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Abstract. By using the method of dynamical system, the bidirectional wave equations are considered. Based on
this method, all kinds of phase portraits of the reduced travelling wave system in the parametric space are given.
All possible bounded travelling wave solutions such as dark soliton solutions, bright soliton solutions and periodic
travelling wave solutions are obtained. With the aid of Maple software, numerical simulations are conducted for
dark soliton solutions, bright soliton solutions and periodic travelling wave solutions to the bidirectional wave
equations. The results presented in this paper improve the related previous studies.
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1. Introduction

In this paper, we consider the travelling wave solutions
of the bidirectional wave equations

{
vt + ux + (uv)x + auxxx − bvxxt = 0,

ut + vx + uux + cvxxx − duxxt = 0,
(1)

where a, b, c and d are real parameters. x represents
the distance along the channel, t is the elapsed time,
v is the dimensionless deviation of the water surface
from its undisturbed position and u is the dimension-
less horizontal velocity [1]. The bidirectional wave
equations are a type of important mathematical physics
equation which is used as a model equation for the
propagation of long waves on the surface of water with
a small amplitude and play a crucial role in nonlinear
physics fields.

Recently, some important mathematical physics
equations have been widely studied [2–5]. In particu-
lar, the bidirectional wave equations have been studied

by some researchers. Some exact travelling wave solu-
tions were obtained by Lee and Sakthivel [1] by using
the modified tanh–coth function method. Chen [6] used
the auxiliary ordinary equation method to obtain some
exact solutions of eq. (1). However, we notice that
the previous authors did not consider the dynamics of
eq. (1) and did not find all possible travelling wave
solutions. Therefore, it is essential to study the dynamics
of eq. (1) and find some new travelling wave solutions
of eq. (1). Here, we use the approach of dynamical
system to solve eq. (1) and to give some new travel-
ling wave solutions of eq. (1) [7–10]. The approach
of dynamical system is concise, direct and effective
which is based on the method of the bifurcation the-
ory of planar dynamical system. Unlike other methods,
the approach of dynamical system can not only obtain
exact solutions but also study bifurcations of nonli-
near travelling wave equations. Using this method,
we can obtain some travelling wave solutions easily
and enrich the diversity of solution structures of the
bidirectional wave equations.
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To find travelling wave solutions of (1), we assume
that

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = kx − ωt,

(2)

where k and ω are travelling wave parameters. Substi-
tuting (2) into (1), we have⎧⎨
⎩

−ωV ′ + kU ′ + kUV ′ + kU ′V + ak3U ′′′
+ bk2ωV ′′′ = 0,

−ωU ′ + kV ′ + kUU ′ + ck3V ′′′ + dk2ωU ′′′ = 0.

(3)

Then, we consider the following transformation:

U = mV, (4)

where m is a constant to be determined later. Substitu-
ting (4) into (3), we have⎧⎪⎪⎨
⎪⎪⎩

−ωV ′ + mkV ′ + 2mkV V ′ + mak3V ′′′
+ bk2ωV ′′′ = 0,

−mωV ′ + kV ′ + m2kV V ′ + ck3V ′′′
+ mdk2ωV ′′′ = 0.

(5)

Equating the two equations, we get the following
conditions:

m = 2, k = −ω, b − 2a = 2d − c. (6)

In our work, we always assume that (1) satisfies (6).
Under conditions (6), (5) is reduced to the following
equation:

(2ak2 − bk2)V ′′ + 2V 2 + 3V + g = 0, (7)

where g is an integration constant. Suppose 2ak2 −
bk2 �= 0, then

α = 2

2ak2 − bk2
, β = 3

2ak2 − bk2
,

γ = g

2ak2 − bk2
. (8)

Finally, we have the following equation:

V ′′ + αV 2 + βV + γ = 0 (9)

which corresponds to the two-dimensional Hamiltonian
system

dV

dξ
= y,

dy

dξ
= −αV 2 − βV − γ (10)

with the Hamiltonian

H(V, y) = 1

2
y2 + 1

3
αV 3 + 1

2
βV 2 + γV . (11)

In addition, when the integration constant g is 0 (that
is γ = g/(2ak2 − bk2) = 0), (1) is reduced to the
following equation:

V ′′ + αV 2 + βV = 0, (12)

which corresponds to the two-dimensional Hamilto-
nian system
dV

dξ
= y,

dy

dξ
= −αV 2 − βV (13)

with the Hamiltonian

H(V, y) = 1

2
y2 + 1

3
αV 3 + 1

2
βV 2. (14)

According to the Hamiltonian, we can get all kinds
of phase portraits in the parametric space. Because the
phase orbits defined by the vector fields of system (10)
determine all their travelling wave solutions of eq. (1),
we can investigate the bifurcations of phase portraits of
system (10) to seek the travelling wave solutions of eq.
(1). The rest of the paper is organized as follows: In
§2, we give all phase portraits of system (10) and dis-
cuss the bifurcations of phase portraits of system (10).
In §3, according to the dynamics of the phase orbits
of system (10) given by §2, we give all possible exact
solutions of eq. (1) for γ �= 0 and γ = 0. Finally, a
conclusion is given in §4.

2. Bifurcations of phase portraits of system (10)

2.1 The case of γ �= 0

We first consider the bifurcations of phase orbits of
system (10) when γ �= 0. Let the right-hand terms
of system (10) be zeros, i.e. y = 0 and −αV 2 −
βV − γ = 0. Obviously, the abscissas of equilibrium
points of system (10) are the real roots of f (u) =
αv2 + βv + γ . Then, we find that the system (10)
has two equilibrium points at S1((−β + √

�)/2α, 0)

and S2((−β − √
�)/2α, 0) if � > 0, where � =

β2 − 4αγ . If � = 0, system (10) has a unique
equilibrium at O(−β/2α, 0). If � < 0, system (10)
has no equilibrium. For the Hamiltonian H(V, y) =
1
2y2 − 1

3αV 3 − 1
2βV 2 − γV = h, we write h1 =

H((−β + √
�)/2α, 0) = (β3 − 6αβγ − √

�3)/12α2,
h2 = H((−β − √

�)/2α, 0) = (β3 − 6αβγ + √
�3)/

12α2. With the change of the parameter group of α, β

and γ , the phase portraits for (10) when γ �= 0 are
shown in figures 1 and 2.

From figures 1 and 2, we summarize crucial conclu-
sions as follows:

(1) When � > 0, system (10) has bounded orbits;
when � ≤ 0, system (10) has no bounded orbits.

(2) When � > 0, system (10) has a unique homo-
clinic orbit � which is asymptotic to the saddle
and enclosing the centre.

(3) When � > 0, there is a family of periodic orbits
which are enclosing the centre and filling up the
interior of the homoclinic orbit �.
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Figure 1. The bifurcations of phase portraits of (10) when α < 0 and (a) � > 0, (b) � = 0 and (c) � < 0.

(a) (b) (c)
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Figure 2. The bifurcations of phase portraits of (10) when α > 0 and (a) � > 0, (b) � = 0 and (c) � < 0.

(a) (b) (c)
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Figure 3. The bifurcations of phase portraits of (13) when α < 0 and (a) β < 0, (b) β > 0 and (c) β = 0.
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(a) (b) (c)
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Figure 4. The bifurcations of phase portraits of (13) when α > 0 and (a) β < 0, (b) β > 0 and (c) β = 0.

2.2 The case of γ = 0

We consider the bifurcations of phase portraits of (10)
when γ = 0. We consider the phase portraits of
(13). Let the right-hand terms of system (13) be zeros,
i.e. y = 0 and −αV 2 − βV = 0. We find that
system (13) has two equilibrium points S(−(β/α), 0)

and O(0, 0). For the Hamiltonian H(V, y) = 1
2y2 +

1
3αV 3 + 1

2βV 2 = h, we write h0 = H(0, 0) = 0,
h3 = H(−(β/α), 0) = (β3/6α2). With the change
of the parameter group of α and β, the system has
different phase portraits for (13) which are shown in
figures 3 and 4.

For α = 2/(2ak2 − bk2) and β = 3/(2ak2 − bk2),
α and β are of the same sign. From the first image
of figure 3 and the second image of figure 4, we
summarize crucial conclusions as follows:

(1) System (13) has a unique homoclinic orbit �

which is asymptotic to the saddle and enclosing
the centre.

(2) There is a family of periodic orbits which are
enclosing the centre and filling up the interior of
the homoclinic orbit �.

3. Exact explicit travelling wave solutions of eq. (1)

In this section, we consider the exact solutions of eq.
(1). Because only bounded travelling waves are mean-
ingful to a physical model, we just pay attention to the
bounded solutions of eq. (1). By using the first equa-
tion of (10) and the Jacobian elliptic functions [11], we
have the following results:

3.1 The case of γ �= 0

(1) When α < 0 and h = h2, there exists a dark
soliton solution which corresponds to a smooth

homoclinic orbit � of (10) defined by H(ψ, y) =
h2, and we have the parametric representation:

V (ξ) = β + √
� − 3

√
� sech2((

√
�

4
/2)ξ)

2|α| ,

(15)

where � = β2 − 4αγ .

Figure 5. The 3D graphics of (19). (a) The 3D graphics of
v and (b) the 3D graphics of u.
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Figure 6. The 3D graphics of (20). (a) The 3D graphics of
v and (b) the 3D graphics of u.

(2) When α < 0 and h ∈ (h1, h2), there exists a
family of periodic solutions which correspond to
the family of periodic orbits �h of (10) defined
by H(φ, y) = h, h ∈ (h1, h2), and we have the
parametric representation:

V (ξ) = z3 + (z2 − z3)sn2

×
(√

6B(z1 − z3)

6
ξ,

√
z2 − z3

z1 − z3

)
, (16)

where z1 > z2 > z3 and the parameters z1, z2, z3
are defined by y2 = 2h− γV − βV 2 − 2

3αV 3 =
−2

3α(z1 − V )(z2 − V )(V − z3).
(3) When α > 0 and h = h2, there exists a bright

soliton solution which corresponds to a smooth
homoclinic orbit � of (10) defined by H(ψ, y) =
h2, and we have the parametric representation:

V (ξ) = −β − √
� + 3

√
� sech2((

√
�

4
/2)ξ)

2|α| ,

(17)

where � = β2 − 4αγ .
(4) When α > 0 and h ∈ (h1, h2), there exists a

family of periodic solutions which correspond to

Figure 7. The 3D graphics of (21). (a) The 3D graphics of
v and (b) the 3D graphics of u.

the family of periodic orbits �h of (10) defined
by H(φ, y) = h, h ∈ (h1, h2), and we have the
parametric representation:

V (ξ) = z1 − (z1 − z2)sn2

×
(√

6α(z1 − z3)

6
ξ,

√
z1 − z2

z1 − z3

)
, (18)

where z1 > z2 > z3 and the parameters z1, z2, z3
are defined by y2 = 2h − γV − βV 2 − 2

3αV 3 =
2
3α(z1 − V )(V − z2)(V − z3).

By using these results and considering condition (6),
we obtain exact explicit travelling wave solutions of
eq. (1) as follows:

(1) When α < 0 and h = h2⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(x, t)= β+√

�−3
√

�sech2((
√

�
4
/2)(kx−ωt))

|α| ,

v(x, t)= β+√
�−3

√
�sech2((

√
�

4
/2)(kx−ωt))

2|α| .

(19)
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(2) When α < 0 and h ∈ (h1, h2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, t) = 2

(
z3 + (z2 − z3)sn2

(√
6B(z1 − z3)

6
(kx − ωt),

√
z2 − z3

z1 − z3

))
,

v(x, t) = z3 + (z2 − z3)sn2
(√

6B(z1 − z3)

6
(kx − ωt),

√
z2 − z3

z1 − z3

)
.

(20)

(3) When α > 0 and h = h2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u(x, t) = −β − √

� + 3
√

�sech2((
√

�
4
/2)(kx − ωt))

α
,

v(x, t) = −β − √
� + 3

√
�sech2((

√
�

4
/2)(kx − ωt))

2α
.

(21)

Figure 8. The 3D graphics of (22). (a) The 3D graphics of
v and (b) the 3D graphics of u.

Figure 9. The 3D graphics of (25). (a) The 3D graphics of
v and (b) the 3D graphics of u.
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(4) When α > 0 and h ∈ (h1, h2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, t)=2

(
z1−(z1−z2)sn2

(√
6α(z1 − z3)

6
(kx−ωt),

√
z1 − z2

z1 − z3

))
,

v(x, t)=z1−(z1 − z2)sn2
(√

6α(z1−z3)

6
(kx − ωt),

√
z1−z2

z1−z3

)
.

(22)

3.2 The case of γ = 0

(1) When β < 0, there exists a smooth dark soliton
solution which corresponds to a smooth homo-
clinic orbit � of (13) defined by H(φ, y) = 0,
and we have the parametric representation:

V (ξ) = 3β − 3β tanh2((
√−β/2)ξ)

−2α
. (23)

(2) When β >0, there exists a smooth dark soliton so-
lution which corresponds to a smooth homoclinic
orbit � of (13) defined by H(φ, y) = h3, and we
have the parametric representation:

V (ξ) = −β

α

(
1 − 3

2
sech2

(√
β

2
ξ

))
. (24)

By using these results and considering condition (6),
we obtain exact explicit travelling wave solutions of
eq. (1) as follows:

(1) When β < 0 and h = 0

⎧⎪⎪⎨
⎪⎪⎩

u(x, t) = −3β − 3β tanh2((
√−β/2)(kx − ωt))

α
,

v(x, t) = −3β − 3β tanh2((
√−β/2)(kx − ωt))

2α
.

(25)

(2) When β > 0 and h = h3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, t) = −2
β

α

(
1 − 3

2
sech2

(√
β

2
(kx − ωt)

))
,

v(x, t) = −β

α

(
1 − 3

2
sech2

(√
β

2
(kx − ωt)

))
.

(26)

Based on the above discussions, by using the numer-
ical simulation method, we simulate all the exact
bounded travelling wave solutions of eq. (1) with the
aid of Maple software.

In figure 5, we take m = 2, k = 1, c = −1, a =
1
6 , b = 1, c = 1

3 , d = 1
2 , −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1. In

figure 6, we take m = 2, k = 1, c = −1, a = 1
6 , b =

1, c = 1
3 , d = 1

2 , h = −1
6 , −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1.

In figure 7, we take m = 2, k = 1, c = −1, a = 1
2 , b =

1
3 , c = 8

3 , d = 1, −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1. In
figure 8, we take m = 2, k = 1, c = −1, a = 1

2 , b =
1
3 , c = 8

3 , d = 1, h = −1
6 , −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1.

In figure 9, we take m = 2, k = 1, c = −1, a = 1
6 , b =

1, c = 1
3 , d = 1

2 , −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1. In
figure 10, we take m = 2, k = 1, c = −1, a = 1

2 , b =
1
3 , c = 8

3 , d = 1, −5 ≤ x ≤ 5, 0 ≤ t ≤ 0.1.

Figure 10. The 3D graphics of (26). (a) The 3D graphics
of v and (b) the 3D graphics of u.
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4. Conclusion

To summarize, by using the dynamical system method,
the new exact travelling wave solutions (solitary wave
solutions and periodic wave solutions) have been
obtained for the bidirectional wave equations. Among
them, eqs (19), (21), (25) and (26) are solitary wave
solutions which are expressed by the hyperbolic func-
tions. Equations (20) and (22) are periodic travelling
wave solution which are expressed by Jacobian ellip-
tic functions. The hyperbolic function solutions and the
Jacobian elliptic function solutions in this paper are dif-
ferent from the solutions presented by other methods
before. These results enrich the diversity of solution
structures of the bidirectional wave equations.

From the above discussions, it is clear that the
dynamical system method is a very powerful method
to seek exact travelling wave solutions for nonlinear
travelling wave equations. This method reduces large
amount of calculations and allows us to solve com-
plicated nonlinear evolution equations in mathematical
physics. Moreover, this method can also be applied to
other nonlinear travelling wave equations which can be
reduced to integrable system.
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