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Abstract. The nonlinear propagation of cylindrical and spherical dust-ion-acoustic (DIA) envelope solitary
waves in unmagnetized dusty plasma consisting of dust particles with opposite polarity and non-extensive distri-
bution of electron is investigated. By using the reductive perturbation method, the modified nonlinear Schrödinger
(NLS) equation in cylindrical and spherical geometry is obtained. The modulational instability (MI) of DIA waves
governed by the NLS equation is also presented. The effects of different ranges of the non-extensive parameter q
on the MI are studied. The growth rate of the MI is also given for different values of q. It is found that the basic
features of the DIA waves are significantly modified by non-extensive electron distribution, polarity of the net
dust-charge number density and non-planar geometry.
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1. Introduction

The existence of novel dust-ion-acoustic (DIA) waves
was first predicted by Shukla and Silin about twenty
years ago [1]. Nearly four years later, their prediction
was experimentally verified by Barkan et al [2]. The
linear features of the DIA waves have been rigorously
investigated by a number of researchers [3–5]. Dur-
ing the last two decades, the propagation of nonlinear
dust-acoustic solitary waves and DIA solitary waves,
in dusty plasma with an unbounded planar geometry
has been extensively studied theoretically [6–12]. It
has been found from both experimental observation
[13,14] and theoretical analysis [15,16] that the pres-
ence of non-thermal (fast) electrons, which occur in
many space plasma situation, particularly in the part
of ionosphere or lower part of magnetosphere [17,18],
significantly modifies the basic features of DIA waves
or introduce new features in them. A few theoretical
investigations have been made on DIA waves in dusty
plasma containing negative-dust inertial ions and non-
thermal electrons. Tribeche and Berbi [15] extended

the work of Mamun and Shukla [8] to include the effect
of non-thermal electron distribution on one-dimensional
(1D) planar DIA solitary wave and shock. Xue [16]
considered non-planar cylindrical and spherical geo-
metries and examined the interaction between the com-
pressive and rarefactive DIA waves. It has also been
found that in some space environments (viz. upper part
of the ionosphere or lower part of the magnetosphere),
where dust number density varies from 10 to 100 cm−3

and dust size varies from 1 to 10 μm, particles are
positively charged [19–25]. In this article, we consider
a more general dusty plasma system containing elec-
trons following non-thermal distribution, inertial ions,
stationary dust of opposite polarity (positive dust as
well as negative dust). The nonlinear DIA waves in
cylindrical and spherical geometries are studied.

2. Basic equations

The nonlinear propagation of finite-amplitude non-
planar (cylindrical and spherical) DIA waves in the
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unmagnetized dusty plasma composed of non-extensive
distributed electrons, inertial ions and stationary posi-
tively as well as negatively charged dust is consi-
dered. The usual ion fluid equations, which include the
continuity equation, momentum balance equation and
Poisson equation, governing the DIA waves in cylin-
drical or spherical geometry are

∂ni

∂t
+ 1

rm

∂(rmniui)
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= 0, (1)

∂ui
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(
rm ∂φ
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)
= (1 + sα)ne − ni − sα, (3)

where m = 0, 1, 2 are for one-dimensional planar,
cylindrical and spherical geometries, respectively. The
positive (negative) dust number density at equilibrium
is np (nn) and zp (zn) is the number of excess protons
(electrons) residing on the surface of the dust grain.
The parameter s represents the polarity of the net dust
charge (i.e. s = 1 for zpnp > znnn and s = −1 for
znnn > zpnp). The ion number density ni, the ion fluid
velocity ui, the electron number density ne and the
electrostatic potential φ are normalized by the equilib-
rium density value of ions ni0, the ion-acoustic velocity
Ci = √

Te/mi (mi is the ion mass), the equilibrium
density value of electrons ne0 and by Te/e (Te is the
electron temperature in units of Boltzmann constant),
respectively. The time and space variables are in units
of ion plasma period ω−1

pe = (mi/4πni0e
2)1/2 and the

Debye length λD = (Te/4πni0e
2)1/2 respectively.

To take into account the non-extensive distribution
of electrons, we use the following distribution function
[26]:

Fe(ve) = Cq

[
1 + (1 − q)

(
meve

2Te
− eφ

Te

)]1/(q−1)

,

(4)

where q is the parameter that measures the strength of
non-extensivity. It may be noted that the function Fe(ve)

is the particular distribution that maximizes the Tsallis
entropy. The normalization constant Cq is given by

Cq = ne0
�(1/(1 − q))

�(1/(1 − q) − (1/2))

√
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2πTe
,

for −1 < q < 1, (5)

Cq = ne0
(q + 1)
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me(1 − q)

2πTe
,

for q > 1, (6)

and for q < −1, the q-distribution is unnormalizable.
The distribution function becomes the well-known
Maxwell–Boltzmann velocity distribution in the lim-
iting case q→1. It is important to note further that
q > 1 exhibits a thermal cut-off on the maximum value
allowed for the electron speed. The latter is given by

vmax =
√

2Te

me

(
eφ

Te
+ 1

q − 1

)
. (7)

By integrating the q-distribution over the allowed
velocity space, one may obtain the dimensionless elec-
tron number density as

ne = [1 + (q − 1)](q+1)/2(q−1). (8)

The electron density eq. (8) may be expanded as a
power of φ

ne = [1 + C1φ + C2φ
2 + C3φ

3 + · · ·], (9)

where

C1 = (q + 1)/2, C2 = (q + 1)(q − 3)/8,

C3 = (q + 1)(q − 3)(3q − 5)/48.

Substituting eq. (9) into eq. (3), and expand up to third
order we get

1

rm

∂

∂r

(
rm ∂φ

∂r

)
= (1 + αs)

× [1 + C1φ + C2φ
3 + C3φ

3] − ni − αs. (10)

In order to investigate the modulation of DIA waves
in the dusty plasma, we employ the standard reductive
perturbation technique to obtain the appropriate non-
linear Schrödinger equation (NLSE). The independent
variables are stretched as

ξ = ε(r − vgt), (11)

τ = ε2t, (12)

where ε is a small parameter and vg is the group veloc-
ity of the wave. The dependent variables are expanded
as

ni = 1+
∞∑

n=1

εn
∞∑
l=0

(nnl exp[il(kr −ωt)]+ c.c.), (13)

ui =
∞∑

n=1

εn
∞∑
l=0

(unl exp[il(kr − ωt)] + c.c.), (14)

φ =
∞∑

n=1

εn

∞∑
l=0

(φnl exp[il(kr − ωt)] + c.c.), (15)

where all variables satisfy the reality condition A−l =
A∗

l , and the asterisk denotes complex conjugate. Sub-
stituting expressions (11)–(15) into eqs (1)–(3) and
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collecting the terms in different powers of ε we obtain
each nth-order of reduced equation. For the first power
of ε

n11 = k

ω
u11, (16)

u11 = k

ω
φ11, (17)

[k2 + (1 + αs)C1]φ11 = n11. (18)

Thus, we obtain the following dispersion relation for
DIA waves:

ω2 = k2

k2 + (1 + αs)C1
. (19)

It is obvious that the phase velocity is significantly
increased by the presence of non-thermal electron (the
parameter C1) and that is decreased when the net dust-
charge number density is positive (s = 1), but it is
increased when the net dust-charge number density is
negative (s = −1). Figures 1 and 2 show the disper-
sion relations of DIA waves propagated in negative
and positive dust particles for different values of q.
The normalized frequency ω increases by increasing
k, and the frequency is shifted towards lower values
as q→1, i.e., for Maxwell–Boltzmann distribution of
the electrons. Thus, deviation from the Maxwellian
distribution appears to increase the energy of the wave.

Up to the second power of ε, the group velocity can
be obtained, which is compatible with the dispersion
relation

vg = [(1 + αs)C1]

(
k

ω

)3

. (20)
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Figure 1. The normalized frequency as a function of the
normalized wave number for negative polarity (s = −1).
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Figure 2. The normalized frequency as a function of the
normalized wave number for positive polarity (s = +1).

The group velocities as a function of wave number for
different values of q are plotted in figures 3 and 4.
These figures show that the group velocities for dif-
ferent polarities are very different. Also, the following
differential equations come from the second order of ε

−iωn21 + iku21 + ∂u11

∂ξ
− vg

∂n11

∂ξ
= 0, (21)

−iωu21 + ikφ21 = vg
∂u11

∂ξ
− ∂φ11

∂ξ
, (22)

n21 − [(1 + δs)C1 + k2]φ21 = −2ik
∂φ11

∂ξ
. (23)
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Figure 3. The group velocity as a function of wave number
for negative polarity (s = −1).
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Figure 4. The group velocity as a function of wave number
for positive polarity (s = +1).

Using the second order with n = 2, l = 2, n = 2, l = 0
and the third order with n = 3, l = 1, we obtain the
following nonlinear Schrödinger equation for the first
term of the potential:

i
∂φ11

∂τ
+ m

2τ
φ11 + P

∂2φ11

∂ξ2
+ Qφ11 |φ11|2 = 0, (24)

where

P = − vg
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]
, (25)
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(26)

The coefficients B are defined in Appendix. The term
m/2τ in eq. (24) represents the cylindrical and spheri-
cal geometry effects.

3. Modulational instability

We analyse the MI of DIA waves described by the NLS
equation (24), by developing a small modulation δφ

according to

φ11 = [φ̄0 + δφ(τ, ξ)] exp

{
− i

∫ τ

τ0


(τ ′)dτ ′ −m/2 lnτ

}
.

(27)

The constant and real φ0 is the amplitude of the pump
carrier wave and 
 is a nonlinear frequency shift.
Assume the perturbation δφ to be of the form

δφ = δφ0 exp

[
−i

(
Kξ −

∫ τ

τ0

�(τ ′)dτ ′
)]

+ c.c.

(
Kξ −

∫ τ

τ0

�(τ ′)dτ ′
)

, (28)

where K and � in the modulation phase are the wave
number and frequency of the modulation, respectively.
Substituting expressions (27) and (28) in NLS equation
(24), one obtains the nonlinear dispersion relation [9].

�2 = (PK2)2
(

1 − K2
c

K2

)
, (29)

where

K2
c = Q/P(2|φ̄0|2/τm).

Further, from eq. (29) in the region PQ > 0 and for
K2 ≤ K2

c (τ ), the local instability growth rate is given
by

� = Im �(τ) = PK2
(

Q

P
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)1/2

. (30)

That is, the instability growth will cease for cylindrical
geometry when

τ ≥ τmax =
(

2Q|φ̄0|2
PK2

)1/m

, (31)

where m = 1, 2 are for cylindrical and spherical geome-
tries. There is a new condition of MI in the dusty
plasma with non-adiabatic dust charge variations.
Equation (31) indicates that the instability period is
proportional to the pump carrier wave amplitude φ0
and nonlinearity Q, but inversely proportional to the
modulation wave number K and the dispersion P . The
total growth of the modulation during the unstable
period is defined as

� = exp(G), (32)

G =
∫ τmax

τ0

Im �(τ ′)dτ ′ = Q|φ̄0|2
τm−1

0

f (R), (33)

where

R = (|φ̄0|2/τm
0 )(Q/P )1/K2 ≥ 1,

for cylindrical geometry and

f (R) = arctan
√

R − 1 −
√

R − 1

R
(34)
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Figure 5. Variation of the function f (R) vs. R.

and for spherical geometry

f (R) = 1

R

[√
R ln

√
R + √

R − 1√
R − √

R − 1
− 2

√
R − 1

]
.

(35)

Equation (34) shows that f (R) is an increasing func-
tion of R and f (R)→π/2 as R→∞. This means
that during the MI period, the total modulation growth
exp(G) increases as R does for cylindrical case, but for
spherical geometry the function in eq. (35) indicates
that f (R) has a maximum value at R = Rc, i.e.

max f (Rc) = 2
√

Rc − 1

Rc

, (36)

where Rc is determined by the following relation:√
Rc ln

√
Rc + √

Rc − 1√
Rc − √

Rc − 1
= 4

√
Rc − 1. (37)
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Figure 6. Variation of P/Q with the carrier wave number
k for different values of q, the non-extensive parameter, for
negative polarity (s = −1).
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Figure 7. Variation of P/Q with the carrier wave number
k for different values of q, the non-extensive parameter, for
positive polarity (s = +1).

Figure 5 illustrates the curves of f (R) for both eqs (34)
and (35). It should be noted that the modulation insta-
bility period given by (31) for cylindrical geometry
m = 1 is longer than that determined for spherical
geometry, m = 2. During the unstable period, the mod-
ulation instability growth rate is always an increasing
function of R in cylindrical geometry but not in spher-
ical geometry. This suggests that spherical waves are
more structurally stable to perturbations than cylindri-
cal waves, which is also found in Korteweg–de Vries
(KdV) solitons. The above discussions also show that
the MI becomes a possible limiting factor for coher-
ent transmission in cylindrical and spherical dusty
plasmas.

The signs of parameters P and Q are important for
understanding the physics of solitary waves and insta-
bility. We have modulational instability if PQ > 0 and
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Figure 8. The growth rate � as a function of K for differ-
ent values of q for cylindrical geometry and positive dust
(s = +1).



15 Page 6 of 7 Pramana – J. Phys. (2017) 88: 15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

Γ

 q= 0
q=0.4
q= 1

 Dust Negative (s= −1), 
Cylindrical Geometry

Figure 9. The growth rate � as a function of K for differ-
ent values of q for cylindrical geometry and negative dust
(s = −1).
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Figure 10. The growth rate � as a function of K for dif-
ferent values of q for spherical geometry and positive dust
(s = +1).

K ≤ Kc. Our analysis shows that the coefficient P

is always negative, but Q can be negative or positive.
Apparently, the coefficients of dispersion term P and
nonlinear term Q are related to the values of k, q, s. To
investigate the effect of parameters in more detail, we
plot the ratio of P/Q vs. the carrier wave number k for
different parameters in figures 6 and 7. In these figures,
Q = 0 corresponds to zero dispersion point leading to
P/Q → ±∞. It is observed from the graphs that the
wave remains stable at large wave number K > Kc or
when PQ < 0.

For more information about the nature of MI, we
have plotted growth rate � as a function of K for three
different values of non-extensive parameter q for cylin-
drical and spherical geometries of the NLS equation.
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Figure 11. The growth rate � as a function of K for dif-
ferent values of q for spherical geometry and negative dust
(s = −1).

Although the general trend between Maxwellian dis-
tribution of electrons and non-extensive distribution is
similar, but results in figures 8–11 show difference in
magnitude of growth rate between them and clearly,
the magnitude of growth is different for cylindrical and
spherical geometries. Another aspect worth noting here
is that the values of maximum growth rate and the cor-
responding K not only decrease with increasing q but
also shift towards lower K value.

4. Conclusion

In summary, a modified NLS equation describing slow
modulation of DIA waves in cylindrical and spherical
dusty plasma composed of non-extensive distributed
electrons, inertial ions and stationary positively as well
as negatively charged dust is derived by the standard
reductive perturbation method. The property of the MI
in non-planar geometry differs from that of the pla-
nar waves. The effects of the non-extensive parameter
q, dust polarity s and geometry on the instability and
growth rate are investigated. A critical threshold mod-
ulation wave number to establish the MI in non-planar
case existed. For cylindrical and spherical DIA waves,
this critical wave number is related to τ , the MI period.
The instability threshold is admittedly rather small for
waves in negative dust charge, but seems to be signifi-
cant for waves in positive dust charge. The growth rate
is significantly affected (reduced) by the superthermal
electrons and hence MI can be controlled by the exis-
tence of a long tail in the plasma species distribution.
Our investigation may provide a better understanding
of the nonlinear wave phenomena in laboratory experi-
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ments and in interstellar and spatial observations, where
non-extensive plasma distributions may be present.

Appendix

B2φ = (−3k4/ω2) + (1 + αs)C2

k2 − ω2[4k2 + (1 + αs)C2] ,

B2u = k

ω
B2φ + k3

2ω2
,

B2n = k

ω
B2u + k4

ω4
,

B0φ = 2vg(k
3/ω3) + vg(k

2/ω2) − v2
g(1 + αs)C2

v2
g(1 + αs)C1 − vg

,

B0u = 1

vg

[(
k

ω

)2

+ B0φ

]
,

B0n = (1 + αs)C1B0φ + 2(1 + αs)C2.
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