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Abstract. Using the variational method and supersymmetric quantum mechanics we calculated, in an approxi-
mate way, the eigenvalues, eigenfunctions and wave functions at the origin of the Cornell potential. We compared
results with numerical solutions for heavy quarkonia cc̄, bb̄ and bc̄.

Keywords. Quarkonium; variational method; supersymmetric quantum mechanics.

PACS Nos 14.20.Lq; 03.65.−w; 14.40.Pq; 11.80.Fv

1. Introduction

Since the discovery of J/ψ in 1974 [1,2], the study
of heavy quarkonia has been very valuable in hadron
physics because they involve the non-perturbative as-
pect of quantum chromodynamics (QCD) and there are
many experimental data about them [3–5]. From a the-
oretical perspective, heavy quarkonia have been studied
using several models [6,7], with the non-relativistic
potential models standing out due to their simplicity,
where quark interaction is modelled using potential
energy in the usual Schrödinger equation.

This potential picture can be justified for heavy
quarkonia by using non-relativistic QCD (NRQCD)
with a potential that can be expressed as a one-over
quark mass expansion, where the Cornell potential is a
good first term [8–11]. The Cornell potential [12,13]
was one of the first potentials proposed to describe
the interaction between heavy quarks. It corresponds
to a Coulomb potential plus a linear confinement part.
Therefore, the Cornell potential considers general pro-
perties of quark interactions as asymptotic freedom
and confinement. Although there is a large amount of
literature related to quark potentials, we would like
to list refs [7,12–19]. Although this list is incom-
plete, these references are a good starting point on this
topic.

The Schrödinger equation with the Cornell potential
does not provide exact analytical solutions. Although it

can be solved using numerical methods [20,21], it is inte-
resting to obtain analytical solutions (at least approximate
ones) that offer the possibility of different applications.
For example, in many hadron physics applications in
light-cone frame, it is common to see the use of an
analytical ansatz inspired by harmonic oscillator wave
function in constant time frame in order to achieve
the light front wave function used in calculations (for
example, see [22–24]). We believe that it could be
interesting to start from a more realistic wave function,
for example, associated with the Cornell potential.

In this work, we solved, in an approximate way, the
Schrödinger equation with the Cornell potential using
a procedure that corresponds to an adaptation of the
method suggested in [25,26], which considered the
usual variational methods with supersymmetric quan-
tum mechanics (SUSY QM). Some additional exam-
ples using SUSY QM and the variational method can
be found in [27–29].

SUSY QM [30] was born at the beginning of the
1980s in studies about breaking supersymmetry in the-
ories of quantum fields with extra dimensions [31], and
is a technique that allows us to get isospectral potentials
for the Schrödinger equation. The isospectral potential
corresponds to the supersymmetric partner potential
of the original, with the particularity that the ground
state of the original potential is not present in the spec-
trum of the associated isospectral potential. Therefore,

1



73 Page 2 of 7 Pramana – J. Phys. (2016) 87: 73

the ground state of the supersymmetric partner poten-
tial is related to the first excited state of the original
potential. This procedure can be repeated to get succes-
sive potentials, the ground states of which are related
by some standard transformations in SUSY QM to
the different states of the original potential; hence,
SUSY QM can be used to build an infinite family of
isospectral potentials. Thus, if we use the variational
method to get solutions for the ground state of differ-
ent supersymmetric partners of the Cornell potential,
we can obtain the spectrum and wave functions for
heavy quarkonium. It is important to mention that the
standard variational method has been used to study
heavy quarkonium properties by considering different
phenomenological quark potentials [32,33].

The procedure described in the previous paragraph
was used in this work to get approximations to eigen-
values and eigenfunctions for the Schrödinger equation
with the Cornell potential, and we used it to study
heavy quarkonia cc̄, bb̄ and bc̄. Additionally, we paid
special attention to the wave function at the origin
(WFO), which is an important quantity involved in
several decay rates of heavy quarkonium. Although
the procedure described in this paper can be used in
general to study radial and angular excitations, we
restricted our study to only to S states.

This paper consists of four sections. In §2 we summa-
rize the main elements of SUSY QM used in this work.
Section 3 is dedicated to obtaining approximate calcu-
lations of energies, wave functions and WFO for heavy
quarkonium using the variational method and SUSY
QM, and in §4 we discuss our results and conclusions.

2. Basics of SUSY QM

In this section we summarize the main elements of
SUSY QM used in the following sections to calculate
heavy meson properties using the Cornell potential.
For more details, we suggest ref. [30].

We consider the Schrödinger equation for the ground
state with an eigenvalue equal to zero (this can be
done without losing generality, because the potential
can be redefined by adding a constant term equal to
minus ground-state energy). Thus, the wave function
ψ0 obeys

H1ψ0(x) = − h̄2

2m

d2ψ0(x)

dx2
+ V1(x)ψ0(x) = 0. (1)

Then,

V1(x) = h̄2

2m

ψ ′′
0 (x)

ψ0(x)
. (2)

The Hamiltonian H1 can be factorized as

H1 = A†A,

where

A = h̄√
2m

d

dx
+W(x) and A† = − h̄√

2m

d

dx
+W(x).

With this, we observed that for a known V1, the
superpotential W satisfies the Riccati equation

V1(x) = − h̄√
2m

dW(x)

dx
+ W 2(x).

The solution for W(x) in terms of the ground-state
wave function is

W(x) = − h̄√
2m

ψ ′
0(x)

ψ0(x)
. (3)

Additionally, with operators A and A† it is possible
to build a new Hamiltonian H2 given by

H2 = AA†,

and this new Hamiltonian can be expressed as

H2 = − h̄2

2m

d2

dx2
+ V2(x),

where

V2(x) = h̄√
2m

dW(x)

dx
+ W 2(x).

Potentials V1(x) and V2(x) are known as super-
symmetric partner potentials, and they have several
interesting properties (see [30]). It is important to point
out that eigenvalues and eigenfunctions of H1 and H2
are related to

E(2)
n = E

(1)
n+1; E

(1)
0 = 0 (4)

ψ(2)
n = 1√

E
(1)
n+1

Aψ
(1)
n+1 (5)

and

ψ
(1)
n+1 = 1√

E
(2)
n

A†ψ(2)
n . (6)

We pay special attention to the relationship in the
spectrum of H1 and H2 because, with the exception of
the ground state of H1 (that did not appear in H2), addi-
tional levels are the same in both Hamiltonians, i.e.,
potentials V1 and V2 are isospectrals except for E

(1)
0 .

Similarly, starting from H2 and its ground state, we
can build Hamiltonian H3, isospectral to H2 (in the
same sense that H1 and H2 are isospectrals), and if we
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Figure 1. Schematic representation of potential V1 and its
first two supersymmetric partners V2 and V3 with its corre-
sponding spectrum. The ground state in V1 is not present in
V2, ground state of V2 is not present in V3 and so forth. The
shape of each potential is different, but this issue is disre-
garded to explain that the ground state of one potential is not
present in its supersymmetric partner.

repeat this procedure, it is possible to obtain a fam-
ily of isospectral potentials where, as can be seen in
figure 1, the ground state of V2 is related to the first
excited level of V1, the ground state of V3 is related to
the first excited level of V2 and the second level of V1,
and so forth in order to achieve different levels of the
original potential V1.

According to the previous paragraph, the ground
state of H2 corresponds to the first excited level of
H1. This fact is especially important because the com-
mon variational method in quantum mechanics is a
good tool to obtain approximate values for the ground
states in the Schrödinger equation. Therefore, we can
use this simple procedure to get approximate solutions
for ground states for different supersymmetric partner
potentials by using the variational method, and we can
use SUSY QM relationships to get approximate solu-
tions for different levels of a potential of interest V1,
such as the Cornell potential.

3. Solutions for the Cornell potential with
variational methods and SUSY QM

In this section we use the procedure described in §2.
This was suggested in [25,26] and we adapted it to cal-
culate energies, wave functions and WFO for S states
in quarkonia cc̄, bb̄ and bc̄ using the Cornell potential.

Consider Unl(r) = rRnl(r), which satisfies

− 1

2μ

d2Unl(r)

dr2
+ Veff(r)Unl(r) = EnUnl(r), (7)

where h̄ = 1, μ is the reduced mass for heavy
quarkonium considered, and

Veff(r) = V (r) + l(l + 1)

2μr2
.

Although the procedure we considered can be used
to study properties of different radial and angular exci-
tations, in this work we only consider the case l = 0
(S states). Thus, the effective potential is equal to the
Cornell potential,

Veff(r) = V (r) = −κ

r
+ βr, (8)

where the parameters involved are [12,13,34,35]

κ = 0.52; β = 1

(2.34)2
GeV2

and the quark masses are

μc = 1.84

[
GeV

c2

]
and μb = 5.18

[
GeV

c2

]
.

With this potential it is possible to gain a mass spec-
trum for quarkonia by using

mn(Q̄1Q̄2) = mQ1 + mQ2 + En + �, (9)

where mQ1 and mQ2 are masses of the quarks and the
antiquarks inside the quarkonia considered, En is the
eigenvalue associated with (8), and � is a constant that
must be added to the Cornell potential in (8).

For the variational method we consider the trial wave
function

U(r) = Nrγ e−arb

. (10)

This trial wave function can be used to obtain the
ground state in the Cornell potential and in its super-
symmetric partners to calculate the successive levels
in Cornell potential. In this wave function, γ takes
the values 1, 2, 3,... depending on the calculation of
the ground state of potentials V1, V2,... (according to
§2). Changing this parameter in this way is important,
because to gain approximations for the wave functions
of the Cornell potential for different levels, it will be
necessary to apply successive transformations defined
by (6), and this choice turns out to be the only possibili-
ty to gain finite WFOs with a trial wave function like
(10). Parameters a and b are variational parameters and
N is the normalization constant given by

N =
√

(2a)(1+2γ )/b b

� ((1 + 2γ )/b)
.

To calculate the ground state for the Cornell potential
we use (7) and the trial wave function with γ = 1.
Thus, the expectation value of the energy is

E = − 1

2μ

∫ ∞

0
U(r)

d2

dr2
U(r)dr

+
∫ ∞

0

(
−κ

r
+ βr

)
U2(r)dr.
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By using U(r) given in (10), we get an expectation
value of the energy that depends on parameters a and
b (E(a, b)), and by minimizing this, an approximate
value for the energy and values for the parameters
a and b are obtained. In this case, we can call the
parameters associated with the ground state a0 and b0.

Then, WFO is calculated for the ground state. In
this case we consider two approaches that are equiv-
alent when working with the exact solutions, but they
have different values when using approximate wave
functions. In this case we use R(r) = U(r)/r .

The first approach considered in WFO calculations,
and henceforth called Method 1, is based on a well-
known expression (valid for S states only) that relates
WFO to expectation values for the first derivative of
the potential

|�(0)|2 = μ

2π

〈
dV (r)

dr

〉
.

For S states

�(r) = 1√
4π

R(r).

Therefore,

|R(0)|2 = 2μ

〈
dV (r)

dr

〉
.

The second approach is simply to take r → 0 in the
wave function. This is what we have called Method 2
in the following. According to this, WFO for a ground
state can be found directly from R(r) = (U(r)/r) and
(10) (with γ = 1 for the ground state), and we get

|R(0)|2 = N2 = (2a0)
(1+2γ )/b0 b0

� ((1 + 2γ )/b0)
.

Once we finish with the ground state, we calculate the
first radial excitation in the Cornell potential. Note that
using variational method to approximate the excited
states is not a simple task because it is important to
ensure that the trial eigenfunctions are orthogonal. In
this paper, we solve the problem of the first radial exci-
tation by using the procedure discussed in §2. Then,
we explain how to use SUSY QM and the variational
method to solve 2S states.

Previously, eq. (10) was used with γ = 1 to get solu-
tions for the ground state, thus using the common
variational method, energy values for the 1S states are
obtained, and we fit the parameter in the wave func-
tions. Then ‘0’ index in the variational parameters
indicates that these parameters are associated with the
ground state. With this trial wave function (related to

the ground state of the Cornell potential) we obtain the
superpotential

W21(r) = − 1√
2μ

U ′(r)
U(r)

= −1 + a0b0r
b0

√
2μr

.

The index 21 in W indicates that starting from solutions
of potential V1 (Cornell in this paper), we can build a
potential V2 (an approximate supersymmetric partner
for the Cornell potential)

V2(r) = [W21(r)]
2 + 1√

2μ

(
dW21(r)

dr

)

V2(r) =
(

2 + a0b0r
b0(−3 + a0b0 + a0b0r

b0)

2μr2

)
.

Next, the variational method is used to get an approx-
imate value for the ground-state energy of potential V2.
In this case, the trial wave function has the shape (10)
with γ = 2, and the energy is related to the first excited
state of V1.

For V2, the energy expectation value depends on
a0, b0 (fixed in previous steps when we calculate the
ground state of V1) and a and b, which must be fixed
once this expectation value has been minimized.

It is important to note that in our discussion for
SUSY QM we consider a ground state with eigenvalue
equal to zero; therefore, the ground state of energy for
V2 represents �E2, and consequently the energy for
the first excited state is

E1 = E0 + �E2.

Thereafter, the second excited level in the Cornell
potential is obtained. As we have an approximate solu-
tion for V2, we can build W32 and obtain its super-
symmetric partner V3. If we find the ground state of
this new potential using the variational method using
(10) with γ = 3, we can find the energy of the second
excited state of the original potential by using

E2 = E1 + �E3,

and so forth. Table 1 shows the energy values calcu-
lated with the method used in this paper, and we com-
pare it with an exact numerical solution obtained using
a MATHEMATICA program called mathschroe.nb
[20].

Here we would like to show how we obtained the
wave function for the excited levels in the Cornell
potential. If we have a solution for the ground state
of the potential V2, which we call for example ψ

(2)
0 ,

additionally as we know W21 (we used it to build V2),
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Table 1. Energy values (in GeV) for heavy quarkonia cc̄,
bb̄ and bc̄. Column ‘Exact’ shows the solution that corre-
sponds to numerical calculations using mathschroe.nb with
step h = 0.00001 and the column ‘Ours’ shows the energies
calculated in this work.

cc̄ bb̄ bc̄

En Exact Ours Exact Ours Exact Ours

1s 0.2575 0.2578 −0.1704 −0.1702 0.1110 0.1113
2s 0.8482 0.8096 0.4214 0.3579 0.6813 0.6324
3s 1.2720 1.1427 0.7665 0.5612 1.0686 0.9065

it is possible to get a wave function for the first excited
state of V1 using the equation

ψ
(1)
1 ∼ A

†
21ψ

(2)
0 .

In principle, for exact normalized solutions, (6) gives
the right normalization, but as we are working with
approximate solutions we prefer to normalize each
wave function at the end, and therefore in previous
expressions we used symbol ‘∼’.

Operator A
†
21 transforms the solution ψ

(2)
0 for the

ground state of V2 in a solution for the first excited state
of V1, and thus the wave function of the first excited
state of V1 is obtained.

ψ
(1)
1 ∼

( −1√
2μ

∂r + W21(r)

)
ψ

(2)
0 .

In a similar way, we can build the wave function for
the second excited state of the Cornell potential starting
from the ground state of V3

ψ
(1)
2 ∼ A

†
21A

†
32ψ

(3)
0

ψ
(1)
2 ∼

( −1√
2μ

∂r + W21(r)

)( −1√
2μ

∂r + W32(r)

)
ψ

(3)
0 .

Figure 2 shows the radial density of probabilities
calculated with the method discussed here that joins
SUSY QM and variational methods, and the results are
compared with the result obtained numerically using
mathschroe.nb. The wave functions are used to calcu-
late WFO, and tables 2, 3 and 4 show a summary of our
results obtained by using Method 1 and Method 2.
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Figure 2. Density functions of radial probability. The continuous line corresponds to the numerical and the dashed line
corresponds to the method used in this paper. The first column corresponds to the ground states, the second to the first ex-
cited state and the third to the second excited state. The upper row corresponds to cc̄, the middle to bb̄ and the lower row to bc̄.
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Table 2. Mass spectrum (in GeV) for heavy quarkonia cc̄, bb̄ and bc̄. Columns
‘Exact’ and ‘Ours’ represent the same as those in table 1, and the column called ‘Exp’
corresponds to experimental values according to [36].

cc̄ bb̄ bc̄

mQ1Q2 Exp. Exact Ours Exp. Exact Ours Exp. Exact Ours

1s 3.097 3.097 3.097 9.460 9.350 9.350 6.275 6.261 6.291
2s 3.686 3.688 3.649 10.023 9.941 9.878 – 6.861 6.812
3s 4.040 4.112 3.963 10.355 10.287 10.081 – 7.249 7.087

Table 3. Comparison of WFO of the first three energy values in heavy quarkonia cc̄,
bb̄ and bc̄. The values calculated with the numerical solutions are given in the column
Method 1 (abbreviated by M1).

cc̄ bb̄ bc̄

|R(0)|2 Exact M1 Exact M1 Exact M1

1s 1.4591 1.4384 14.1294 13.9824 3.1950 3.1486
2s 0.9304 0.8160 5.7033 4.1764 1.7712 1.4551
3s 0.7936 0.6781 4.2917 2.6210 1.4509 1.1171

Table 4. Comparison of WFO of the first three energy values in heavy quarkonia cc̄,
bb̄ and bc̄. The values calculated with the numerical solution are given in column
Method 2 (abbreviated by M2).

WFO cc̄ bb̄ bc̄

|R(0)|2 Exact M2 Exact M2 Exact M2

1s 1.4591 1.2897 14.1294 13.0031 3.1950 2.8380
2s 0.9304 0.6631 5.7033 3.3871 1.7712 1.1601
3s 0.7936 0.5186 4.2917 1.8017 1.4509 0.8048

4. Conclusion and discussion

We used a procedure to solve, in an approximate
way, the Schrödinger equation with the Cornell poten-
tial using a variational method and SUSY QM. This
is phenomenologically interesting, because the Cor-
nell potential can describe some properties of heavy
quarkonium, for example its masses, as shown in
table 2. Therefore, it is useful to have analytical wave
functions, as the ones provided in this paper, which can
be useful in additional phenomenological applications
in mesonic physics.

The results in table 1 show the values for the ener-
gies of the first three excited states, which are close
to the exact computation, especially for the ground and
the first excited states. The same happens with the wave
functions shown in figure 2, where the numerical and

approximate wave functions are almost the same for
the ground state and very close to the first excited state,
but when we consider higher radial excitations both
wave functions are different.

We also calculated WFO. To do so, we considered
two methods that are equivalent when working with
exact wave functions, but as shown in tables 2 and
3, we obtained different results when using approxi-
mate wave functions. Method 1, based on calculations
of the expectation values of the first derivative of
the potential, delivered a better result than Method
2, which was based on putting r → 0 directly. Consi
dering that R(r)= U(r)/r , as U(r → 0) ∼ 0, to use
r → 0 directly could cause problems as we had an
expression 0/0, and with this it was possible to
understand the difference in R(0) by using Methods
1 or 2. This shows that the best choice to evaluate
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WFO is Method 1 if there is an approximate wave
function.

Our results suggest that the approximate method dis-
cussed can produce results in agreement with numeri-
cal exact solutions for lower states, and in disagreement
with higher excited levels. This is not surprising, be-
cause we solved the Schrödinger equation in an
approximate way (we used the variational method)
with an approximate potential (we obtained supersym-
metric partner potential starting from variational trial
functions). Therefore, even if we start with a good
trial wave function of the ground state, for higher
radial excitations the method begins to produce results
which are inconsistent with the numerical solutions.
However, for lower states this approach provides good
results. Undoubtedly, if we use trial wave functions
with several parameters we can improve our results, but
as we have shown, this method works well for lower
states, and it could be helpful to use it as a complement
with a method that works for higher excitations, such
as WKB.

This approach gives us analytical expressions for
wave functions close to numerical solutions and they
are orthogonal. So this can be used to calculate other
heavy quarkonium properties.

Finally, we would like to return to what we mentio-
ned at the beginning of this paper. In many applications
of hadronic physics in light-cone frame, it is common to
see the use of an analytical ansatz inspired in harmonic
oscillator wave function in a constant time frame, and
this is utilized to get the light front wave function used
in calculations (for examples, see [22–24]). We believe
this could be an interesting start of a more realistic
wave function, for example, associated with the Cor-
nell potential as a method that joins SUSY QM and the
variational method discussed in this article.
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