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Abstract. We explore quantum signatures of classical chaos by studying the rate of information gain in quan-
tum tomography. The tomographic record consists of a time series of expectation values of a Hermitian operator
evolving under the application of the Floquet operator of a quantum map that possesses (or lacks) time-reversal
symmetry. We find that the rate of information gain, and hence the fidelity of quantum state reconstruction,
depends on the symmetry class of the quantum map involved. Moreover, we find an increase in information
gain and hence higher reconstruction fidelities when the Floquet maps employed increase in chaoticity. We make
predictions for the information gain and show that these results are well described by random matrix theory in
the fully chaotic regime. We derive analytical expressions for bounds on information gain using random matrix
theory for different classes of maps and show that these bounds are realized by fully chaotic quantum systems.
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1. Introduction: Classical and quantum chaos

Classical chaos is characterized by the sensitive depen-
dence on initial conditions in a deterministic dynamical
system [1]. In a conservative Hamiltonian system, this
occurs for trajectories which do not settle down to
fixed points, periodic orbits, or quasiperiodic orbits in
the limit t → ∞, where t is the time of evolution
of the trajectory [1,2]. Sensitive dependence on initial
conditions means that nearby trajectories separate
exponentially fast; the rate of separation is given by
the Lyapunov exponent, λ, which characterizes the
dynamics of the system. A conservative Hamiltonian
system with N degrees of freedom, with N constants
of motion, is said to be integrable, and its dynamics
is regular. When there are fewer than N constants of
motion, then the individual trajectories can explore the
phase-space in a complex manner and the system can
exhibit chaos.

It is not difficult to see that the above ‘definition’ of
chaos fails in the quantum domain. A quantum state

is not a point in the phase-space but is described by
a state vector. The time evolution of the state vec-
tor, due to the Schrödinger’s equation, is unitary. This
means that the overlap of two state vectors undergoing
evolution is ‘constant’ with time. Therefore, quantum
systems, unlike their classically chaotic counterparts,
do not show a sensitive dependence on initial condi-
tions. Furthermore, while classical chaos can lead to
infinitely fine structures in the phase space, in quan-
tum mechanics, Planck’s constant, h̄, sets the scale for
such structures, according to Heisenberg’s uncertainty
principle. This is often stated as the key reason for the
absence of chaos in the quantum domain. This, how-
ever, is not the complete story. An alternate descrip-
tion of classical mechanics, involving the evolution of
classical probability densities, preserves the distance
between two probability densities as a function of time
[3]. Hence, the distance between two probability den-
sities does not show exponential sensitivity even for
classical mechanics.
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All this leads to two interesting questions:

(1) How does classically chaotic dynamics inform us
about certain properties of quantum systems, e.g.,
the energy spectrum, nature of eigenstates, corre-
lation functions, and more recently, entanglement
and quantum discord. Alternatively, what features
of quantum systems arise due to the fact that their
classical description is chaotic?

(2) Since all systems are fundamentally quantum
mechanical, how does classical chaos, with tra-
jectories sensitive to initial conditions, arise out
of the underlying quantum equations of motion?

These two questions are not unrelated. However, the
first question deals mainly with finding the signatures
of chaos by studying the properties of the quantum Ha-
miltonian, while the second concerns with the dynam-
ical behaviour of quantum states and the emergence of
classically chaotic behaviour in the macroscopic limit.

A central result of quantum chaos is its relationship
to the theory of random matrices [4]. In the limit of
large Hilbert space dimensions (small h̄), for parame-
ters such that the classical description of the dynamics
shows global chaos, the eigenstates and eigenvalues of
the quantum dynamics have the statistical properties of
an ensemble of random matrices. The appropriate en-
semble depends on the properties of the quantum sys-
tem under time-reversal [4]. The ensemble of random
matrices used to describe the Hamiltonians unrestricted
by the time-reversal symmetry is the Gaussian unitary
ensemble (GUE). Similarly, the ensemble of random
matrices used to describe the Hamiltonians having a
time-reversal symmetry are given by the Gaussian or-
thogonal ensemble (GOE). The other class of random
matrices typically studied are the random unitary ma-
trices. They are employed for periodically-driven sys-
tems, as models of the unitary ‘Floquet’ operators, F ,
describing the change of quantum state during one
cycle of the driving. Powers of the ‘Floquet’ operator,
Fn, give us a stroboscopic description of the dynam-
ics. The ensemble of random unitaries are also known
as the ‘circular ensembles’, originally introduced by
Dyson [5]. As was the case for random Hermitian ma-
trices, time-reversal symmetry arguments play similar
roles in the choice of appropriate ensemble of random
unitaries employed to model the ‘Floquet’ operator to
study the properties of the chaotic system. Depend-
ing on whether the system has time-reversal symmetry
or not, the appropriate ensemble of random unitaries
is called the circular orthogonal ensemble (COE) or
the circular unitary ensemble (CUE) respectively. The

eigenvectors of the COE and CUE have the same
properties as that for the respective GOE and GUE,
but the eigenvalues are distributed differently. The cir-
cular unitary ensemble (CUE) is just the ensemble of
random unitary matrices picked from U(n) according
to the Haar measure. CUE eigenvalues lie on the unit
circle in the complex plane, and hence the name.

From this fact, an important quantum signature of
chaos was obtained by Bohigas and collaborators [6],
describing the spectral statistics of quantum Hamil-
tonians whose classical counterparts exhibit complete
chaos using random matrix theory. Such signatures
of quantum chaos have mainly focussed on the time-
independent Schrödinger’s equation and features like
energy spectra and eigenstates.

Though quantum systems show no exponential sep-
aration under the evolution of a known unitary evolu-
tion, they do show a sensitivity to the parameters in the
Hamiltonian [7]. Peres [7] showed that the evolution
of a quantum state is altered when a small perturbation
is added to the Hamiltonian. As time progresses, the
overlap of the perturbed and unperturbed states gives
an indication of the stability of quantum motion. It was
shown that if a quantum system has a classically chao-
tic analog, this overlap has a very small value. On the
other hand, if the classical analog is regular, the overlap
remains appreciable. In another perspective, as seen in
the work of Schack and Caves, quantum systems exhi-
bit chaos when they are perturbed by the environment.
They become hypersensitive to perturbations [8], as
seen in the information-theoretic studies of the cost to
maintain low entropy in the face of loss of information
to the environment. This particular feature of quantum
chaotic systems has several interesting consequences.
For example, Shepelyansky has done extensive work
on the issue of many-body quantum chaos in the quan-
tum computer hardware and its effect on the accuracy
of quantum computation [9] in the absence of error
correction. Recently, classical simulations of quantum
dynamics have been connected to integrability and
chaos [10].

It is imperative to mention the role played by quan-
tum information theory in the above journey. Quantum
information science has added a whole new perspective
to the study of quantum mechanics. This has resulted
in a better understanding of quantum phenomena like
entanglement and decoherence, and given us the tools
to view certain quantum properties of physical systems
as a resource. This has also enabled us to address the
key questions in quantum chaos from a new perspecti-
ve. As mentioned above, this has led to an information
theoretic characterization of quantum chaos [8] and
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explained the exploration of the behaviour of chaotic
quantum systems in the presence of environment-
induced decoherence [11] along with its connection to
the quantum-to-classical transition. The study of quan-
tum chaos from a quantum information perspective is
also closely related to the theory and application of ran-
dom quantum circuits [12]. In the last two decades,
quantum information theory has given us a new per-
spective in finding the fingerprints of chaos in quantum
mechanics. The dynamical generation of entanglement
and discord and information gain in tomography have
been studied as signatures of classical chaos in the
quantum world [13–24].

The connection between entanglement and chaos, in
particular, received considerable attention in the previ-
ous decade. It was demonstrated numerically as well
as analytically, that ergodicity associated with both the
classical and quantum chaotic dynamics plays a cru-
cial role in the generation of entanglement. Classical
chaos takes initially localized probability distributions
on the phase space to random distribution. The quan-
tized versions similarly take localized coherent states
to pseudorandom states in the Hilbert space that have
nearly maximal entanglement [22]. This is closely rela-
ted to the entanglement properties of random states in
the Hilbert states belonging to the unitary class with a
broken time-reversal symmetry [25–30]. This work has
further been extended to study the spectral density of
Schmidt eigenvalues, that determine entanglement, for
random states belonging to three main invariant classes
of random matrix ensembles [31].

In [32], it was shown that information gain about an
initial quantum state in the process of quantum tomog-
raphy is a metric to characterize and quantify quantum
chaos. In this work, we review this new information-
theoretic characterization of chaos and show how this
procedure can be used to distinguish between symme-
try classes of various quantum maps.

Quantum tomography is the process of estimating
an unknown quantum state from the statistics of mea-
surements made on many copies of the state. In this
work, we extend our efforts on information gain in
quantum tomography to characterize the properties of
the underlying dynamics. In particular, we give new
analytical results for the information gain for different
classes of quantum maps depending on their time-reversal
and parity-symmetry properties. The standard way
to perform quantum tomography is to make projective
measurements of an ‘informationally complete’ set of
observables and repeat them many times. The statistics
obtained are used to estimate the expectation values of
the observables and hence the unknown initial state.

Projective measurements pose hurdles in exploring
the connections between information gain in tomogra-
phy and chaos due to large measurement back-action
on the system. However, we overcome this by employ-
ing the protocol for tomography via weak continuous
measurement developed by Silberfarb et al [33]. In this
protocol, the ensemble is collectively controlled and
probed in a time-dependent manner to obtain an ‘infor-
mationally complete’ continuous measurement record.
We consider the case of a very weak measurement
such that the back-action is negligible. This is possible
when the uncertainty in any measurement outcome is
small compared to the quantum uncertainty associated
with the probe itself. We accurately model all the
quantum dynamics occurring in the system, and then
use the measurement time history to give us informa-
tion about the initial quantum state. The dynamics is
‘informationally complete’ if the time history contains
information about an arbitrary initial condition. Our
goal is to characterize and quantify the performance
of tomography, when the dynamics driving the system
are chaotic in the classical limit. We use this to draw
connections between the role played by regular and
chaotic dynamics as well as the nature of symmetries of
the dynamics in the tomography procedure. The work
presented in this paper is intimately related to the pro-
tocols that have recently been implemented in the
laboratory [34,35].

The remainder of this paper is organized as follows.
In §2, the protocol for tomography via weak contin-
uous measurement developed by Silberfarb et al [33]
and Riofrío et al [36] is reviewed. In §3, how informa-
tion gain while performing tomography is a quantum
signature of classical chaos is demonstrated. Nume-
rical simulations of the reconstruction fidelity and its
relationship to the degree of chaos in the dynamics
that drive the system are performed. We show how
the fidelity obtained and the corresponding metrics
to quantify information gain can be used to distin-
guish quantum maps belonging to different symmetry
classes. Then these results are explained in terms of
the properties of random states in Hilbert space. The
results are discussed and summarized in §4.

2. Tomography via weak continuous measurement

Quantum tomography is the procedure by which one
estimates the state of a quantum system using the
outcomes of several measurements performed on it.
Traditionally, the measurements are implemented on
many preparations of the system, which is a lengthy
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and time-consuming process. In general, the proce-
dure works as follows: A quantum system is prepared
in a desired state, which one wants to verify. Due to
experimental constraints and noise, the desired state is
almost never realized in practice. Therefore, one seeks
to determine how close the ideal state and the actual
preparation are. Once the system is prepared, one pro-
ceeds to make measurements on different copies of it,
and record random outcomes of those measurements.
Finally, when enough measurements are done, one
uses those outcomes in a post-processing stage, gen-
erally done after all data are collected, and computes
an estimate of the state that was actually prepared in
the laboratory. In this section, in more detail, quantum
tomography is reviewed via a continuous measurement
protocol, which is a more robust and efficient proce-
dure when one has the ability to simultaneously prepare
an ensemble of quantum systems.

Consider an ensemble of N , noninteracting, simul-
taneously prepared quantum systems in an identical,
but unknown, state described by the density matrix ρ0.
Our goal is to determine ρ0 by continuously measuring
an observable O0. The ensemble is collectively con-
trolled and probed in a time-dependent manner to
obtain an ‘informationally complete’ continuous mea-
surement record. In order to achieve informational
completeness, when viewed in the Heisenberg picture,
the set of measured observables should span an oper-
ator basis for ρ0. For a Hilbert space of finite dimen-
sion d, and fixing the normalization of ρ0, the set of
Hermitian operators must form a basis of su(d). The
measurement record is inverted to get an estimate of the
unknown state. Laboratory realization of such a record
is intimately tied to ‘controllability’, i.e., designing the
system evolution in such a way as to generate arbitrary
unitary maps. While it is desirable to obtain an infor-
mationally complete measurement record, we shall see
that we can obtain high fidelity in tomography in some
cases even when this is not the case [37].

In an idealized form, the probe performs a QND
measurement that couples uniformly to the ‘collec-
tive variable’

∑N
j=1 O(j)

0 across the ensemble which is
subsequently measured. For a strong QND measure-
ment, quantum backaction will result in substantial
entanglement among the particles. For a sufficiently
weak measurement, the noise on the detector (e.g., shot
noise of a laser probe) dominates the quantum fluc-
tuation intrinsic to the measurement outcomes of the
state (projection noise). In this case, we can neglect
the backaction on the quantum state and the ensemble
remains factorized. In order to obtain a measurement

record that can be inverted to reconstruct an estimate
of the initial state, one must drive the system by a care-
fully designed dynamical evolution that continually
maps new information onto the measured observable.
In order to do so, the system is manipulated by exter-
nal fields. The Hamiltonian of the system, H(t) =
H [φi(t)], is a functional of a set of time-dependent
control functions, φi(t), so that the dynamics produces
an informationally complete measurement record M.

Then we can write the measurement record obtained
as

M(t) = Tr(O0ρ(t)) + σW(t), (1)

amplified by the total number of copies (N atoms in
this case). Here σW(t) is a Gaussian-random variable
with zero mean and variance σ 2, which accounts for
the noise on the detector. As our goal is to estimate the
initial state from the measurement record and the sys-
tem dynamics, we shall work in the Heisenberg picture.
Rewriting eq. (1) in the Heisenberg picture, we get

M(t) = Tr(O(t)ρ0) + σW(t). (2)

We sample the measurement record at discreet times so
that

Mi = Tr(Oiρ0) + σWi. (3)

Thus, the problem of state estimation is reduced to a
linear stochastic estimation problem.

The goal is to determine ρ0, given {Mi} for a well
chosen {Oi}, in the presence of noise {Wi}. We use a
simple linear parametrization of the density matrix

ρ0 = I

d
+

d2−1∑
α=1

rαEα, (4)

where d is the dimension of the Hilbert space, rα and
d2 − 1 are real numbers (the components of a gen-
eralized Bloch vector) and {Eα} is an orthonormal
Hermitian basis of traceless operators. We can then
write eq. (3) as

Mi =
d2−1∑
α=1

rαTr(OiEα) + σWi, (5)

or, in the matrix form as

M = Õr + σW, (6)

which in general is an overdetermined set of linear
equations with d2 − 1 unknowns r = (r1, ..., rd2−1).
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The conditional probablity distribution for the ran-
dom variable M, given the state r, is the Gaussian
distribution

P(M|r) ∝ exp

(
− 1

2σ 2
(M − Õr)T (M − Õr)

)
. (7)

We can use the fact that the argument of the expo-
nent in eq. (7) is a quadratic function of r to write the
likelihood function (ignoring any priors) as

P(r|M) ∝ exp

(
− 1

2σ 2
(r − rML)T (r − rML)

)
, (8)

a Gaussian function over the possible states r centred
around the most likely state, rML, with the covariance
matrix given by C = σ 2(ÕT Õ)−1. The unconstrained
maximum liklihood solution is given by

rML = (ÕT Õ)−1ÕT M. (9)

The measurement record is informationally complete
when the covariance matrix has full rank, d2 −1. If the
measurement record is incomplete and the covariance
matrix is not full rank, we replace the inverse in
eq. (9) with the Moore–Penrose pseudoinverse [38]. The
eigenvectors of C−1 represent the orthogonal direc-
tions in operator space that we have measured up
to the final time, and the eigenvalues determine the
uncertainty, or the signal-to-noise ratio, associated with
those measurement directions.

When we have an incomplete measurement record,
or in the presence of noise, the unconstrained max-
imum likelihood procedure does not give a density
matrix that corresponds to a physical state. The esti-
mated density matrix might have negative eigenvalues.
We correct this by finding a valid density matrix that
is ‘closest’ to ρML, the density matrix obtained by the
unconstrained maximum likelihood procedure.

3. Information gain in tomography

3.1 Metrics to quantify information gain

Our protocol for quantum tomography via continuous
measurement of a driven system [33] gives us a win-
dow into the complexity of quantum dynamics and
its relationship to chaos. Moreover, the experimental
implementation of tomography by continuous mea-
surement provides a useful platform for exploring these
ideas in the laboratory [34]. Quantum tomography
deals with the extraction of information about an un-
known quantum state through measurements. In our
attempt to study chaos under this paradigm, we define
metrics to quantify this information gain. These me-
trics characterize the ability of our control dynamics

to generate a sufficiently high signal-to-noise ratio for
measurements in different directions of the operator
space. As we shall see, these metrics elucidate the con-
nection between the degree of chaos and the fidelities
obtained in tomography. We can quantify the informa-
tion gain in a number of ways.

(1) Fidelity of tomography
Fidelity of the reconstruction obtained in tomography
is a metric for information gain which determines the
degree of closeness of quantum states and is intimately
related to how much information is obtained during
the process. The fidelity is simply given by the over-
lap of the initial and the reconstructed state vectors.
The fidelity between a target pure state |ψ〉 and the
reconstructed state ρ is F = 〈ψ |ρ|ψ〉.
(2) Fisher information (FI) of the measurement record
Fisher information is a metric that quantifies how
much information a measured random variable con-
tains about an unknown parameter when the probability
density of the random variable is conditioned upon the
value of the parameter. For a single variable, FI is given
by

F = E

((
∂

∂θ
log p(x|θ)

)2
)

, (10)

where p(x|θ) is the probability density of the random
variable X conditioned on the value of θ and E denotes
the expectation value. As discussed below, it quantifies
the error in our estimation of the parameter.

FI sets a bound, known as the Cramer–Rao bound,
on our uncertainty about the parameters. In general,
for a single variable parameter estimation problem, the
Cramer–Rao bound gives

Varθ (T (X)) ≥ F−1, (11)

where X is the random variable that contains informa-
tion about the parameter, T (X) is the unbiased esti-
mator of the multivariate parameter, and Varθ (T (X))

is the variance of a set of unbiased estimators for
the parameter θ . Therefore, and as stated above, it
quantifies the error in our estimation process.

The multivariate generalization of FI takes the form,

Fmn = E
(

∂

∂θm

log p(x|θ)
∂

∂θn

log p(x|θ)

)
, (12)

where p(x|θ) is the probability density of the random
variable X conditioned on the value of multivariate
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parameter, θ = [θ1, θ2, ..., θd ], and E denotes the expec-
tation value. The multivariate Cramer–Rao bound is
given as

Covθ (T (X)) ≥ F−1, (13)

where the matrix inequality, A ≥ B, is understood to
mean that the matrix, A − B, is positive semidefinite.
Here X is a d-dimensional random vector that con-
tains information about the multivariate parameter, θ =
[θ1, θ2, ..., θd ], T (X) is the unbiased estimator of the
multivariate parameter and Covθ (T (X)) is the cova-
riance matrix of a set of unbiased estimators for the
parameters θ . Therefore, and as stated above, it quanti-
fies the error in our estimation process. We can further
quantify the correlation between chaos and the perfor-
mance of quantum state estimation using information-
theoretic metrics. The information obtained in the
measurement of a quantum system can be expressed in
terms of the uncertainty of the outcomes summed over
a set of mutually complementary experiments [39]. In
terms of the Hilbert–Schmidt distance between the true
and estimated states in quantum state reconstruction,
averaged over many runs of the estimator, this infor-
mation can be written as I = 〈Tr{(ρ0 − ρ̄)2}〉 [40],
which in terms of the total uncertainty in the Bloch vec-
tor components is I = ∑

α〈(
rα)2〉. The Cramer–Rao
bound tells us that this uncertainty obeys

〈(
rα)2〉 ≥ [F−1]αα, (14)

where F is the Fisher information matrix associated
with the conditional probability distribution, eq. (7),
and thus I ≥ Tr (F−1).

In the limit of negligible quantum backaction, we
saturate this bound. This is because our probability dis-
tribution is Gaussian, regardless of the state. In that
case, the Fisher information matrix equals the inverse
of the covariance matrix, F = C−1, in units of N2/σ 2

and thus the Cramer–Rao bound reads as

Covθ (T (X)) ≥ C. (15)

We consider the basis in which F , and hence C−1, is
diagonal,

F ′ = UFUT . (16)

Such a transformation is provided by U composed from
the eigenvectors of C. In this representation, the esti-
mate of the newly transformed parameters fluctuate
independently of each other. This suggests the pos-
sibility to form a single number that quantifies the

performance of the tomography scheme as a whole by
adding those independent errors, ε, as

ε ≥ Tr (C). (17)

Thus, 1/Tr (C), which is the collective FI, serves as
a measure of the amount of information about the
parameter θ that is present in the data.

(3) Shannon entropy of eigenvalues of the inverse
covariance matrix
The mutual information, I[r; M] quantifies the infor-
mation we have about parameter r from measurement
record M, which is given by I[r; M] = H(M) −H(M|r)
[41]. Here H is the Shannon entropy of the given prob-
ability distribution. The entropy of the measurement
record, H(M), arises solely due to the shot noise in the
probe, and hence is a constant. The mutual informa-
tion between the Bloch vector and a given measure-
ment record can be expressed as the entropy of the
conditional probability distribution (eq. (7))

I[r; M] = −H(M|r) = −1

2
log (det C) = log(1/V ),

(18)

where V is the volume of the error-ellipsoid whose
semimajor axes are defined by the covariance matrix.

3.2 The quantum kicked top

How does the presence of chaos in the control dynam-
ics influence our ability to perform tomography? In
order to address this question, we chose the ‘kicked-
top’ dynamics [4] as the paradigm to explore quantum
chaos in tomography. The Hamiltonian for the kicked
top (after setting h̄ = 1) is given by

H(t) = 1

τ
pJx + 1

2j
κJ 2

z

∞∑
n=−∞

δ(t − nτ). (19)

Here, the operators, Jx , Jy and Jz are the angular
momentum operators obeying the commutation rela-
tion [Ji, Jj ] = iεijkJk . The first term in the Hamil-
tonian describes a precession around the x-axis with an
angular frequency p

τ
, and the second term describes a

periodic sequence of kicks separated by time period τ .
Each kick is an impulsive rotation about the z-axis by
an amount proportional to Jz. Choosing the external
field to act in delta kicks allows us to express the Flo-
quet map (transformation after one period) in a simple
form of sequential rotations as

Uτ = e−iλJ 2
z /2j e−iαJx , (20)
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where α and λ are related to p and κ , respectively, in
terms of the kicking period. The evolution of the initial
quantum state has the form UnρU†n, where n enumer-
ates the kick number or the periodic application of the
map. The classical map can be obtained by considering
the Heisenberg evolution of the expectation values of
the angular momentum operators in a familiar way [4].

The classical dynamics consists of the motion of
a unit spin vector on the surface of the sphere. The
z-component of a spin and the angle φ, denoting its
orientation in the x–y plane, are canonically conjugate,
and thus the spin constitutes one canonical degree of
freedom. The classical dynamical map has the same
physical action as described above in the quantum con-
text – precession of the spin around the x-axis with an
angular frequency α followed by an impulsive rotation
around the z-axis by an amount proportional to Jz with
a proportionality constant λ. In our analysis, we fix
α = 1.4 and choose λ to be our chaoticity parameter.
As we vary λ from 0 to 7, the dynamics change from
highly regular to completely chaotic. As the total mag-
nitude of the spin is a constant of motion, our classical

map is two dimensional. We visualize the phase by
plotting the z and y components of motion after every
application of the dynamical map.

Figure 1 shows four different regimes of classi-
cal dynamics. With the parameters α = 1.4, λ = 0.5
(figure 1a), the dynamics are highly regular. When
α =1.4 and λ = 2.5 (figure 1b), we see a mixed space
with chaotic and regular regions of comparable size.
The parameters, α = 1.4, λ = 3.0 (figure 1c), give a
phase space that has mostly chaotic regions and finally,
α=1.4, λ=7.0 gives a completely chaotic phase space
(figure 1d).

A central result of quantum chaos is the connection
with the theory of random matrices [4]. In the limit of
large Hilbert space dimensions (small h̄) for parame-
ters, such that the classical description of the dynamics
shows global chaos, the eigenstates and eigenvalues of
the quantum dynamics have the statistical properties of
an ensemble of random matrices [6]. The appropriate
ensemble depends on the properties of the quantum
system under time-reversal symmetry [4]. We thus
seek to determine whether there exists an antiunitary

Figure 1. Phase-space plots for the kicked top in four regimes. (a) Regular phase space: α = 1.4, λ = 0.5, (b) mixed
phase space: α = 1.4, λ = 2.5, (c) mostly chaotic: α = 1.4, λ = 3.0, (d) fully chaotic phase space: α = 1.4, λ = 7.0. The
figures depict trajectories on the southern hemisphere (x < 0) of the unit sphere where X = Jx/j , Y = Jy/j and Z = Jz/j ,
and we take the limit j → ∞ to get the classical limit as in [4].
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(time-reversal) operator T that has the following action
on the Floquet operator:

T UτT
−1 = U†

τ = eiαJx eiλJ 2
z /2j . (21)

Consider the generalized time-reversal operation

T = eiαJxK, (22)

where K is the complex conjugation operator. It then
follows that

T UτT
−1 = (eiαJxK)(e−iλJ 2

z /2j e−iαJx )(Ke−iαJx )

= eiαJx (e+iλJ 2
z /2j eiαJx )e−iαJx

= eiαJx e+iλJ 2
z /2j = U†

τ . (23)

So the dynamics is time-reversal invariant. Moreover,
as T 2 = 1, there is no Kramer’s degeneracy. Given
these facts, for parameters in which the classical
dynamics is globally chaotic, we expect the Floquet
operator to have the statistical properties of a random
matrix chosen from the circular orthogonal ensemble
(COE) [4].

In order to have maximum information gain, we need
to condition the dynamics so that we maximize 1/V =√

det(C−1). The quantity Tr(C−1) is constrained at tn.
One can show that after n steps

Tr(C−1) =
∑
i,α

(Oi,α)2 = n‖O(0)‖2, (24)

where ‖O(0)‖2 = ∑
α Tr(O(0)Eα)2 is the Hilbert–

Schmidt square norm and O(0) = Jz for our case.
Therefore, from the theorem of the arithmetic and
geometric means,

det(C−1) ≤
(

1

D
Tr(C−1)

)D

=
( n

D
‖O(0)‖2

)D

, (25)

where D = d2 − 1 is the rank of the regularized cova-
riance matrix. The maximum possible value of the
mutual information is attained when all eigenvalues
are equal, saturating the above inequality. At a given
time step, the dynamics that gives the largest mutual
information is the one that makes the eigenvalues most
equal. If we normalize the eigenvalues of the inverse
of the covariance matrix, then as a probability dis-
tribution, its Shannon entropy E, is a measure of
how evenly we have sampled all the directions in the
operator space. We reach maximum entropy when we
measure all directions in the space of matrices equally,

Emax = log(d2 − 1). This is the most unbiased mea-
surement we can implement that will lead to the highest
fidelities, on average, for a random state.

3.3 Signatures of chaos: Information gain in the fully
chaotic regime and random matrix theory

3.3.1 Results and discussion. We are now ready to
explore the role of chaos in the performance of tomog-
raphy. Throughout this section, we consider spin J = 10,
a d = 21 dimensional Hilbert space, which is suffi-
ciently large that a minimum uncertainty spin coherent
state is a sufficiently confined ‘wavepacket’ that it can
resolve features in the classical phase space. Figure 2
shows the average fidelity of reconstruction of 100
states picked at random according to the Haar mea-
sure as a function of the number of applications of
the kicked top map, and for different values of chaotic-
ity parameter. We see that the rate of increase in
fidelity increases with the degree of chaos. The final
fidelity achieved after a fixed number of kicks is also
correlated with the degree of chaos. We can under-
stand the above results by studying the information
gain in tomography as a function of the degree of chaos
in the control dynamics. Figure 3 shows the beha-
viour of entropy E of the covariance matrix, as defined
above, as a function of the number of applications
of the kicked top map, and for different values of
chaoticity parameter. We see that the rate of increase

Figure 2. Fidelity of reconstruction as a function of the
number of applications of the kicked top map. The fidelity
is calculated as the average fidelity of reconstruction of 100
states picked at random according to the Haar measure. The
parameters of the kicked top are as described in the text,
with α = 1.4 fixed. We show fidelity for different choices of
chaoticity parameters. Both the rate of growth and the final
value of fidelities are increased with higher values of λ.
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Figure 3. The Shannon entropy of the normalized eigen-
values of the inverse of covariance matrix as a function of
the number of applications of the kicked top map: (a) Short-
time behaviour and (b) long-time/asymptotic behaviour.
The parameters are as described in the text.

of entropy for short times, figure 3a, is correlated with
the degree of chaos present in the control dynamics.
The asymptotic value of the entropy reached also in-
creases with the chaoticity parameter. Chaotic dynamics
provides a measurement record with a large signal-to-
noise ratio in all the directions in the operator space.
An increase in the chaoticity parameter results in an
increasingly unbiased measurement process that will
yield high fidelities for estimating random quantum
states. Figure 3a shows the behaviour of entropy at
short time-scales, while we see asymptotic behaviour in

figure 3b. The collective FI, 1/Tr(C), tells us about the
amount of information our measurement record con-
tains about the parameters that define the density
matrix. Figure 4 shows the behaviour of the FI as a
function of the number of applications of the kicked top
map, and for different values of chaoticity parameter.
We see that the rate of increase of the FI is correlated
with the degree of chaos present in the control dynam-
ics. As our dynamics become increasingly chaotic, we
obtain higher values for the FI at a given time. We
expect the FI to be correlated with the average fidelities
of estimation for an ensemble of random states. When
the system is driven by dynamics that are completely
chaotic, we expect the information gain and the fidelity
to follow the predictions from random matrix theory.
Figure 5 shows the behaviour of fidelity, Shannon
entropy and the FI of the inverse of the covariance
matrix as functions of the number of applications of

Figure 4. The FI of the parameter estimation in tomogra-
phy as a function of the number of applications of the kicked
top map: (a) Short-time behaviour and (b) long-time/
asymptotic behaviour. The parameters are as described in
the text.
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Figure 5. Comparison between the tomography performed by the repeated application of kicked top in the fully chaotic
regime (the blue line) and that by a typical random unitary picked from the COE (the green line). (a) The average fidelity
of reconstruction of 100 states picked at random according to the Haar measure, (b) the Fisher information, (c) the Shannon
entropy of the normalized eigenvalues of the inverse of covariance matrix as a function of the number of applications of the
map. The dotted line gives the upper bound on the entropy, Emax = log(d2 − 1).

the kicked top map (the blue line) and compares them
with the corresponding quantities for a typical random
unitary picked from the COE (the green line). We see
a strong agreement between our predictions from ran-
dom matrix theory and the entropy calculation for the
evolution by a completely chaotic map.

We test our predictions from the random matrix the-
ory for chaotic maps without a time-reversal symmetry.
For example, another type of the ‘kicked top’ map
without time-reversal symmetry [42] is given by

Uτ = e−iλ1−iJ 2
x −iα1Jx e−iλ2−iJ 2

y −iα2Jy e−iλ3J
2
z −iα3Jz .

(26)

In figure 6, we repeat the above calculations for this
map. In this case, the appropriate random matrix ens-
emble is the CUE. We see an excellent agreement bet-
ween the behaviour of fidelity, Shannon entropy and
the FI, as predicted by random matrix theory, and that
for the evolution by a completely chaotic map without
the time-reversal symmetry [42].

When all the eigenvalues of the inverse of the covari-
ance matrix are equal, we have an upper bound on the
entropy, Emax = log(d2 − 1). Figures 5 and 6 compare
the entropy values achieved by the repeated application

of the same unitary (time-reversal invariant or other-
wise) to Emax. We see that we fall significantly short of
Emax by such a procedure.

So far, we have considered the application of the
same unitary matrix periodically to obtain the measure-
ment record. However, this alone does not give us an
informationally complete measurement record; high
fidelities are reached only when we make use of the
positivity constraint [43]. On the other hand, we can
consider application of a series of different random uni-
taries [44]. In that case, we expect to rapidly reach an
informationally complete set and thus rapidly gain
information about tomography. In figure 7, we plot
fidelities, Shannon entropy and the FI achieved by
applying a different random unitary at each time step,
picked from the unitarily-invariant Haar measure, and
compare it with the results obtained by the repeated
application of the same unitary (picked from the COE
and CUE). We also see that we reach the upper bound,
Emax, asymptotically, by this method. Indeed, an
application of a different random unitary is the most
unbiased dynamics we can hope to perform.

3.3.2 Analytical expressions for information gain. In
this section, we use random matrix theory to predict
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Figure 6. Same as figure 4, but for a kicked top without time-reversal invariance (eq. (26)) (the blue line). In this case as
well, the results are well predicted by modelling the dynamics by random matrices sampled from the CUE (the green line).
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Figure 7. Comparison between tomography performed by applying a different random unitary at each time step, picked
from the unitarily invariant Haar measure (magenta line) and that by a repeated application of a random unitary picked from
the COE (blue line) and the CUE (red line). The dotted line gives the upper bound on the entropy, Emax = log(d2 − 1).

the information gain in tomography when we apply the
unitary map Uτ periodically.

(1) The quantum kicked top: In our system, we have
a symmetry given by the parity operator R that has the
form

R = e−iπJx . (27)

Our unitary map, U , being the kicked top or the appro-
priate COE sampled matrix, will commute with R, i.e.,
[R, U] = 0. Thus, there exists a basis in which U and
R are diagonal. First, note that the eigenvalues of R are
±1. Then, let us define a basis, {|Rj 〉}, where |Rj 〉 =
|R(−)

j 〉 for j = 1, . . ., a and |Rj 〉 = |R(+)
j 〉 for k = a +

1, . . ., d, corresponding to the eigenvalues −1 and +1,
and where a ∈ {(d + 1)/2, (d − 1)/2}. As U is also
diagonal in this basis, an asymptotic approximation to
the inverse of the covariance matrix is

C−1 ≈ n

⎡
⎣ d∑

j,k=1

|〈Rk|O0|Rj > |2|Rk,Rj〉〈Rk,Rj|

+
d∑

j �=k=1

〈Rj|O0|Rj〉〈Rk|O0|Rk〉|Rj ,Rj〉〈Rk,Rk|
⎤
⎦ .

(28)

Our initial observable, O0 = Jz, anticommutes with R,
which means

RJzR
† = −Jz. (29)

Because of this, we see that

〈R(−)
j |Jz|R(−)

k 〉 = −〈R(−)
j |Jz|R(−)

k 〉 = 0,

for j, k = 1, . . . , a (30)

and

〈R(+)
j |Jz|R(+)

k 〉 = −〈R(+)
j |Jz|R(+)

k 〉 = 0,

for j, k = a + 1, . . . , d (31)

As discussed in eq. (24), we know that after a time
tn, the trace of the inverse covariance matrix is given

by Tr(C−1) = nβ, where β = ‖O(0)‖2 is a con-
stant independent of the Floquet map, Uτ , driving the
system.

Thus, the matrix representation of Jz in the ordered
basis in which R is diagonal is antiblock diagonal. We
immediately see that eq. (28) simplifies to

C−1 ≈ n

⎡
⎣ d∑

j,k=1

|〈Rk|O0|Rj 〉|2|Rk, Rj 〉〈Rk, Rj |
⎤
⎦ .

(32)

In this basis, C−1 is approximately diagonal. So we
can actually give an analytical formula for the Shan-
non entropy. Remember that we previously defined the
normalization factor as β. So the eigenvalues of C−1

are simply |〈Rk|O0|Rj 〉|2/β. To compute the expected
value of the Shannon entropy, we use the results of
Wootters [45] for the expected value of entropy of the
entries of a state expressed in a random basis, and sam-
pled from the appropriate ensemble. We see that as Jz

is antiblock diagonal, there are only 2 × (d − 1)/2 ×
(d + 1)/2 nonzero terms.

Now, we can directly use Wootters formula for the
expected Shannon entropy,

Hexp = log(D) − 0.729637

= log

(
d2 − 1

2

)
− 0.729637. (33)

For d = 21, we get Hexp = 4.66. Numerically, we find
a somewhat larger value for the kicked top, HKT
= 4.85 and Hav = 4.69 for entropy averaged over
100 block diagonal COE matrices. This is due to the
fluctuations in H about the expected value and these
fluctuations reduce as we increase d and we find an
excellent convergence with the analytical expression
derived above.

(2) The CUE: The above analysis can be carried over
to a quantum map that does not have time-reversal sym-
metry. In this case, as there is no parity symmetry, there
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are d2 − 1 nonzero terms in eq. (28), and therefore, we
get for the expected Shannon entropy as

Hexp = log(d2 − 1) − 0.729637, (34)

which agrees remarkably well with our numerical sim-
ulations (for d = 21, Hexp = 5.35).

(3) A different Haar random unitary at each time
step: In this case, we explore the complete Hilbert
space and we get Hexp = log(d2−1), which agree very
well with our simulations (for d = 21, Hexp = 6.08).
The maximum possible value of the mutual informa-
tion is attained when all eigenvalues of the covariance
matrix are equal. In order to extract maximum infor-
mation about a random state, we must measure all
components of the Bloch vector with maximum pre-
cision. In finite time, we obtain the best estimate by
dividing evenly among all the observables.

4. Conclusion and outlook

The missing information in deterministic chaos is the
‘initial condition’. A time history of a trajectory at
discrete times is an archive of information about the
initial conditions given perfect knowledge about the
dynamics. Moreover, if the dynamics is chaotic, the
rate at which we learn information increases due to the
rapid Lyapunov divergence of distinguishable trajecto-
ries and we expect unbiased information because of the
ergodic mixing of phase space. That is, if the informa-
tion is generated by chaotic dynamics, the trajectory
is random, and all initial conditions are equally likely
until we invert the data and discover the initial state.

Dynamics sensitive to the initial conditions will
reveal more information about the initial conditions
as one observes the system trajectory in the course
of time. Classically chaotic dynamics generates this
unpredictability, or information to be gained about the
initial coordinates of the trajectory. Similarly, we found
that the rate at which one obtains information about
an initially unknown quantum state in quantum tomog-
raphy is correlated with the extent of chaos in the
system. This is a new quantum signature of classical
chaos. In fact, our results can be regarded as signa-
tures of chaos in quantum systems undergoing unitary
evolution, as measurement backaction is negligible. We
have been able to quantify the information gain using
the FI associated with estimating the parameters of
the unknown quantum state. When the system is fully

chaotic, the rate of information gain agrees with the
predictions of random matrix theory.

At its core, our approach is akin to the Kolmogorov–
Sinai (KS) entropy measure of chaos [46]. Incomplete
information about the initial condition leads to unpre-
dictability of a time history. In the presence of classical
chaos, in order to predict which coarse-grained cell
in phase space a trajectory will land at a later time,
we require an exponentially increasing fine-grained
knowledge of the initial condition. The KS entropy
is the rate of increase, and is related to the positive
Lyapunov exponents of the system. Is there a mean-
ingful quantum definition of KS entropy? Our results
seem to suggest this. In order to predict the measure-
ment record with a fixed uncertainty, we need to learn
more and more about the initial condition. Is the rate
at which we obtain this information exponentially fast
when the system is quantum chaotic? Does this con-
verge to the classical Lyapunov exponents in the limit
of large action (small h̄)? There are many important
subtleties in these questions.

As we gain more and more information, eventually
quantum backaction becomes important in the mea-
surement history. The number of copies we have and
the shot noise on the probe limits the ultimate reso-
lution with which we can deduce the quantum state
[47]. Unlike classical dynamics, we can never consider
infinite resolution, even in principle. The quantum res-
olution is limited by the size of h̄. As the dimension of
the Hilbert space increases, and hence the effective h̄

decreases, we expect to see an even sharper difference
in the information gain as a function of chaoticity. In
the limit when d, the dimension of the Hilbert space,
becomes infinity, we expect the rate of information
gain to be intimately related to the classical Lyapunov
exponents. How all these translate into a quantum def-
inition of KS entropy is an important subject of further
investigation.

In principle, we never have perfect knowledge of the
dynamics. This is related to hypersensitivity to per-
turbations [48] in quantum chaotic dynamics. This
implies that, though quantum systems show no sen-
sitivity to initial conditions, due to unitarity, they
do show a sensitivity to parameters in the Hamilto-
nian [8,49]. How does this fundamentally limit our
ability to perform quantum state reconstruction when
the system is sufficiently complex, and the equivalent
dynamics is chaotic? This poses interesting questions
for quantum tomography and, more interestingly, for
quantum simulations. Under what conditions are the
system dynamics sensitive to perturbations and how
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does this effect our ability to perform quantum tomog-
raphy? Under what conditions does the underlying
quantum chaos affect our ability to accomplish quan-
tum simulations in general? We hope to address these
questions in our future work.
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