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Abstract. Recurrence networks are complex networks constructed from the time series of chaotic dynamical
systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the
topology of every recurrence network unique with the degree distribution determined by the probability density
variations of the representative attractor from which it is constructed. Here we numerically investigate the proper-
ties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures
and show how the recurrence networks are different from random and scale-free networks. In particular, we show
that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to
the time series and into the classical random graphs by increasing the range of interaction to the system size.
We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in
capturing the small changes in the network characteristics.
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1. Introduction

Recurrence networks (RN) are complex networks con-
structed from the time series of dynamical systems
utilizing the specific property of recurrence [1]. They
are found to be especially useful for the analysis of
chaotic systems because the structural and topologi-
cal properties of the underlying chaotic attractor can be
characterized by the statistical measures from the RN
[2,3]. Over the last one decade, nonlinear time series
analysis based on net theoretic measures has developed
into a major field, complimentary to conventional non-
linear time series analysis, with diverse applications
ranging from identifying extreme events [4] and sud-
den transitions in dynamical systems [5] to detecting
epileptic states [6] and for studying multiphase fluid
flow [7].

The construction of the RN requires time-delay
embedding [8] of the scalar time series s(1), s(2), . . .,
s(NT) in an M-dimensional space using a suitable time
delay τ , where NT is the total number of points in the

time series. The procedure creates N = NT−(M−1)τ

state vectors in the reconstructed space representing the
attractor. For the choice of τ , we stick to the crite-
rion commonly used, namely the first minimum of the
autocorrelation function.

To construct the RN, every point on the attractor is
considered as a node. A reference node ı is consid-
ered to be connected to another node j if the distance
between their representative points on the recon-
structed attractor is less than or equal to a recurrence
threshold ε. The resulting complex network is the RN.
If two nodes ı and j are connected, the ıj th element
Rij of the recurrence matrix R is 1 and otherwise it is
0. The adjacency matrix A of the RN is obtained by
removing the self-loop from R:

A ≡ R − I. (1)

Note that by construction, A is a binary symmet-
ric matrix with elements 0 or 1 because the RN is
unweighted and undirected.

The value of the critical threshold εc used for the
construction of the RN depends on the size of the
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attractor. To get approximately the same range of εc
for different chaotic systems for comparison of the net-
work measures, we first transform the time series to
a uniform deviate so that the size of the reconstructed
attractor is confined to a unit cube [0, 1]M after embed-
ding. It is not a trivial rescaling transformation and we
have already shown how important the uniform deviate
transformation is in computing conventional nonlinear
measures like correlation dimension D2 [9], especially
from higher-dimensional systems [10]. The critical
value εc is chosen as the value of ε at which a giant
component for the RN appears as suggested by Donges
et al [11] and Eroglu et al [12].

As an example, we show the construction of RN
from the standard Rössler attractor in figure 1. The left
panel shows the time series and the embedded attrac-
tor with M = 3 and the right panel shows the RN and
the degree distribution P(k) vs. k which is a probabil-
ity distribution of the number of nodes n(k) having a
degree k. The error bar in the degree distribution is the
statistical error arising out of the finiteness in the num-
ber of nodes and is given by

√
n(k)/N and becomes

normalized as 1/N if n(k) → 0. The colour gradient
on the RN is based on the degree of nodes. We use the
Gephi software (https://gephi.org/) for the graphical
representation of the network.

Note that, by construction, all the RNs satisfy two
important properties. Firstly, every node in a RN is
connected only to nodes within a threshold value and
long-range connections are absent in the RN. Hence,
RNs can be considered as spatially constrained net-
works [13,14] analogous to random geometric graphs
(RGG) which are RGs with a metric where each of
the N vertices is assigned random coordinates in a

Figure 1. The construction of the RN from the time series
of the standard Rössler attractor using the x-component with
time step �t = 0.05 and delay τ = 24. The time series and
the embedded attractor are shown in the left panel while the
RN and its degree distribution are shown in the right panel.

box [0, 1]M and vertices only within a finite range are
connected by an edge [15]. Because of the average con-
nectivity, the degree distribution of RGG is close to a
Poissonian and as the range of interaction approaches
the system size, the RGG tends to the classical RG [15].
We show below that RNs are much richer in proper-
ties compared to RGG and all RNs can make a smooth
transition to RGG under some limiting conditions.

Secondly, the local probability density of the invari-
ant measure of the attractor is mapped on to the local
connectivity of the RN [14]. Consequently, the local

Figure 2. The networks shown in the top panel are the
RNs, one computed from the time series of the standard
Rössler attractor on the left and the other from random time
series. The networks in the bottom panel are a synthetic SF
network (on the left) with γ = 2.45 generated using the
Barabasi scheme and a typical RG with connection proba-
bility p = 0.0035. All the networks consist of 2000 nodes.
The degree distribution of each network is also shown on
top of each network. The colour grading is based on the
degree of nodes and is common to the network and the dis-
tribution. The RG is so chosen that its degree distribution
almost exactly coincides with that of the RN from random
time series. Note that the maximum value of degree (kmax)

in the RN of Rössler attractor is greater than that of the hubs
in the SF network.
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clustering of nodes is a manifestation of the probabil-
ity density variations over the attractor [13] which in
turn, is characteristic of the structure of the attractor.
In this paper, we numerically show how the RNs are
different from the SF and random networks in terms of
the basic network measures. Our main results are given
in the next section and conclusions are drawn in §3.

2. Comparison with random and scale-free
networks

Two topologies of complex networks have been widely
discussed in the literature for the development of
theoretical ideas as well as practical applications: the
random topology and the scale-free topology. The
mathematical basis for the analysis of complex net-
works was laid many years back by Erdős and Rényi
[16] using the so-called random graphs (RG). Here,
there is a constant and random probability for two
nodes being connected and hence for large number of
nodes N , the degree distribution tends to be Poissonian.

The recent surge of interest in complex networks is
due to the discovery [17,18] that the networks corre-
sponding to many real-world interactions, be it com-
municative [19] or social [20], deviate from the random
topology and show scale invariance. The characteristic
feature of such scale-free (SF) networks is the presence
of a small number of hubs or nodes with very large
degree. Such networks evolve through a preferential
attachment [17] of nodes and their degree distribution
follows a power law P(k) ∝ k−γ , with the value of the
scaling index γ falling between 2 and 3.

To compute the network measures, we first construct
an ensemble of synthetic networks, both random and
scale-free. We use the basic scheme provided in the
website www.barabasilab.com for the construction of

Figure 3. The cumulative degree distribution of E–R net-
works with different p values along with that of random RN
(squares connected by solid line), which coincides with E–R
network for p = 0.0035. In all the cases, N = 2000.

SF networks [21]. We also use two undirected and
unweighted SF networks from the real world, namely,
the metabolic network of yeast and the protein interac-
tion network, for this comparative study. These are
obtained from the websites: math.mist.gov/Rpozo/

complex-datasets.html and www3.nd.edu/networks/
resources.html. Networks with mainly N = 2000 or
more are used for the analysis.

In figure 2, we compare the RN with networks from
other classes along with their degree distributions. We
choose the standard Rössler attractor as the prototype
for the RN and a typical SF network with γ = 2.45.
RN from a random time series is also constructed using
M = 3 whose degree distribution is Poissonian with
〈k〉 ≈ 7. We show the RG with p = 0.0035 to make
〈k〉 equal to that of the RN.

From the figure, it is clear that the degree distribu-
tion of the RN from random time series and the RG
with the given specification are almost identical. We
have also computed the degree distribution of the RGG
in three dimensions with the interaction range limited
by the threshold εc = 0.1, which coincides exactly with
that of RN. Thus, the three distributions are found to
be identical. However, we shall show that the classi-
cal RG deviates and is completely different from the
RN and RGG in terms of the other network measures.
Comparing the RN with the SF network, the differ-
ence in the degree distributions is obvious. The k values
of the RN vary over a wide range determined by the
local probability density variations over the attractor.
Due to this correlation, the topology of the RN closely

Figure 4. Comparison of two SF networks and their dis-
tributions with the same value of γ = 2.49, but having
different values for kmin. As kmin increases, the range of
k values increases correspondingly and nodes with much
higher k values are present to maintain the same γ . In both
cases, N = 2000.
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resembles that of the embedded attractor, with nodes
corresponding to regions of high probability density in
the attractor having higher degree in the RN and vice
versa.

To compare the degree distribution, it is more conve-
nient to use the cumulative degree distribution which
is extensively used [22] to study the trend in the
distribution. It is given by

F(k) =
kmax∑

k′=k

P (k′) (2)

plotted as a function of k. In figure 3, we plot F(k)

vs. k in a log–log scale for RNs from random time
series along with that for RGs for p values varying
from 0.002 to 0.05. The graph for RN coincides with
that of E-R network (RG) with p = 0.0035.

In the case of SF networks, the characteristics of the
network depend on two factors, the scaling index γ and
the minimum value of the degree kmin in the network.
If kmin is increased keeping γ fixed, the range of k val-
ues and hence kmax should increase correspondingly to
keep γ constant. This may also change the tree struc-
ture appearance of the SF network. For example, two
SF networks with identical γ and different kmin are
compared in figure 4 along with the degree distribu-
tion. Note that the network with kmin = 5 has a much
longer range of k values and appears to have a random
topology. Thus, for a complex network that may appear
random, the SF property and the power law may exist
for an intermediate range of k values. The characteris-
tics of SF networks can be changed either by changing
γ or by changing kmin.

To get a comparison between different networks, we
plot the cumulative degree distributions of the RNs
from several standard chaotic time series with that of
an E–R network, a synthetic SF network and a real-
world network. The number of nodes used is 5000 for

Figure 5. Comparison of the cumulative distribution of
networks with different topologies with that of RNs from
standard chaotic attractors, with N = 2000.

all synthetic networks. To construct the RN, the natural
dimension of the attractor is used, namely, M = 3 for
continuous systems and M = 2 for maps. The results
are shown in figure 5. The position where F(k) drops
from the steady value follows a pattern in accordance
with the dimension D2 of the attractor. This position
is determined by the average degree 〈k〉 which, in turn,
corresponds to the average correlation sum CM(εc) in
the conventional scaling. Its value scales inversely with
the dimension of the attractor for a given N [13].

We now show that this structural information and
topology of the RN can be disrupted by adding ran-
dom noise. If the amount of noise becomes sufficiently

Figure 6. The influence of white noise on the topology of
the RN from a chaotic attractor. The noise destroys the
recurrence of the trajectory points and the RN tends towards
that from random time series. The top panel shows the RN
from the Rössler attractor added with 4% of noise while the
bottom panel shows the same with 50% noise. The spectrum
of k values for the two networks are also shown.
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high, the RN loses the characteristic structural informa-
tion of the attractor. To show this, we construct the RN
by adding different percentages of white noise to the
time series from the Rössler attractor. In figure 6, we
present RNs corresponding to two different noise lev-
els, namely, 4% (SNR 25) and 50% (SNR 2). We find
that the RN preserves some information of the chaotic
attractor for small and moderate amount of noise addi-
tion. As the noise level reaches 50%, the topology and
the degree distribution become close to that of random
time series or RGG. This is shown explicitly in figure 7
where the degree distributions of the two RNs shown
in the previous figure are plotted along with that of
the random time series. For clarity, the spectrum of

Figure 7. Comparison of the degree distribution of the two
recurrence networks shown in the previous figure. As the
noise level increases, the degree distribution tends towards
Poissonian and the spectrum of k values shrinks. The degree
distribution and the k-spectrum for the RN from the random
time series are also shown in both cases.

k values are also shown below each distribution. Thus,
all RNs eventually make a smooth transition to RGG
as the noise level reaches 50% or more.

Apart from the degree distribution, two other impor-
tant measures of a complex network are the cluster-
ing coefficient (CC) and the characteristic path length
(CPL). Suppose two nodes ı and j are connected
directly to the node k. Then the CC of the node k,
ck , is the probability that the nodes ı and j themselves
are connected. The average over all ck in the network
is the CC of the network. The CPL denoted by 〈l〉 is
the average of the shortest path length ls for all pairs of
nodes (ı, j) in the network. The equations for comput-
ing both CC and CPL are well known in the literature
[23,24].

We use a combined CPL–CC plot to present our
results of computations of CPL and CC. We find that
this plot is very sensitive to small changes in the net-
work. In figure 8, we show how random noise affects
the CPL and CC values of the RN from a chaotic attrac-
tor. As expected, the values tend towards that of the
RN from white noise as the noise level increases. The
values of RGG coincide exactly with that of the white
noise and hence are not shown.

The CPL and CC values of the RN from random
time series are compared with that of E–R networks
with different p values in figure 9 for N = 2000. Note
that the RN is completely different from the RGs with
respect to CPL and CC. Specifically, the position of
E–R network with p = 0.0035, whose degree distribution
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Figure 8. CPL–CC graph showing how addition of ran-
dom noise affects the two measures for RN from the stan-
dard Lorenz attractor. The values for RN from pure random
noise are also shown.
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coincides exactly with that of RN, is much different in
terms of CPL and CC. The values for N = 5000 for
the two networks are also shown in the figure. The rea-
son for this difference is that the nodes in the RN are
connected only locally within a threshold and any long-
range connections are missing in contrast to RG where
the effect of the metric is absent.

We now compare the same results with the values of
SF networks in figure 10. In the top panel, we show the
values of different synthetic SF networks with the value
of γ fixed and changing kmin while in the bottom panel
vice versa. The values for RG with p = 0.0035 are also
added. Though SF networks and RGs represent two

Figure 9. Comparison of CPL–CC values of random RN
with that of RGs for various p values for N = 2000. The
values for N = 5000 are shown (arrow mark) for RN and
RG with p = 0.0035 whose degree distribution coincide
exactly.

Figure 10. The top panel shows CPL–CC graphs for dif-
ferent synthetic SF networks with γ fixed at 2.49 and
different kmin while the bottom panel shows the same for
kmin fixed at 2 and different γ . In both cases, the values for
random RN and the RG with p = 0.0035 are also included
for comparison with N = 2000 in all the cases.

different topologies, their CPL and CC values can be
made exactly the same by adjusting the parameters of
both. Note that while CPL is a global measure, CC is a
local measure and the combined CPL–CC plot can give
both local and global characteristics of the network.
Thus, combining the results from CPL–CC plot and the
statistical measure of the degree distribution can pro-
vide complete information regarding the network. Two
unweighted and undirected complex networks of equal
number of nodes can be considered to be identical only
if both the degree distribution and the CPL–CC values
match exactly. In figure 11, we present the CPL–CC
values of RNs from several standard chaotic attractors
along with the values for two synthetic SF networks,
two real-world SF networks and an RG. The results do
not change much even if the number of nodes N is
increased as the values saturate quickly. The figure
clearly shows how the RNs are different from random
and scale-free networks with respect to the two basic
network measures. It is also clear that the RNs cannot
display the small-world property as their CPL remains
always >6.

Finally, we show that all the RNs can be changed
into random topology by adjusting the threshold ε and
they cross over to the classical RG if the range of inter-
action is increased to the system size. For the optimum
RN (the one constructed with critical threshold εc) that
characterizes the statistical properties of the chaotic
attractor, the range of interaction is limited by the
recurrence threshold εc. If the value of ε is increased,
its characteristic properties are lost and it is found that
all RNs smoothly cross over to RG with degree dis-
tribution tending to Poissonian and CPL → 1. This is
shown in figure 12 for the RN from Lorenz and random
time series. In the figure, both CC and CPL are plotted
as a function of ε. As ε → 1 (the size of the attractor),
all RNs make a smooth transition to RG with CPL and
CC → 1 and degree distribution tending to Poissonian.

Figure 11. The CPL–CC graph for RN from several stan-
dard chaotic attractors, two-real world SF networks (protein
and yeast), two synthetic SF networks and a RG.
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Figure 12. The figure shows the transition of RN to clas-
sical RG as the range of interaction ε is increased. As the
value of the threshold ε tends to the size of the attractor, all
RNs tend to classical RG with CPL and CC → 1.

It should also be mentioned here that similar results
have been reported earlier in the case of planar net-
works as well. For example, Barthelemy [25] has
proved similar results in the case of spatial networks
on a plane, such as, communication and transportation
networks. He has shown that the spatial effects become
negligible and the networks tend to show SF property
when the interaction range between the nodes is of the
order of the system size or larger. He has also pro-
posed scaling relations for this cross over for different
quantities representing the network.

3. Conclusion

Networks are, in general, abstract mathematical entities
that represent some complex interactions or connec-
tions in the real world. The properties of the underlying
interactions are assumed to be reflected in the rep-
resentative networks. From a quantitative analysis of
the networks, one aims to unravel the characteristic
features of the underlying structure and interactions.
For example, the SF networks represent many com-
plex interactions whose characteristic property is the
scale invariance. Similarly, RNs are also representative
of some natural processes, albeit, modelled by nonlin-
ear dynamical systems. In the case of a chaotic system,
the RN represents a complex distribution of trajectory
points in phase space with self-similar fractal structure
characteristic of a chaotic attractor.

In this paper, we compare the characteristic mea-
sures derived from the RNs of several standard chaotic
attractors with that of real-world networks having
either random or scale-free topology. The main motiva-
tion for this comparative study is a better understanding
of the properties of RN from a complex network point
of view. We find that the combined CPL–CC plot is
very effective in capturing small changes in the net-
work characteristics. Our numerical results indicate
that the optimum RN is basically different from both
RG and SF networks with respect to the degree dis-
tribution, CC and CPL. Since a reference node is
connected only to nodes locally in the RN, the network
topology closely follows that of the embedded attrac-
tor and the degree distribution reflects the probability
density variations over the attractor. The absence of
long-range connections also guarantees that the CPL of
the optimum RNs are quite high compared to RG and
SF networks. Due to the recurrence of the trajectory
points as the dynamical system evolves, an increase in
the number of nodes N correspondingly increase the
average local connectivity 〈k〉 making the CPL to get
saturated for large N . However, as the range of con-
nectivity approaches the system size, all RNs smoothly
cross over to RG with degree distribution tending to
Poissonian and both CPL and CC → 1, independent
of N .

We have also numerically investigated the effect of
random noise contamination of the time series on the
measures of the RN. As the noise level increases,
the measures approach that of random time series. We
have found that increasing the range of interaction
between nodes and adding noise to the attractor have
different effects on the RN. While the former trans-
forms all RNs eventually to classical RG, the effect of
the latter is to disrupt the local clustering, making all
RNs tending to RGG.
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