered as

d2y

dt2
+ δy + 2ε cos(mt)(y + y3) = 0. (30)

Using eq. (11), the following ordinary differential
equations are obtained:

ÿ0 + ω2
0y0 = 0,

ÿ1 + ω2
0y1 = −δ1y0 − 2ε cos(mt)(y0 + y3

0),

ÿ2 + ω2
0y2 = −δ2y0 − 2δ1y1

− 4ε cos(mt)(y1 + 3y2
0y1). (31)

The solution of the first equation is represented by
eq. (18). Substituting y0 into the second equation and
avoiding the secular terms, δ1 is calculated. y1 will be
then calculated as follows:

For ω0 = m/2:

δ1 =ε(1 + b2)⇒y1 =
(

εb

2m2

)(
1+ 3b2

4

)
sin

(
3mt

2

)

−
(

εb3

24m2

)
sin

(
5mt

2

)
,

δ1 =−ε(1+a2)⇒y1 =
( εa

2m2

)(
1+ 3a2

4

)
cos

(
3mt

2

)

+
(

εa3

24m2

)
cos

(
5mt

2

)
. (32)

For ω0 = m/4:

δ1 = −εb2

4
,

a = 0 ⇒ y1 =
(−2εb

m2

) (
1 + 3b2

4

)
sin

(
3mt

4

)

+
(

2εb

3m2

) (
1 + 3b2

4

)
sin

(
5mt

4

)

− εb3

12m2
sin

(
7mt

4

)
,

δ1 = −εa2

4
,

b = 0 ⇒ y1 =
(

2εa

m2

) (
1 + 3a2

4

)
cos

(
3mt

4

)

+
(

2εa

3m2

) (
1 + 3a2

4

)
cos

(
5mt

4

)

+ εa3

12m2
cos

(
7mt

4

)
,

δ1 = εa2

4
,

a = b ⇒ y1 =
(

2εa

m2

) (
1 + 3a2

4

) (
cos

(
3mt

4

)

− sin

(
3mt

4

))
+

(
2εa

3m2

) (
1 + 3a2

4

)

×
(

cos

(
5mt

4

)
+ sin

(
5mt

4

))

+ εa3

6

(
sin

(
7mt

4

)
− cos

(
7mt

4

))
,

δ1 = εa2

4
,

a = −b ⇒ y1 =
(

2εa

m2

) (
1 + 3a2

4

)

×
(

cos

(
3mt

4

)
+ sin

(
3mt

4

))

+
(

2εa

3m2

) (
1 + 3a2

4

)

×
(

cos

(
5mt

4

)
− sin

(
5mt

4

))

+ εa3

6

(
cos

(
7mt

4

)
− sin

(
7mt

4

))
. (33)
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(a) m=1 (b) m=2

(c) m=5 (d) m=7

Figure 1. Transition curves of (d2y/dt2) + δy + 2ε cos(mt)y = 0.

Figure 2. Periodic solution of eq. (14), m = 7, ε = 0.01.

Substituting y0 and y1 into the third equation of (31)
and eliminating the secular terms, δ2 is then calculated.
The relations of δ are then calculated as

δ=
(m

2

)2+ε(1+a2)− ε2

2m2
(1+3a2+7a4/4)+O(ε3),

δ=
(m

2

)2−ε(1+a2)− ε2

2m2
(1+3a2+7a4/4)+O(ε3),

Figure 3. Unstable solution of eq. (14), m = 7, ε = 0.1,
δ = 12.25.

δ=
(m

4

)2−ε
a2

4
− ε2

2m2

(
16

3
+16a2+ 73a4

8

)
+O(ε3),

δ=
(m

4

)2+ε
a2

2
− ε2

2m2

(
16

3
+32a2+ 73a4

2

)
+O(ε3).

(34)



46 Page 6 of 10 Pramana – J. Phys. (2017) 88: 46

For nonlinear Mathieu equation, the transition curves
depend on the amplitude of response, a.

4. Results

The locus of transition curves for three cases of f (t, y)

are plotted in figures 1, 4 and 8. The curves separate the
δ–ε plane into regions of stability and instability. In all
the figures, unstable zones are marked by gray colour.
In these zones, the solutions are unbounded and in the
stable zones the solutions are bounded and aperiodic.

However, along the transition curves the solutions are
periodic. In this paper the area of unstable zones is
calculated to examine the effect of nonlinear terms on
the locus of transition curves.

The transition curves, for Case 1, are shown in
figure 1 for m = 1, 2, 5 and 7. Along the curves,
the periodicity of solutions is equal to 4π/m or
2π/m (see eqs (22)–(24)). In figures 1a–1d, the left
curve passing through P1 : ((m/2)2, 0) represents the
cosine solutions and the right curve passing through
P2 : (m2, 0) represents the sine periodic solutions and
so on.

(a) m=1, r=2 (b) m=1, r=4

(c) m=2, r=2 (d) m=2, r=4

(e) m=5, r=2 (f) m=5, r=4

Figure 4. Transition curves of (d2y/dt2) + δy + 2ε(cos(mt) + cos(rmt))y = 0.
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The area of unstable zone between the curves pass-
ing through P1 is equal to unity as in the following
equation:

A1(p1) =
∫ 1

0
|δ1(ε) − δ2(ε)| dε

=
∫ 1

0
2ε dε = 1, (35)

where δ1 and δ2 represent the transition curves pass-
ing through point P1 (the first two equations of (24)).
The area of unstable zone between the curves passing
through P2 is equal to 2/3m2:

A1(p2) =
∫ 1

0
|δ1(ε) − δ2(ε)| dε

=
∫ 1

0

2ε2

m2
dε = 2

3m2
, (36)

where δ1 and δ2 represent the transition curves pass-
ing through point P2 (the third and fourth equations of
(24)). So the curves for sine and cosine are substan-
tially coincident, as m increases (compare figures 1a
and 1d).

For a special case of m = 7, ε = 0.01 and δ = 12.24
(calculated by second equation of (24)), the periodic
solution of eq. (14) is calculated using eqs (18) and
(23) (y = y0 + y1). The results are compared with
numerical method in figure 2, and a good agreement is
seen between the two methods.

Figure 3 shows the trajectory in the phase plane for
eq. (14) considering m = 7, ε = 0.1 and δ = 12.25.
The selected parameters are located in the unstable
zone in figure 1d and the solutions are calculated
numerically.

Figure 5. Periodic solution of eq. (25), m = 5, r = 2,
ε = 0.01.

Figure 4 depicts the transition curves of Case 2
(eqs (29)) for different values of m and r . With respect
to the first four equations of (29) and eqs (18) and
(27), along the curves passing through P1 : ((m/2)2, 0)

the periodicity of solution is 4π/m and along the
curves passing through P2 : ((rm/2)2, 0) the periodic-
ity of solution is 4π/rm (see the second four equations
of (29) and eqs (28) and (18)). The left curves passing
through P1 or P2 in figures 4a–4f represent the cosine
periodic solutions and the right curves represent the
sine solution.

Figure 5 shows the periodic solution of eq. (25) for
m = 5, r = 2, ε = 0.01 and δ = 6.2400 (calculated
by the fourth equation of (29)). The solutions are deter-
mined by numerical and homotopy methods which
have a good agreement with each other.

Figure 6. Unstable solution of eq. (25), m = 5, r = 2,
ε = 0.1, δ = 6.25.

Figure 7. The area of unstable zone, r = 2.
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The unstable solution of eq. (25) is calculated numer-
ically for m = 5, ε = 0.1 and δ = 6.25. Figure 6 shows
the trajectory in the phase plane.

Similar to eq. (35) and using eq. (29), for r = 2
(figures 4a, 4c and 4e) the area of unstable zone
between the curves passing through P1 (zone 1) is
equal to 1+(2/3m2) and for the one between the curves
passing through P2 (zone 2) is equal to 1 − (7/12m2).
Figure 7 shows the area of unstable zone for r = 2.
The area of zone (1) decreases rapidly, for m < 1
and then approaches unity as m increases. The area
of zone (2) will be equal to zero at m = √

7/12. For

r �= 2 (figures 4b, 4d and 4f) the area of unstable zone
between the curves passing through P1 is unity and
for the one between the curves passing through P2 is
equal to 1 + (1/3m2r2). So the area of unstable zone
approaches unity as m and r increase.

The transition curves of Case 3 (eqs (34)), is shown
in figure 8 for different values of m and a. For non-
linear Mathieu equation, the transition curves not only
depend on m but also a, the amplitude of response
which is determined by initial conditions. With respect
to eqs (32)–(34), along the transition curves, the peri-
odicity of solutions is 2π/m or 8π/m. The left curves

(a) m=1, a=0.1 (b) m=1, a=1

(c) m=2, a=0.1 (d) m=2, a=1

(e) m=5, a=0.1 (f) m=5, a=1

Figure 8. Transition curves of (d2y/dt2) + δy + 2ε cos(mt)(y + y3) = 0.
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passing through P1 in figures 8a–8d, represent the
cosine periodic solutions and the right curves represent
the sine solution. However, along the curves passing
through P2, the solutions are combinations of sine and
cosine.

For special parameters located on transition curves,
for example m = 5, ε = 0.01 and δ = 6.2399 (cal-
culated by the second equation of (34)), the periodic
solution is determined by numerical and homotopy
methods in which y = y0 + y1. Figure 9 shows the
periodic solutions.

Figure 10 shows the trajectory in phase plane for
eq. (30) when m = 5, ε = 0.1 and δ = 6.25. The

Figure 9. Periodic solution of eq. (30), m = 5, a = 0.1,
ε = 0.01.

Figure 10. Unstable solution of eq. (30), m = 5, a = 0.1,
ε = 0.1, δ = 6.25.

selected parameters are located on the unstable zone in
figure 8e and the solutions are calculated numerically.

Using the first two equations of (34), the area of
unstable zone between the curves passing through P1 :
((m/2)2, 0) will be equal to

A3(p1) =
∫ 1

0
|δ1(ε) − δ2(ε)| dε

=
∫ 1

0
2ε(1 + a2) dε = 1 + a2. (37)

So increasing a leads to increasing unstable zone
area. Similarly, using the first two equations of (34),
the area of unstable zone between the curves passing
through P2 : ((m/4)2, 0) can be calculated as

A3(p2) =
∫ 1

0
|δ1(ε) − δ2(ε)| dε

=
∫ 1

0

3a2ε

4
−

(
16a2 + 219a4

8

)
ε2

2m2
dε

= 3a2

8
− 1

m2

(
8a2

3
+ 73a4

16

)
. (38)

The area will be equal to zero at m = √
((73a2/6)+1).

Figure 11 shows the area vs. m for different values of a.
If the frequency of excitation term is equal to m,

the transition curves of the linear equation (Case 1)
start at (δ, ε) = ((m/2)2k2, 0). For the linear equa-
tion with two excitation terms (Case 2), they start at
((m/2)2k2, 0) and ((rm/2)2k2, 0) and for nonlinear
equation (Case 3), they start at ((m/4)2k2, 0). For lin-
ear equations, the area of unstable zones approaches
unity as excitation term increases. However, for non-
linear equation it depends on a and increases with
amplitude.

Figure 11. The area of unstable zone (start at P2) for
different values of a (nonlinear Mathieu equation).
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5. Conclusion

In this paper, the stable and unstable zones of Mathieu
equation are determined using the homotopy pertur-
bation method. The transition curves are determined
for three cases of linear and nonlinear equations. For
linear equation, the locus of curves depends on the
frequency of exciting term. However, for nonlinear
equation, it depends also on the initial condition or
amplitude of response. The area of unstable zone
increases with increasing a. For linear equations, the
transition curve starts at m/2 (half frequency of exci-
tation term). However, for nonlinear equation, it starts
at m/4.
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