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Abstract.  This paper presents the results of scattering of '°0 4 2Bi interaction near the Coulomb barrier. The
interaction potential between two nuclei is calculated using the double folding model with the effective nucleon—
nucleon (NVN) interaction. The calculations of the exchange part of the interaction were assumed to be of finite-
range and the density dependence of the NN interaction is accounted for. Also the results are compared with the
zero-range approximation. All these calculations are done using the wave functions of the two colliding nuclei
in place of their density distributions. The wave functions are obtained by the D-dimensional wave equation
using the hyperspherical calculations on the basis of Jacobi coordinates. The numerical results for the interaction

potential and the differential scattering are in good agreement with the previous works.
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1. Introduction

Investigation of the scattering theory is important in
any standard quantum text because many important
discoveries in the nuclear and the atomic physics have
been made by bombarding a nucleus or an atom by
particles and measuring the number of particles scat-
tered in various directions. The scattering can change
the phase or the amplitude of the outgoing wave
[1-6].

The interaction between two nuclei is one of the most
important aspects in nuclear physics. An important
step in investigating these interactions is the calcula-
tion of ion—ion interaction potential that can help us
to estimate the cross-sections of the elastic, inelastic
and fusion reactions [7,8]. A complicated many-body
problem is considered, because in these interactions
all nucleons of the target nucleus interact with each
other and with the nucleons of the projectile nucleus.
This complicated interaction can be approximated by
the optical model. In this model, a two-body potential
between the projectile and the target nucleus is inves-
tigated [9—11]. The real part of the optical potential is
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named as the folding model potential. The double fold-
ing model calculates the interaction potential between
the two interacting nuclei using their densities. Density
dependency in this model is a privilege when consider-
ing the effects of nuclei deformation. However, the aim
of the present study is to use the wave functions of two
nuclei instead of their densities and evaluate the effi-
ciency of this method using the results of the scattering
problem.

In §2, the folding method is described briefly. Next,
the wave functions of the two nuclei are calculated
using the differential wave equation. Solution of the
scattering problem is available in §4 and finally the
conclusions are presented in §5.

2. The double folding model (DFM)

The total interaction potential between the two inter-
acting nuclei is given as

Viotal(R) = V(R) + Ve(R) + Vit (R),

where Vi represents the strong (nuclear), V¢ the elec-
trostatic (Coulomb) and V; the rotational interactions
respectively (we have ignored the rotational part in the
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present study). Double folding is a method for calculat-
ing the total interaction potential. This model calculates
the real part of the optical potential with densities of
two colliding nuclei and an effective nucleon—-nucleon
interaction. The nuclear part of the interaction potential
has two terms: the direct term Vnp and the exchange
term VNg. The direct part of the interaction between
the two nuclei is determined by the DFM as follows
[12,13]:

Vap(R, Ep) = g(Ep) / dr f di201 (F1)

X p2(F2)un N (D) (8), (1)

where R denotes the distance between the centres of
mass of the colliding nuclei, the vector s = R — 7| +
7, corresponds to the distance between two specified
interacting points of the projectile and the target whose
radius vectors are 7 (2) respectively, g(Ep) = 1 — kEp
is an energy-dependent coefficient as Ep = Ela,/Ap
(Elap, Ap are the laboratory energy and the nucleon
number of the projectile) is the average energy of
each projectile nucleon, p1(2) ("1 (2)) is the distribution
of the centres of mass of the nucleons in the ground
state of the projectile or the target nucleus and vyy is
the effective nucleon—nucleon interaction. It is slightly
different for the exchange part. The exchange part of
the interaction by the DFM is

VNe(R, Ep) = g(EP)/d71 /d72,01(71; F1+5)
X p2(F2; 72 — S)UNN(E) (S)
X exI)(l.krf:lg/Arf:d)- 2

The exchange density determined using the density
matrix expansion relations [14—-16] is

p(Fi 7 £5) ~ p(F £5/2) ji (lkettF £5/2)] ),
J1(x) = 3[sin(x) — x cos(x)]/x>, 3)

where fl (x) is the first degree spherical Bessel func-
tion and keff, the effective Fermi momentum has been
extracted from the extended Thomas Fermi approxima-
tion (ETF app.) [16] as

N 2
2 o (320N 5C (Vo)
keff(r)_( 2 ) T3\%0
5V2p(F)
3600 (4)

C; determines the strength of the Weizsicker correc-
tion term to the kinetic energy density [14,18]. We
use C; = 1/36 that provides good results [17]. The

Pramana — J. Phys. (2016) 87: 90

wave number k. is added after considering the relative
motion of the two colliding nuclei as follows:

k2, = 2mpAred[Ecm. — Viot(R)1/R2, (5)

where Areq = ApAT/(Ap + A7) is the reduced mass
number and m,, is the bare nucleon mass.

The NN interaction used in the double folding model
is widely considered in the literature for the finite-range
approximation as M3Y potential (a sum of the Yukawa-
type terms) for both the direct and the exchange terms
[19] as

3
Vp(E)(8) = Z Gp(g)ivi(s),
i=1
. exp[—a;s]

)=

It was widely known that the M3Y NN interaction must
be density-dependent [19,20]. We use a generalized
density dependence of the M3Y interaction introduced
in refs [19,20]. It enters as a multiplier to the nuclear
part of the interaction as follows:

F(p) = C{l + aexp(—Bp) — yp}. (7)

In place of the finite-range NN interaction, zero-range
interaction was used in the early works [9] as follows:

ves(s) = J(E)S(s), J(E) = GEsg(Ep). ()

The coefficients are given in table 1, for the Reid and
the Paris M3Y interaction and the coefficients of the
density-dependent M3Y nucleon—nucleon interaction
are presented in table 2.

The Coulomb part has a form similar to eq. (1) for
the direct interaction [21,22] as

Ve(R) = / d7 f di2p1 (1) p2 (F) e (s), 9)

(6)

Table 1. The interaction coefficients of M3Y-Reid and
M3Y-Paris.

Coefficient Reid Paris
Gp1 (MeV) 7999 11062
G p2> (MeV) —2134 —2537.5
Gp3 (MeV) 0 0
GEef1 (MeV) 4631.4 —1524.25
GEef2 (MeV) —1787.1 —518.75
GEefrs (MeV) —7.847 —7.847
1/a; (fm) 0.25 0.25
1/as (fm) 0.4 0.4
1/a3 (fm) 1.414 1.414
Ggs (MeV fm?) —276 —592
k (MeV™1) 0.002 0.003
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Table 2. The density-dependent M3Y NN interaction
coefficients.

DD label Interaction C o BdEm™3) y fm3)
0 D Independent 1 0.0 0.0 0.0
1 DDM3Y1 0.2963 3.7231 3.7348 0.0
2 CDM3Y1 0.3429 3.0232 3.5512 0.5
3 CDM3Y2 0.3346 3.0357 3.0685 1.0
4 CDM3Y3 0.2985 3.4528 2.6388 1.5
5 CDM3Y4 0.3052 3.2998 2.3180 2.0
6 CDM3Y5 0.2728 3.7367 1.8294 3.0
7 CDM3Y6 0.2685 3.8033 1.4099 4.0
8 BDM3Y1 12521 00 0.0 1.7452

where pj(2)(Fi(2)) are the charge densities of the pro-
jectile and the target nuclei and vc(s) is the Coulomb
interaction considered usually in the form of the point—
point Coulomb potential between two point charges
(Z1, Z») with good approximation as follows:

Z1Z,e* 1

Ve(r) = Arey 1

(10)

In this article the wave functions of the two colliding
nuclei are used in place of their density distributions.
Thus, we use the quantum mechanical equation for the
density denoted by p = |y 1*|. Therefore, the density
distributions for the direct and the Coulomb parts will
be as follows:

Y1 FOYT DY) Y3 () (1)

and the density distributions for the exchange part will
be as follows:

W FEHYF FES| ~ [ (F £5/2¢*(F£5/2)]

x J1(lket(F £5/2)]5). (12)

Therefore, we must obtain wave functions of the two

nuclei for calculating the interaction potential. This
subject is investigated in the next section.

3. The wave equation

The many-body forces are more easily introduced
within the hyperspherical formalism. Therefore, the
Schrodinger equation is rewritten for a system of N
fixed identical particles as

Nl
2m

= Vit D Vi) —E¥(r) =0,
i=1 i,j>)i

(13)
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where r;; = rj —r; denotes a set of relative coordinates
of the particles and V (r;;) is the interaction potential
between the particles in terms of the relative distance
of the pair in the two-body subsystem.

The relative distance can be explained by the Jacobi
coordinate transformation as

i 1 .
1 Vi+1—lsz_;i”j , i=1,2,...,N—1.

&=

(14)

It can be seen that the solution of the N-particle sys-
tem is composed of N —1 Jacobi coordinates. First the
centre of mass of two arbitrary particles is considered.
Therefore, the location of the third particle is consid-
ered to be relative to the centre of mass of two arbitrary
particles and similarly for all particles. Indeed, each
Jacobi contacts the centre of mass of the subsystem for
the remaining particles. If the potential between the
particles only depends on the relative distance between
them, it can be written in terms of the hyper-radius x.
In this case it is named as the hypercentral potential.
The hyper-radius is, thus, the relative distance of the
particles from each other and from the centre-of-mass
[23] as

x=E+E6+-+Ev DV (15)

According to the centre-of-mass coordinates, the rela-
tion for Ris R = (1/N )ZIN r; and the Jacobi coordi-
nates can be written as

i

2 _ T2
&=

g =40n+rn—-2r)?=3(R—-ry)?

1
= 30— 1) = 2(R — r)?

1
5§/_1=m[r1+r2+- 4 ryo1—(N—Dryl?

N

_ )2
RN (16)
Using the above equation, the hyper-radius is
N—1 Y2 -1, 172
5 i+1 5
x=|:. s,} =[Z l. (R—Vi+1)}
i=1 i=1
2 1 2 2 2
=X =N(r12+r23+"'+rN1)
= (1 — R+ +n—R> (17)

Therefore, x? is the relative square distance of the parti-
cles from each other and the centre-of-mass coordinate.
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For the hyperspherical coordinates and D-dimensional
space, the Laplacian is [24-26]

va2— d2+D—1d+F2(Q)
§ 7 \dx2 x dx x2 )

i=1

(18)

where I'>(Q)/x% is a generalization of the cen-
trifugal barrier which involves the angular coordi-
nates Y, (g, Qs,, ..., 91, ¢2,...). They are called
hyperspherical harmonics (HH), and form a complete
orthogonal basis. ¢; is the hyperangle, for instance
@1 = arctan(§1/&). Also, FQ(Q) is the grand orbital
operator that its eigenvalues are as follows [23-28]:

r’(Q)=-y(y +D-2). (19)
y is the grand angular quantum number, y = 2n+
lg, + lg, + - - - In this equation, n is any non-negative

integer and g, I,, . . . are the angular momenta asso-
ciated with the relative Jacobi coordinates &; and &,
etc. HH contains the usual spherical harmonics with
the angular momentum of /g, Ig,, . .. as well as known
functions of the hyperangle ¢. In other words, except
for the hyper-radius, the other variables that describe
the position of the point in the hyperspace can be con-
veniently parametrized as D — 1 angles which are
collectively referred to as Qp_.

Finally, based on the above assumptions, the radial
Schrodinger equation in the D-dimensional space is
[23-28]

11 [d ,,d
—_— _x —
2m xP—1 | dx dx

2
n (2)
X

+ V(X)} ¥ (x) = EY(x). (20)
Investigation of a nucleus using the D-dimensional
Schrodinger equation means that we assume a nucleus
with its nucleons to be a multidimensional system. The
dimension is related to the number of particles in the
centre of mass coordinate or D = 3N — 3 (N is
the number of particles).

3.1 Solution of the hyper-radial part

In this paper '°0 + 2%°Bi interaction is considered
because the projectile and the target have relatively
simple structures. Also, they both have closed shell
spherical nuclei that are well understood.

As stated in the previous section, the wave func-
tions of the two nuclei are required for calculating
the interaction potential between two nuclei. Thus, the
D-dimensional equation should be solved to obtain the
wave functions of the two nuclei.
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We assume that the internal interaction of the
nucleons with each other is the Yukawa potential in
each nucleus. Therefore, the hyper-radial Schrédinger
equation with this potential must be solved sepa-
rately for each nucleus. The potential placed in the
D-dimensional equation is dependent on the hyper-

radius as follows:
—OoX

V(x) = —vo (21)

The dependence on hyper-radius x means, in general,
that the potential has an N-body character. It is depen-
dent only on the relative distance of the particles and
it is invariant for any rotation in D-dimensional space.
The nature of the potential is two-body, but it is depen-
dent on the relative distance between the available
particles. Herein, this potential is dependent on the
relative distance between the N particles. In this way,
and according to the eigenvalues of the centrifugal
barrier, eq. (20) becomes

-1 1 d p_;d y(y + D —2)

—_— _x —_— — e
2m xP-1 | dx dx x2

—oX

€

—0 } V(x) = EYy(x). (22)

To simplify the equation, the following approximation
is required [29,30]:

X

e-O{X
-~ 20— 23
X 1 = e ) (23)
And we take changing the variables as follows:
y=1—e2 (24)

Substituting these into eq. (22) gives
Py dyO)

y(I—y) o2 VT dy
_|:((D—1)(D—3)+V(V+D_2))l
4 y
m(E,; —2) 'y muo _
T4 1oy ]W(y)—O- (25)

A solution for this wave equation is [31]

v () =y A =»"'f.
Rewriting eq. (25) with this function gives

yA =y ")+ R2u —y) —2vy — y1f(»)
(I—-y)

(26)

+[M(u—1) —2pv
y
-1 —
ST T
_((D—l)(D—3)+y(y+D_2))l
4 y
m(E—-2) vy mVy _
+ o (1—y)+ a:|f(y)_0' 27)
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Equation (27) is a hypergeometric equation with solu-
tion f(y) =2Fj(a, b, c; y). We have solved this hyper-
geometric equation; the coefficients are calculated as
follows

- —m(E —2)
a = v B —
® 42
—m(E —2
b=ptv— JTMEZD o 28)
42
vy +D=2)

I 1

. [m(E —2)
V=g —.
402

Using these coefficients, the radial wave function of a

nucleus with a Yukawa internal interaction is

Y (x) = N(1—e 2*)He >, Fi(a, b, ¢; 1 —e ),
(29)

4 ’

where N is the normalization constant.

The wave function of each nucleus with a Yukawa
internal interaction can be calculated by changing the
number of nucleus particles and, consequently, the
dimensions of Hilbert space (D = 3N — 3) using
the above relation.

In the present work, we considered the 190 + 20Bj
interaction. Using the wave function obtained for each
nucleus, we numerically calculated the DFM integral.
The nuclear, Coulomb and total interaction potentials
were obtained for '°0+2%Bi and the numerical results
are shown in figures 1-3.
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Figure 1. The Coulomb interaction potential for 1°0+2%°Bi.
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4. The scattering problem

The scattering problem is studied using the par-

tial wave method and the scattering cross-section is

obtained based on the asymptotic behaviour of the

wave function. It is necessary to consider that a plane

wave is scattered by a scattering centre. The asymp-

totic form of the scattered wave function is [32,33]
ikr

U (r, 0)==e* 4+ () (30)

—
The angle-dependent part of this wave is called the
scattering amplitude. It is the amplitude of an outgoing

0
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T:) —w—finite-range Cal.
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Figure 2. The nuclear interaction potential for 1°0 4 20°Bi
obtained from the DFM using the D-dimensional space
calculations.

85 T T T T T T T T

80

75

704

65 4

Total potential (Mev)

60

—&— zero-range App.
—®— CDM3Y5-Reid Int.

551

50 S
9 10 11 12 13 14

R(fm)
Figure 3. The total interaction potential for 00 + 2Bi

with zero-range approximation and CDM3Y5-Reid density-
dependent finite-range calculation.
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spherical wave relative to the incoming plane wave in a
stationary-state scattering process. In the partial wave
expansion, the scattering amplitude is represented as a
sum over the partial waves [32,33]

£O) =Y QL+ 1) fi(k) Pi(cos 6),

=0

€1V

where fj(k) is the partial amplitude and P;(cos @) is
the Legendre polynomial. The partial amplitude can be
expressed using the scattering phase shift §; as
Ailk) = e2i% | _ e!% sin §;

T o Tk
By this definition, the scattering amplitude in terms of
the phase shift can be written as

1 o

HOES: g(zz + 1)e'¥ sin & P;(cos 0).

(32)

(33)

In general, the scattering amplitude is complex and is
related indirectly to the energy. The differential cross-
section can be obtained from the calculation of the
outward flux of particles which are scattered through
a spherical surface r2d6 for a large r divided by the
incident flux and by the element of a solid angle df.
Therefore, the differential scattering cross-section is

do

— =|fO).
1 FAG]
Thus, the phase shift must be calculated first, as seen
in the previous relations. We define a relation for the
phase shift in the next section using the asymptotic
behaviour of the hypergeometric function.

(34)

4.1 The differential cross-section

We have considered collision of two nuclei near the
Coulomb barrier. As was mentioned, the phase shift
is needed to obtain the cross-section. To illustrate this
problem, it is necessary to explain how to obtain phase
shift. From the classical mechanics, the two-body
motion with masses m1 and m, considered in the centre
of mass coordinate system is equivalent to the motion
of one particle with the reduced mass
nminm3

mi + my
and the relative radius-vector r in the central field
V(r) [33]. So, the hyper-radial Schrodinger equation
(eq. (22)) with the reduced mass for 160 4 209B;
collision in the following form is used:

S e nd], @
2 xP-1 . dx + x2 TV

= E¥(x).

(35)
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It is assumed that the two nuclei are influenced by
their internal potential (Yukawa) and the total interac-
tion potential at the Coulomb barrier obtained from the
DFM. The hyper-radius is related to both nuclei here.
It should be noted that according to the subjects men-
tioned in §3, calculations are performed in the centre of
mass coordinate system and the potential depends only
on the relative distance of the particles.

Therefore, the obtained wave function of eq. (35) is
similar to the obtained wave function in §2 but with the
reduced mass

Y(x)=N(1—e 2% le 2%, Fi(a, b, c; 1 —e™2%%).

(36)
This is the scattering wave function.

Next, the asymptotic behaviour of the obtained wave
function is studied and the phase shift is calculated
using the properties of hypergeometric functions.

For studying the asymptotic behaviour of the hyper-
geometric part of the wave function, we need the
following two hypergeometric function properties
[34]:

'c)'(c—a—D>b)
I'(c—a)l'(c —b)
xo Fi(a,b;a+b—c+1;1—x)
ye—a—b Feyfea+b—c)
I'(a)I'(D)
X9 Fi(c—a,c—b;c—a—b+1;1—x), (37a)

2F1(a,b,c;x) =

+(1 -

2F1(a, b, c;0) =1. (37b)

The hypergeometric part of the total wave function
in eq. (36) can be written according to eq. (37a) as
follows:

I'c)l'(c —a —Db)
I'c—a)l'(c —b)
x 2F)(a,b;a+b—c+ 1;e 2%
_ _2la+b—rc)
2ax\c—a—b
) F@r®)
X 2Fi(c—a,c—b;c—a—b+1;e72%). (38)

2Fi(a, b, c; 1 —e 2%%) =

According to eq. (37b) the asymptotic form of this
function is given as

I'c)'(c—a—>b)
I'c—a)'(c—Db)

I'e)I'(a+b— c)e4vax}
'(a)I"(b) ’

2Fi(a, b, c; x)x_m{

(39)
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The above equation can be written [6,35] (§ is a real
number) as

I'c—a—D>b)
I'c—a)'(c —b)

2Fi(a, b, c; x)=zT ()

X(eits + 6(4011))6—1'5))‘ (40)

With v = ik’ (k' = /u(E —2)/4a?), the asymp-

totic form of the total hyper-radial wave function can
be written as (see eq. (36)) [6,35]

I'lc—a—->)
T'(c—a)T(c—b)
X (1 — e~ 20%)Hg=20vx (o0 | o=i(dak'r+8)
I'(c—a—D>)
['(c—a)'(c—b)

U ()= NT(c)

— NT'(¢)

X(e—i(Zk’ax—S) + ei(2k/ocx—5))
I'(c—a—D>) ,
= NT'(¢) cos(2k'ax — §)
I'c—a)'(c —Db)
'(c—a—Db) . , b4
=NT 8—2k —).
e e—b) Sm( “x+2)

(41)

Now, it is helpful to compare the former equation and
the general boundary condition of the scattering state
wave function (¢ (r — 00) = 2 sin(kr — (7w /2) [+ 57)).
With this comparison and the last relation obtained in

0.5 T T T T T T T T
| —&— finite-range Cal. (E=90Mev)
F— —@— finite-range Cal. (E=84Mev)
0.4 - ‘y —&— zero-range App. (E=84Mev) B
v —W¥— zero-range App. (E=90Mev)
\AAA'V
0.3 90zero
2 B ]
E}/ 84zerg\
I 0.2
5 O ]
B u
'\'o "
- [}
0.1 o, Ofinite
84finite
0.0
T T T T T
0 20 40 60 80 100

Figure 4. The differential scattering cross-sections at 84
and 90 MeV laboratory bombarding energies for '°0+2%Bi.
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eq. (41), arelationship can be written for the phase shift
as follows [6,35]:

8 = %(14-1)+argF(c—a—b)—argF(C—a)

—arg'(c — b). 42)

This is the relationship that we are looking for. We
have calculated differential scattering cross-section by
this relation and according to eqs (33) and (34). The
numerical results are presented in figure 4.

5. Conclusions

The interaction potential for '°0 + 2°Bi by the DFM
was calculated. The double folding model was defined
using the integration on the nucleon density distribu-
tions of the two colliding nuclei and NN interaction
potential. In the present study, we have used the wave
functions of the colliding nuclei instead of their densi-
ties in the DFM integral. To calculate the wave func-
tion of each nucleus, the differential equation in the
D-dimensional Hilbert space based on Jacobi trans-
formation coordinates was solved. The exchange part
of the interaction was taken to be of finite range and
the results have been compared with the zero-range
approximation. The density dependence of the NN
interaction was accounted for. The numerical results
of the nuclear, Coulomb and total interaction potential
were presented in figures 1-3 using the obtained wave
functions. In figure 1 the Coulomb interaction potential
is shown. Figure 2 shows the difference between the
direct and the exchange parts of the nuclear interaction
for zero-range approximation and finite-range calcula-
tion. From this figure, we see that the direct part has
larger values and tends to have a smaller slope toward
zero. The slope is greater for the exchange part and
the finite-range values tend toward zero slower than
the zero-range values. In figure 3, the total interaction
potential calculated with the zero-range approxima-
tion is compared with the finite-range calculation. In
this figure, it is seen that the zero-range has a larger
Coulomb barrier. The height of the Coulomb barrier
for zero-range in R = 11 fm is 81.09 MeV and
for the finite-range in R = 12.25 fm is 75.72 MeV.
These values are in good agreement with the values
of the previous works [36]. The differential scattering
cross-section for the finite and zero-range calculations
near the Coulomb barrier (84 and 90 MeV) were stud-
ied in figure 4. From this figure we see that the differ-
ential cross-section has larger values for zero-range in
both energies while for the finite-range the values are
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closer together and the diagram has a greater slope in
E = 90 MeV. The results of the finite-range calculation
are in acceptable agreement with the results of ref. [36].

The results of our folding analysis shows that the
wave functions of the two nuclei can also produce sat-
isfactory results for nucleus—nucleus interaction using
the DFM. The use of the different forms of the NN
interaction (M3Y-Reid or Paris, zero-range or finite-
range, density-dependent or independent) affects the
results.

Acknowledgements

The authors thank the referee for the invaluable sug-
gestions that have greatly helped them to improve this

paper.

References

[1] V M Vilalba and C Rojas, Phys. Rev. A 71, 052101 (2005)
[2] V M Vilalba and C Rojas, Phys. Lett. A 362, 21 (2007)
[3] A Arda and R Sever, J. Math. Phys. 52, 092101 (2011)
[4] O Aydogdu, A Arda and R Sever, J. Math. Phys. 53, 042106
(2012)
[5] H Hassanabadi, S Zarrinkamar and E Maghsoodi, Phys. Lett.
B 718, 678 (2012)
[6] H Hassanabadi, E Maghsoodi, N Salehi, A N Ikot and S
Zarrinkamar, Eur. Phys. J. Plus 128, 127 (2013)
[7] B Sinha, Phys. Rep. C 20, 1 (1975)
[8] G Bertsch, J Borysowicz, H McManus and W G Love, Nucl.
Phys. A 284, 399 (1977)
[9] G R Satchler and W G Love, Phys. Rep. 55, 184 (1979)
[10] C H Dasso and G Pollarolo, Phys. Rev. C 68, 054604 (2003)
[11] II Gontchar, D J Hinde, M Dasgupta and J O Newton, Phys.
Rev. C 69, 024610 (2004)
I I Gontchar and M V Chushnyakova, Comp. Phys. Commun.
181, 168 (2010)
[13] M Aygun, Chin. J. Phys. 53, 080301 (2015)

[12]

[14]
[15]
[16]
(7]
(18]
[19]
[20]

(21]
(22]

(23]
[24]

[25]
[26]
(27]

(28]
[29]

(30]
(31]
(32]
(33]

[34]

(35]

(36]

Pramana — J. Phys. (2016) 87: 90

Dao T Khoa, W von Oertzen and H G Bohlen, Phys. Rev. C
49, 1652 (1994)

J W Negele and D Vautherin, Phys. Rev. C 5, 1472
(1972)

X Campi and A Bouyssy, Phys. Lett. B73, 263 (1978)

Dao T Khoa, Phys. Rev. C 63, 034007 (2001)

M Ismail and Kh A Ramadan, J. Phys. G 26, 1621 (2000)

G Bertsch, J Borysowicz, H McManus and W G Love, Nucl.
Phys. A 284, 399 (1977)

N Anantaraman, H Toki and G F Bertsch, Nucl. Phys. A 398,
269 (1983)

Dao T Khoa and W von Oertzen, Phys. Lett. B 304, 8 (1993)
Dao T Khoa, G R Satchler and W von Oertzen, Phys. Rev. C
56, 954 (1997)

M Fabre de la Ripelle, Ann. Phys. (N.Y.) 147, 281 (1983)

O I Tolstikhin, V N Ostrovsky and H Nakamura, Phys. Rev.
Lett. 80, 41 (1998)

M M Giannini, E Santopinto and A Vassallo, Nucl. Phys. A
699, 308 (2002)

S H Dong, Wave equations in higher dimensions (Springer
Netherlands, 2011)

J L Ballot and M Fabre de la Ripelle, Ann. Phys. (N.Y.) 127,
62 (1980)

A A Rajabi, Few-body systems 37, 197 (2005)

V G J Stoks, R A M Klomp, M C M Rentmeester and J J
de Swart, Phys. Rev. C 48, 792 (1993)

M Hamzavi, M Movahedi, K E Thylwe and A A Rajabi, Chin.
Phys. Lett. 29, 080302 (2012)

S H Dong, Factorization method in quantum mechanics
(Springer, 2007)

R Navarro Pérez, ] E Amaro and E Ruiz Arriola, Phys. Rev.
C 88, 024002 (2013)

L D Landau and E M Lifshitz, Course of theoretical physics
1: Mechanics, 3rd edn (Pergamon, 1976)

M Abramowitz and I A Stegun (Eds), Handbook of mathemat-
ical functions with formulas, graphs, and mathematical tables
(Courier Corporation, New York, 1965) Vol. 55, p. 1064

W Qiang, K Li and W Chen, J. Phys. A: Math. Theor. 42,
205306 (2009)

E Vulgaris, L Grodzins, S G Steadman and R Ledoux, Phys.
Rev. C 33,2017 (1986)




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


