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Robust control of a class of chaotic and hyperchaotic driven systems
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Abstract. This paper proposes new conditions which are sufficient for robust control of a class of chaotic
and hyperchaotic driven systems. The drive–driven systems are characterized by non-identical uncertain complex
dynamics where complexities are mainly introduced by the switching nature of their vector fields. The con-
troller design is achieved using linear matrix inequalities (LMIs) and the so-called S-procedure and then validated
using two numerical examples. To illustrate the robustness of the proposed approach, a comparative study is also
established with regard to a related approach.

Keywords. Robust control; chaotic drive–driven systems; linear matrix inequalities; norm-bounded
uncertainties.

PACS Nos 89.75.–k; 05.45.Gg; 05.45.Xt

1. Introduction

Over the last decade, discontinuity of vector fields on
dynamical systems had been considered as one of the
main causes of the system’s instability [1]. A well-known
class of systems with discontinuous vector fields is
the piecewise linear (PWL) system’s class. For such
complex dynamics, several research works have been
reported in the framework of control, observer and syn-
chronization design methods (see for example [2–5]
and references therein). Besides, a few research works
are recently devoted to generate chaos and hyper-
chaos dynamics by proposing new PWL systems [6,7].
However, very few results are published on chaos
synchronization for such complex systems [8–10].

Over the past ten years, robust chaos synchroniza-
tion via state feedback control has been widely studied
where some attractive results have been reported using
linear matrix inequality (LMI) tools [11,12]. Different
types of uncertainties such as parametric uncertainties
[13], nonlinear uncertainties [14], randomly occurring
uncertainties [15], unknown uncertainties [16], matched
and unmatched uncertainties [17] etc., are consid-
ered. Nevertheless, to our best knowledge, the problem
of robust chaos synchronization of PWL systems with
norm-bounded uncertainties is still a pending problem.

Motivated by this, we investigate, in this paper,
the robust control of the chaotic PWL drive–driven
systems. The synchronization problem between the
drive and the driven is formulated as a global stabil-
ity problem of synchronization error using a Lyapunov
approach and solved using LMI tools and the well-
known S-procedure. The effectiveness of the proposed
solution will be shown by simulation results using two
numerical examples.

This paper is structured as follows: The control prob-
lem is described in §2. The LMI-sufficient conditions
are designed in §3. In §4, the efficiency of the proposed
approach is illustrated by simulation results on the
well-known Chua’s modified model and a new family
of hyperchaotic multiscroll attractors. A comparative
study is finally organized to show the robustness of the
proposed approach compared to a related one.

2. Problem formulation

Consider the particular class of chaotic PWL drive–driven
systems with norm-bounded uncertainties described by⎧⎨
⎩
ẋ = (Aj +�Aj)x+bj , x∈�j, j ∈ {1, . . . , N}
ż = (Ai+�Ai)z+bi+Bu, z∈�i, i∈ {1, . . . , N}
u = K(z−x) (1a)
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where

�Aj = DjVjEj , �Ai = DiViEi (1b)

are the norm-bounded uncertainties in the state matri-
ces Ai and Aj and x ∈ �n and z ∈ �n are the state
vectors of the drive and the driven systems, respec-
tively. Ai ∈ �n×n, Aj ∈ �n×n, bi ∈ �n and bj ∈ �n

are two constant matrices and two constant vectors,
respectively. B ∈ �n×m and u ∈ �m are the con-
trol matrix and the control vector, respectively. K ∈
�m×n is the state feedback gain matrix. Dj , Vj , Ej and
Di , Vi , Ei are real constant matrices with appropriate
dimensions such that V T

j Vj ≤ I and V T
i Vi ≤ I .

�j and �i are partition of the state-space into
polyhedral cells defined respectively by the following
polytopic description [8]:

�j = {x|HT
j x + hj ≤ 0}, (2a)

�i = {z|HT
i z + hi ≤ 0}, (2b)

where Hj ∈ �n×rj , hj ∈ �rj×1, Hi ∈ �n×ri and
hi ∈ �ri×1.

The objective is to design a control law u and to
choose an appropriate constant matrix B such that the
synchronization error e = z − x → 0 as the time
t → ∞ and the control u is realizable.

3. LMI-sufficient conditions

From (1), the error dynamics between the driven sys-
tem and the drive system can be written as

ė = (Ai + DiViEi + BK)e

+ (Aij + DiViEi − DjVjEj )x + bij , (3)

where e = z − x, Aij = Ai − Aj and bij = bi − bj .

Remark 1. The closed loop system (3) is a contin-
uous PWL system because the drive–driven system
described by (1) is a continuous PWL system.

DEFINITION 1

The drive–driven system (1) is said to be of global
asymptotical synchronization if the synchronization
error system (3) is globally asymptotically stable.

Lemma 1 [18]. Let D and E be real constant matrices
with appropriate dimensions, and matrix V (constant
or time-varying) satisfies V T V ≤ I, then we have:

For any scalar ε > 0, the following inequality is
valid:
DV E + ET V T DT ≤ εDDT + ε−1ET E. (4)

Theorem 1. If a suitable matrix B ∈ �n×m is chosen
such that the pairs (Ai, B) are controllable, for a given
decay α1 > 0 and for all i, j ∈ {1, . . . , N} , if there
exist constant symmetric positive definite matrix S ∈
�n×n, constant matrix R ∈ �m×n, diagonal negative
definite matrices Eij ∈ �ri×ri and Fij ∈ �rj×rj and
strictly negative constants βij and ξij , such that the
following LMIs are satisfied:⎡
⎣ ξij ξij |hi |T ξij |hj |T

∗ 1
2Eij 0

∗ ∗ 1
2Fij

⎤
⎦ < 0, (5)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 Aij SHi 0 �3 �6 SET
i∗ �2 Hi Hj �4 �7 0

∗ ∗ 2Eij 0 0 0 0
∗ ∗ ∗ 2Fij 0 0 0
∗ ∗ ∗ ∗ �5 �8 0
∗ ∗ ∗ ∗ ∗ �9 0
∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (6)

where

�1 = AiS + SAT
i + BR + RT BT + 2DiD

T
i

+DjD
T
j + α1S − ξij bij b

T
ij ,

�2 = βij I + ET
i Ei + ET

j Ej ,

�3 = ξij bij |hi |T − 1

2
SHiMi,

�4 = −1

2
HiMi,

�5 = 1

2
Eij − ξij |hi | |hi |T ,

�6 = ξij bij |hj |T,
�7 = −1

2
HjMj ,

�8 = −ξij |hj ||hj |T,
�9 = 1

2
Fij − ξij |hj ||hj |T.

Then the drive–driven system (1) is globally asymp-
totically stable and the driven control law is given by

u = Ke, (7)

where

K = RS−1. (8)

Proof. Following the methodology borrowed in [8], let
us construct a unique Lyapunov function V(e) = eT Pe
for the PWL error synchronization system (3) where
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P ∈ �n×n is a symmetric positive definite matrix.
Based on the Lyapunov stability theory [19] and for
e 	= 0 and a given decay α1 > 0, the synchronization
error (3) is globally asymptotically stable if

V̇ (e) ≤ − α1V (e). (9)

For any small positive constants 0 < α2 
 1, 0 <

α3 
 1 we can also write [7]

V̇ (e) + α1V (e) − α2x
T x − α3 ≤ 0. (10)

Using the synchronization error dynamics (3) we can
write

V̇ (e) + α1V (e) = eT ((Ai + BK)T P

+ P(Ai + BK) + α1P)e

+ eT ((DiViEi)
T P + P(DiViEi))e

+ bT
ijP e + eT Pbij + xT AT

ijP e

+ eT PAijx

+ xT (DiViEi − DjVjEj )
T P e

+ eT P (DiViEi − DjVjEj )x ≤ 0.

(11)

Using Lemma 1, the following inequalities can be
obtained:

eT ET
i V T

i DT
i P e + eT PDiViEie

≤ eT PDiD
T
i P e + eT ET

i Eie, (12a)

xT ET
i V T

i DT
i P e + eT PDiViEix

≤ eT PDiD
T
i P e + xT ET

i Eix, (12b)

(−1)xT ET
j V T

j DT
j P e + (−1)eT PDjVjEjx

≤ eT PDjD
T
j P e + xT ET

j Ejx (12c)

and then the following inequality can be deduced using
relations (11) and (12):

eT ((Ai + BK)T P + P(Ai + BK) + α1P)e

+ eT PDiD
T
i P e + eT ET

i Eie + bT
ijP e + eT Pbij

+ xT AT
ijP e + eT PAijx + eT PDiD

T
i P e

+ xT ET
i Eix + eT PDjD

T
j P e

+ xT ET
j Ejx ≤ 0. (13)

Using relations (10) and (13), we can write the follow-
ing inequality:

WT F0W ≤ 0, (14)

where

w = [eT xT 1]T
and

�

F0 =
⎡
⎢⎣
(Ai+BK)T P +P(Ai+BK)+α1P +2PDiD

T
i P +PDjD

T
j P +ET

i Ei ∗ ∗
AT

ijP −α2I+ET
i Ei+ET

j Ej ∗
bT
ijP 0 −α3

⎤
⎥⎦

In F0, ∗ denotes the symmetric bloc and I ∈ �n×n

is the identity matrix.
Relying on polytopic expressions (2) of polyhedral

cells and for all column vectors with positive elements
δi ∈ �ri×1, γj ∈ �rj×1 and all small positive constants
satisfying 0 < ζj 
 1 and 0 < σj 
 1, we can write

δT
i
HT

i
z + δT

i
hi ≤ 0 → δT

i
HT

i
e + δT

i
HT

i
x + δT

i
hi ≤ 0

γ T
j HT

j x + γ T
j hj ≤ −ξjx

T x − σj

which could be written as

WT F1W ≤ 0, (15)

WT F2W ≤ 0, (16)

where

F1 =
⎡
⎣ 0 0 ∗

0 0 ∗
δT

i
HT

i δT
i
HT

i 2δT
i
hi

⎤
⎦,

F2 =
⎡
⎣ 0 0 ∗

0 2ξj I ∗
0 γ T

j HT
j 2γ T

j hj + 2σj

⎤
⎦ .

If τ1,ij ≥ 0 and τ2,ij ≥ 0, using the S-procedure lemma
for nonstrict inequalities [20], we can write using the
inequalities (14), (15) and (16) that

F0 − τ1,ijF1 − τ2,ijF2 < 0 (17)
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which can be written as⎡
⎣ φ1 ∗ ∗

AT
ijP φ2 ∗

bT
ijP −τ1,ij δ

T
i HT

i −τ1,ij δ
T
i HT

i −τ2,ij γ
T
j HT

j φ3

⎤
⎦< 0

with

φ1 = (Ai + BK)T P + P(Ai + BK) + α1P

+ 2PDiD
T
i P + PDjD

T
j P + ET

i Ei,

φ2 = − α2I + ET
i Ei + ET

j Ej − 2τ2,ij ξj I,

φ3 = − α3 − 2τ1,ij δ
T
i hi − 2τ2,ij (γ

T
j hj + σj ).

Let

β1,ij = − τ1,ij δ
T
i , β2,ij = − τ2,ij γ

T
i ,

β3,ij = − α2 − 2τ2,ij ξj , β4,ij = − α3 − 2τ2,ij σj

such that

β1,ij (k)
k=1,...,ri

≤ 0, β2,ij (k)
k=1,...,rj

≤ 0, β3,ij ≤ 0

and

β4,ij ≤ 0.

The inequality (17) can be written as

⎡
⎣ φ1 ∗ ∗

AT
ijP β3,ij I + ET

i Ei + ET
j Ej ∗

bT
ijP + βT

1,ijH
T
i βT

1,ijH
T
i + βT

2,ijH
T
j 2βT

1,ij hi + 2βT
2,ij hj + β4,ij

⎤
⎦ < 0, (18)

where

φ1 = (Ai + BK)T P + P(Ai + BK) + α1P

+ 2PDiD
T
i P + PDjD

T
j P + ET

i Ei.

Let

β1,ij = E−1
ij |hi |, β2,ij = F−1

ij |hj |,
hi = Mi |hi |, hj = Mj |hj |

where |hi | ∈ �ri×1 and |hj | ∈ �rj×1 are two column
vectors defined such that

|hq |(k)
k=1,...,rq

= |hq(k)|
k=1,...,rq

, q = i, j

Eij ∈ �ri×ri and Fij ∈ �rj×rj are diagonal negative
definite matrices and Mi ∈ �ri×ri and Mj ∈ �rj×rj

are two diagonal matrices defined as follows:

If hq(k)
k=1,...,rq

≥0, then Mq(k, k) = 1, q = i, j .

If hq(k)
k=1,...,rq

<0, then Mq(k, k) = −1, q = i, j .

Using the Schur complement [20], the bilinear
matrix inequality (18) is satisfied if the following
conditions are verified:

β4,ij + 2|hi |T MiE
−1
ij |hi | + 2|hj |T MjF

−1
ij |hj | < 0

(19)

�1 − �2�
−1�T

2 < 0, (20)

where

�1 =
[

(Ai + BK)T P + P(Ai + BK) + α1P + 2PDiD
T
i P + PDjD

T
j P + ET

i Ei ∗
AT

ijP β3ij I + ET
i Ei + ET

j Ej

]

�2 =
[

Pbij + HiE
−1
ij |hi |

HiE
−1
ij |hi | + HjF

−1
ij |hj |

]
.

Let

� = β4,ij + 2|hi |T MiE
−1
ij |hi | + 2|hj |T MjF

−1
ij |hj |

β4,ij = ξ−1
ij ,

β3,ij = βij ,

� = [ |hi | |hj |
]T

.

We obtain from (20):

� = ξ−1
ij +�T

(
1

2

[
MiEij 0

0 MjFij

])−1

� < 0. (21)

Multiplying (21) by ξ2
ij , assuming that Eij ≤ MiEij ≤

−Eij and Fij ≤ MjFij ≤ −Fij and using the Schur
complement, the LMI criterion (5) is obtained.
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Using the matrix inversion lemma [21], from (21),
we get

�−1 = ξij − ξ2
ij�

T

(
ξij��T + 1

2

[
MiEij 0

0 MjFij

])−1

�.

(22)

Let S = P −1. Multiplying left and right of expression

(20) by
[

S 0
0 I

]
we get

�3 − �4�
−1�T

4 < 0, (23)

where

�3 =
[

SAT
i + RT BT + AiS + BR + 2DiD

T
i + DjD

T
j + SET

i EiS + α1S ∗
AT

ij βij I + ET
i Ei + ET

j Ej

]
,

�4 =
[

bij + SHiE
−1
ij |hi |

HiE
−1
ij |hi | + HjF

−1
ij |hj |

]
.

Substituting (22) in (23), assuming that Eij ≤ MiEij

≤ −Eij and Fij ≤ MjFij ≤ −Fij and using the Schur
complement, the following LMI is obtained via some
transformations:⎡
⎢⎢⎢⎢⎢⎢⎣

� Aij SHj 0 �3 �6
∗ �2 Hi Hi �4 �7
∗ ∗ 2Eij 0 0 0
∗ ∗ ∗ 2Fij 0 0
∗ ∗ ∗ ∗ �5 �8
∗ ∗ ∗ ∗ ∗ �9

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (24)

with

� = SAT
i + RT BT + AiS + BR + 2DiD

T
i + DjD

T
j

+ SET
i EiS + α1S − ξij bij b

T
ij .

Using Schur complement for (24), the LMI criterion
(6) is then obtained.

4. Application

4.1 The chaotic modified Chua’s system

Let us consider the chaotic modified Chua’s system
described by [22]

⎛
⎝ ẋ1 = α(x2 − g(x2))

ẋ2 = x1 − x2 + x3
ẋ3 = −βx2

(25a)

where

g(x1) = bx1 + 1

2
(a − b) (|x1 + c| − |x1 − c|) (25b)

and βm < β < βM is the norm-bounded uncertainty.
This system can be written as the PWL system (1) with

A1 = A3 =
⎛
⎝−bα α 0

1 −1 1
0 −β 0

⎞
⎠, A2 =

⎛
⎝−aα α 0

1 −1 1
0 −β 0

⎞
⎠,

b1 =
⎛
⎝ −α(a − b)c

0
0

⎞
⎠ , b2 =

⎛
⎝ 0

0
0

⎞
⎠ ,

b3 =
⎛
⎝ α(a − b)c

0
0

⎞
⎠ ,

under the associate polytopic description (2) given by

H1 = H2 = H3 =
[

1 0 0
−1 0 0

]T

, h1 =
[−d

c

]
,

h2 =
[−c

−c

]
, h3 =

[
c

−d

]

and where the norm-bounded uncertainty is described
by the following matrices:

E1 = E2 = E3 =
⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦

D1 = D2 = D3 =
⎡
⎣ 0 0 0

0 0 0
0 − (βM−βm)

2 0

⎤
⎦

Vi and Vj are two scalars chosen in [−1, 1] ∀i, j ∈
{1, 2, 3}.

For system (25) described in form (1) under the poly-
topic description (2), simulation results are conducted
for the initial conditions x0 = [−1 − 0.5 − 0.5]T
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Figure 1. Chaotic dynamics of the Chua’s modified system
under norm-bounded uncertainty.

and z0 = [0 0.7 −0.5]T and, norm-bounded uncer-
tainties designed by Vj = 0.4 and Vi = 0.2 where the
system parameters are given by α = 9, β = 100/7,
c = 1, a = −1/7, b = 2/7, βm = 96/7, βM = 106/7
and d = 5. Figure 1 displays the chaotic attrac-
tor of the PWL model of the drive system with the
norm-bounded uncertainty whereas the uncontrolled
error signals of the drive–driven system are shown in
figure 2. The LMIs (5) and (6) are solved using the
LMI toolbox of MatLab software for the control matrix
B = [ 5 × 103 0 0 ]T and the parameter α1 = 10−4.
After five iterations, the LMI constraints were found
feasible. The feasible solution is given by

R = (−0.0002 −0.0030 −0.0030),

S =
⎛
⎝ 3.2244 −0.8455 0.0648

∗ 1.3885 0.3745
∗ ∗ 19.5493

⎞
⎠ .

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

Time (s)

e1

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

Time (s)

e2

0 5 10 15 20 25 30 35 40 45 50
-10

0

10

Time (s)

e3

Figure 2. Uncontrolled error signals of the drive–driven
modified Chua’s system.
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 z3

Figure 3. Synchronized state variables of the drive–driven
modified Chua’s system.

The control gain vector (8) is then deduced as

K = [ −0.0007 −0.0026 0.0001
]
.

Figure 3 shows the synchronized state variables of the
PWL drive–driven system with norm-bounded uncer-
tainties via the robust state feedback controller dis-
played in figure 4. Simulation results given in figure 5
prove that the robust chaos synchronization is well
achieved. Finally, the switching dynamics of the drive
and the driven systems with norm-bounded uncertain-
ties between the polyhedral cells are shown in figures 6
and 7, respectively.

0 5 10 15 20 25 30 35 40 45 50
-5

-4

-3

-2

-1

0

1

2
x 10

-3

Time (s)

u

Figure 4. Robust control law of the modified Chua’s sys-
tem with norm-bounded uncertainties.
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0
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Time (s)

e3

Figure 5. Synchronization errors via robust control of the
modified Chua’s model.

4.2 New PWL hyperchaotic family

Let us consider the new hyperchaotic family recently
proposed in [7]. This system can be described as the
PWL model (1) with ∀i, j ∈ {1, 2, 3, 4}:

Ai = Aj =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0

−α31 −α32 −α33 0
0 −1 0 −1

⎞
⎟⎟⎠,

b1 =

⎛
⎜⎜⎝

0
0

1.8
1.8

⎞
⎟⎟⎠ , b2 =

⎛
⎜⎜⎝

0
0

0.9
0.9

⎞
⎟⎟⎠ ,

b3 =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠ , b4 =

⎛
⎜⎜⎝

0
0

−0.9
−0.9

⎞
⎟⎟⎠ ,

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

Time (ms)

R
1

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

Time (ms)

R
2

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

Time (ms)

R
3

Figure 6. Evolution of the drive’s states between polytopic
cells of the modified Chua’s system.
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Figure 7. Evolution of the driven’s states between poly-
topic cells of the modified Chua’s system.

where α31m < α31 < α31M is the norm-bounded uncer-
tainty and the associate polytopic description (2) is
given by

H1 = H2 = H3 = H4 =
[

1 0 0 0
−1 0 0 0

]T

,

h1 =
[−d

0.9

]
, h2 =

[−0.9
0.3

]
,

h3 =
[ −0.3

−0.3

]
, h4 =

[
0.3
−d

]
and where the norm-bounded uncertainty is described
by the following matrices:

Ei = Ej =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Di = Dj =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

α31M−α31m

2 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Vi and Vj are two scalars chosen in [−1, 1], ∀i, j ∈
{1, 2, 3, 4}.

For the last hyperchaotic family described in form
(1) under the polytopic description (2), simulation
results are conducted for the initial conditions x0 =
[−1 −0.5 −0.5 1]T and z0 = [0.1 0.1 0.1 0.2]T
and scalars Vj = 0.4 and Vi = 0.7 with the param-
eters α31 = 1.5, α32 = 1, α33 = 1, α31m = 1.11
and α31M = 1.81. Figure 8 shows the hyperchaotic
attractor of the PWL drive system under the norm-
bounded uncertainty whereas the uncontrolled error
signals of the drive–driven system are shown in figure 9.
The LMIs (5) and (6) are solved using the LMI
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Figure 8. Dynamics of the hyperchaotic new family with
norm-bounded uncertainty.

toolbox of MatLab software for the control matrix
B = [ 5 × 103 0 0 ]T and the parameter α1 = 10−4.
The feasible solution is given by

R = 10−3( −0.4583 −0.7418 0.5042 0.3124 )

S =

⎛
⎜⎜⎝

0.8555 0.0734 0.0209 0.0293
∗ 3.5701 −1.1509 −1.4825
∗ ∗ 3.0346 1.2820
∗ ∗ ∗ 3.5741

⎞
⎟⎟⎠.

The control gain vector (7) is then deduced as

K = 10−3[−0.5234 −0.1681 0.1140 −0.0189].
Figure 10 shows the state variables of the drive–driven
hyperchaotic system under the robust control law
given in figure 11. Figure 12 shows the synchro-
nization errors of the drive–driven hyperchaotic sys-
tem and proves that robust chaos synchronization is
well achieved. Finally, figures 13 and 14 respectively
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Figure 9. Uncontrolled error signals of the drive–driven
hyperchaotic system.
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Figure 10. Synchronized state variables of the drive–
driven hyperchaotic system.

show the evolution of the drive and the driven’s states
between the polytopic cells.

4.3 Comparative study

In order to illustrate the robustness of the synchroniza-
tion approach proposed in this paper, a comparative
study is established with the synchronization approach
designed in [8] by using the same example presented in
the previous section and described in [7].

Two case studies are then considered for the uncer-
tainties. The first case is performed for Vj = 0.4 and
Vi = 0.5 whereas the second is carried out for the same
uncertainties considered in the previous section such as
Vj = 0.4 and Vi = 0.7.

As the uncertainties are not considered for the com-
putation of the controller gain in [8], the feasible
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Figure 11. Robust control law of the hyperchaotic system.
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Figure 12. Synchronization errors via robust control for
the hyperchaotic system.

solution gives the control gain K = 10−3[−0.3538
−0.1241 0.1537 −0.0199] for the two case studies.

For the first case study (Vj = 0.4 and Vi = 0.5),
figure 15 shows synchronization errors using the two
approaches. As can be seen, similar dynamics are
observed which proves the robustness of the approach
[8] for some tolerable uncertainties.

For the second case study (Vj = 0.4 and Vi = 0.7),
stable error dynamics are achieved only when the syn-
chronization approach proposed in this paper is used.
Such simulation results are already given in the previ-
ous section. Indeed, when the controller designed using
the approach in [8] is used, the dynamics of the syn-
chronization errors become unstable. For such a case,
the closed loop system does not belong anymore to
the class of continuous PWL systems. As the control
law no longer has any switching dynamics, simulation
results are not delivered here because they are
insignificant. This finding proves the nonrobustness of
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Figure 13. Evolution of the drive’s states between poly-
topic cells of the hyperchaotic system.
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Figure 14. Evolution of the driven’s states between poly-
topic cells of the hyperchaotic system.

0 5 10 15 20 25 30
-2

0

2

Time (s)
e1 approach in [8]

robust synch

0 5 10 15 20 25 30
-1

0

1

Time (s)

e2 approach in [8]

robust synch

0 5 10 15 20 25 30
-1

0

1

Time (s)

e3 approach in [8]

robust synch

0 5 10 15 20 25 30
-1

0

1

Time (s)

e4 approach in [8]

robust synch

Figure 15. Synchronization errors of the hyperchaotic
system for some low and tolerable uncertainties to the
approach [8].

the approach [8] when uncertainties become so sig-
nificant and confirms the superiority of the approach
proposed in this paper compared to the approach given
in [8].

5. Conclusion

In this paper, a robust chaos synchronization approach
is proposed for PWL chaotic systems with differ-
ent norm-bounded uncertainties via a robust linear
state feedback controller. The suggested synchroniza-
tion criteria are developed using Lyapunov theory and
LMIs tools. The efficiency of the proposed method was
demonstrated on the most known chaos generator, the
Chua’s circuit, and on a multiscroll new hyperchaotic
family. Finally, to prove the robustness and the supe-
riority of the proposed approach, a comparative study
was done using a related approach.
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