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Abstract. In this paper, the combination of homotopy deform method (HDM) and simplified reproducing
kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differen-
tial equations. The solution methodology is based on Adomian decomposition and reproducing kernel method
(RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the
simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the
time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test
problems including ordinary differential equations and partial differential equations are analysed to illustrate the
procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm
is considerably accurate and effective as expected.
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1. Introduction

The nonlinear equations, subject to given boundary
conditions, have gained considerable attention due to
their wide applications in applied mathematics, theo-
retical physics, engineering and so on. In fact, accurate
and fast numerical solutions for nonlinear equations
with BVPs are of great importance because of their wide
applications in scientific and engineering research.

Investigations on the existence and uniqueness of
the solution of the BVPs are given in [1–7]. Recently,
because of the difficulties in finding exact analytical
solutions as well as the development of the modern
high-speed digital computers, the numerical algorithms
of these problems have attracted more and more atten-
tion. Therefore, many new numerical algorithms have
been proposed and applied successfully to approximate
the nonlinear equations. Among these papers, Geng
[8] presented a method for a class of second-order

three-point BVPs by converting the original problem into
an equivalent integro differential equation. Another
was the convenient analytic recurrence algorithm for
the Adomian polynomials by Duan [9]. Tatari and
Dehghan [10] presented an algorithm for solving mul-
tipoint BVPs by the well-known Adomian decompo-
sition method, while Geng and Cui [11] developed
an algorithm for solving nonlinear multipoint BVPs
by combining homotopy perturbation and variational
iteration methods. Most recently, Duan and Rach [12]
proposed a new modification of the Adomian decom-
position method for solving BVPs for higher-order
nonlinear differential equations. Meanwhile, Abbas
and Mehdi [13] used the sinc-collocation method for
solving multipoint boundary value problems.

In this paper, we are concerned with the numerical
solution of the following nonlinear BVPs:{
A(u) = f (X), u ∈ H, f (X) ∈ Ĥ , X ∈ �,

R(u) = α, α ∈ Rc,
(1)

1
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where H and Ĥ are arbitrary real Hilbert spaces, A :
H → Ĥ is a general differential operator, R: H → Rc

is a linear boundary operator, R = (R1,R2, . . . ,Rc),
α = (α1, α2, . . . , αc) and f is a continuous function.

In our present work, using homotopy deform method
[14], the nonlinear differential equation (1) can be con-
verted to a series of linear BVPs. After that, the
SRKM is presented to solve the linear differential
equations. Different from the traditional RKM, there
are many innovations in our method. One important
improvement is that we successfully construct a novel
reproducing kernel space so as to overcome difficulties
with the various boundary value conditions. Because of
this improvement, not only does the reproducing ker-
nel has the uniformity which implies the reproducing
kernel will stay consistent, but also the expression is
extremely simple compared to the reproducing kernel
presented in [15]. The expressions of the reproducing
kernels are given as follows:

Km
y (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=0

(
(y − a)i

i! + (−1)m−1−i (y−a)2m−1−i

(2m−1−i)!
)

× (x − a)i

i! , x > y,

m∑
i=0

(
(x − a)i

i! + (−1)m−1−i (x−a)2m−1−i

(2m−1−i)!
)

× (y − a)i

i! , y > x.

(2)

As known to all, the reproducing kernel can be applied
in various calculations. This makes calculations much
easier. Moreover, homogenization is not essential in
our method. As far as the third improvement is con-
cerned, the Schmidt orthogonalization process which
requires a large number of calculations in every lin-
ear equation is less likely to be employed. Therefore,
a reversible matrix is expected to be obtained, which
will remain consistent in the series of linear equations.
Compared to the RKM, the SRKM is more flexible and
can reduce the amount of computations. It is shown
that the SRKM is a remarkably efficient numerical
algorithm for solving linear BVPs.

This paper is organized as follows. In §2, we present
the homotopy deform method. In §3, we develop an
algorithm for solving linear differential equation with
BVPs. In §4, the proposed methods are applied to
several examples. Section 5 ends this paper with a brief
conclusion.

2. The homotopy deform method

Generally speaking, the operator A can be divided
into a linear operator L and a nonlinear operator N .
Therefore, the differential eq. (1) can be rewritten as{
L(u) + N (u)−f (X)=0, u∈H, f ∈Ĥ , X ∈ �,

R(u) = α, α ∈ Rc.

(3)

Next, we focus on the nonlinear operator N . By the
homotopy technique, we construct a homotopy func-
tion u(X, p): � × [0, 1] → R in reproducing ker-
nel space W , and we define a homotopy function
H(u(X, p), p): W × [0, 1] → R as

H(u(X, p), p) = (1 − p)(L(u(X, p)) − f (X))

+ p(L(u(X, p)) − f (X)

+N (u(X, p))), (4)

where p ∈ [0, 1] is an embedding parameter. By
simplifying eq. (4), one can obtain

H(u(X, p), p) = L(u(X, p))−f (X)+pN (u(X, p)).

Obviously, when p changes from 0 to 1, the homo-
topy function continuously deforms from H(u, 0) to
H(u, 1). In fact, H(u, 0) = 0 gives the following
equation:

L(u) − f (X) = 0.

H(u, 1) = 0 gives the following equation:

L(u) − f (X) + N (u) = 0.

In this way, we obtain a method using homotopy
deformation to solve the nonlinear differential equation.

The Taylor’s expansion in p = 0 of the u(X, p) is:

u(X, p) =
+∞∑
i=0

∂iu(X, 0)

∂p
pi �

+∞∑
i=0

ui(X)pi. (5)

Applying the method we proposed, one can get the
solution u(x) of eq. (3).

u(X)= lim
p→1

u(X, p)=u0(x)+u1(x)+· · ·+uk(x)+· · · .

Substituting eq. (5) into H(u(X, p), p) = 0 yields,

+∞∑
i=0

L(ui)p
i − f (x) + pN

(+∞∑
i=0

uip
i

)
= 0. (6)
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At the same time,

N
[+∞∑

i=0

uip
i

]
= N (u0) + N ′(u0)p + 1

2! [N
′′(u0)u

2
1

+ 2N ′(u0)u2]p2 + · · · . (7)

Substituting eq. (7) into eq. (6) yields
+∞∑
i=0

L(ui)p
i−f (t) + p(N (u0) + N ′(u0)p

+ 1

2! [N
′′(u0)u

2
1 + 2N ′(u0)u2]p2 + · · · )

= 0. (8)

Comparing the coefficients of p, we get the follow-
ing equations:

L(u0) = f (x),

L(u1) = −N (u0),

L(u2) = −N ′(u0)v1,

L(u3) = − 1

2! [N
′′(u0)u

2
1 + 2N ′(u0)u2],

· · · · · · · · ·
L(uk) = − 1

(k − 1)!
dk−1

dpk−1

[
N

(+∞∑
i=0

uip
i

)]∣∣∣∣∣
p=0

,

· · · · · · · · · .

The nonlinear differential eq. (3) can be converted to
a series of linear BVPs.{L(uk) = fk(X), uk ∈ H, f ∈ Ĥ , X ∈ �,

R(uk) = α/2k+1, α ∈ Rc,
(9)

for k = 0, 1, . . . , where

f0(x) = f (x),

fk = − 1

(k − 1)!
dk−1

dpk−1

[
N

(
k−1∑
i=0

uip
i

)]∣∣∣∣∣
p=0

,

k = 1, 2, . . ..

All these equations are linear ones with the same form
as follows:{
L(u) = f (X), u ∈ H, f ∈ Ĥ , X ∈ �,

R(u) = α, α ∈ Rc.
(10)

In §3, we put forward some new modifications of
the reproducing kernel methods to solve the linear
equations.

3. The simplified reproducing kernel method

In this section, we first introduce some basic concepts
of the reproducing kernel. Then the SRKM is broached
to solve the linear eq. (10).

DEFINITION 3.1 [16]
Let H = {f (x)|f (x) is a real value function or com-
plex function, x ∈ A, A is an abstract set} is a Hilbert
space, equipped with inner product

〈u(x), v(x)〉H, u(x), v(x) ∈ H.

If there exists a function Ky(x), for each fixed y ∈ A,
then Ky(x) ∈ H, and any u(x) ∈ H, which satisfies

〈f (x), Ky(x)〉H = u(y),

then Ky(x) is called the reproducing kernel of H and
Hilbert space H is called the reproducing kernel space.

Particularly, we choose the reproducing kernel
spaces Wm

2 [a, b] [16] and W 1
2 [a, b] with reproduc-

ing kernels Km
y (x) and ky(x), respectively. The inner

product in Wm
2 [a, b] is given by

〈u(x), v(x)〉 =
m−1∑
i=0

ui(0)vi(0) +
∫ b

a

um(x)vm(x)dx,

u, v ∈ Wm
2 [a, b]. (11)

Instead of using the generalized function δ(x), we
skillfully give the general formula of Km

y (x) with a
new method to different smoothness reproducing ker-
nel space Wm

2 [a, b], which is proved to be a 2n − 1
order spline function. The explicit representation for-
mula for calculating the reproducing kernel is given as
follows.

Theorem 3.2. The reproducing kernel of the reproduc-
ing space Wm

2 [a, b] is

Km
y (x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=0

(
(y−a)i

i! +(−1)m−1−i (y−a)2m−1−i

(2m−1−i)!
)

× (x − a)i

i! , x > y,

m∑
i=0

(
(x−a)i

i! +(−1)m−1−i (x−a)2m−1−i

(2m−1−i)!
)

× (y − a)i

i! , x ≤ y.

(12)

Proof. Expanding u(x) around x = a, by Taylor’s
series expansion, one obtains

u(x) =
m−1∑
k=0

u(k)(a)

k! (x − a)k

+ 1

(m − 1)!
∫ x

a

(x − y)m−1u(m)(y)dy. (13)
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Note that Km(x, y) � Km
y (x). Applying the property

of reproducing kernel,

u(x) = 〈u(y), Km(x, y)〉

=
m−1∑
k=0

u(k)(a)
∂k

∂yk
Km(x, y)

+
∫ x

a

(x − y)m−1 ∂m

∂ym
Km(x, y)dy. (14)

Combing eqs (13) and (14), one can obtain

∂kKm(x, y)

∂yk
= (x − a)k

k! , k = 0, 1, . . . , m − 1.

For k = m, we have

∂mKm(x, y)

∂ym
=

⎧⎨
⎩

(x − y)m−1

(m − 1)! , y < x,

0, y ≥ x.

The solution of the equation

∂mKm(x, y)

∂ym
= (x − y)m−1

(m − 1)!
can be expressed as follows:

Km(x, y) =
m−1∑
k=0

Ck(y − a)k + (−1)m
(x − y)2m−1

(2m − 1)! .

Imposing the conditions

∂kKm(x, y)

∂yk
= (x − a)k

k! , k = 0, 1, . . . , m − 1,

one can obtain

Ck =
[
(x − a)k

k! + (−1)m−k−1 (x − a)2m−1−k

(2m − 1 − k)!
]

1

k! .
Consequently,

Km(x,y)=
m∑

k=0

[
(y−a)k

k! +(−1)m−k−1 (y−a)2m−1−k

(2m − 1 − k)!
]

×(x − a)k

k! , y < x.

Combining the symmetric property of Km(x, y), one
can obtain the expression of Km(x, y).

Moreover, when extended to multidimensional
space, W and KY(X) can be induced by Wm

2 and Ky(x)

respectively (see [16]).
Now, we choose a countable dense subset {Xi}∞i=1 ⊂

�, and thus, get the two following conclusions. �

PROPOSITION 3.3

Let ψi(X) = L∗kXi
(X) ∈ W , where L∗ is the con-

jugate operator of L, L is given in eq. (10). Then
ψi(X) = LKX(Xi ).

Proof. For an arbitrary i, we have

ψi(X) = L∗kXi
(X)

= 〈L∗kXi
(·), KX(·)〉

= 〈kXi
(·),LKX(·)〉

= LKX(xi ).
�

The following proposition comes from [16].

PROPOSITION 3.4

The function system {ψi}n1 is linearly independent.
Moreover, {ψi}∞1 is a complete system in the space W .

Let

ϕi(X) = Ri (KX(Y)), i = 1, 2, . . . , c,

where Ri is given in eq. (1) and

Sn+c = span{ψ1(x), ψ2(x), . . . ,

ψn(x), ϕ1(x), ϕ2(x), . . . , ϕc(x)}.
The projection operator is denoted by Pn+c : W →
Sn+c. Then we obtain Theorem 3.5, which is of great
significance to us.

Theorem 3.5. If u is the solution of eq. (10), Pn+cu

satisfies the following equations:{ 〈u, ψi〉 = f (Xi ), i = 1, 2, . . . , n,

〈u, ϕi〉 = αi, i = 1, 2, . . . , c.
(15)

Proof. Assume u(X) is a solution of eq. (10). Then we
have Lu(X) = f (X) and thus

〈Pn+cu(·), ψi(·)〉 = 〈u(·),Pn+cψi(·)〉
= 〈u(·), ψi(·)〉
= 〈u(·),LKXi

(·)〉
= 〈Lu(·), KXi

(·)〉
=Lu(Xi )

= f (Xi ), i = 1, 2, . . . , n;
〈Pn+cu(·), ϕi(·)〉 = 〈u(·),Pn+cϕi(·)〉

= 〈u(·), ϕi(·)〉
= 〈u(·),Ri(KX(·))〉=Ri〈u(·), KX(·)〉
= Ri(u(X)) = αi, i = 1, 2, . . . , c.

�

In fact, Un(X) � (Pn+cu)(X) is an approximate
solution of eq. (10).

Theorem 3.6. Un(X)uniformly converges to u(X)on �.
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Proof. Note that

u(X)=〈u(·), KX(·)〉, Un(X)=〈(Pn+cu(·)), KX(·)〉.
By Schwarz’s inequality, we have

|u(X) − Un(X)| = |〈u(Y) − Un(Y), KX(Y)〉|
≤ ‖u(Y) − Un(Y)‖‖KY(Y)‖
= √

KY(Y)‖u(Y) − Un(Y)‖.
As KY(Y) is continuous on �, |KY(Y)| ≤ M and thus
we have

|u(X) − Un(X)| ≤ M‖u − Un‖ → 0.

Hence, Un(X) ⇒ u(X), as required. �

As Un ∈ Sn+c, Un can be expressed in the following
form:

Un(X) =
n∑

i=1

aiψi(X) +
c∑

i=1

biϕi(X). (16)

The n coefficients a1, . . . , an and b1, . . . , bc are
determined by substituting eq. (16) into eq. (15). In
such a manner, one can obtain a system of linear
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

aj 〈ψj , ψi〉 +
c∑

j=1

bj 〈ψi, ϕj 〉 = f (Xi ),

i = 1, 2, . . . , n,

n∑
j=1

aj〈ψj,ϕi〉+
c∑

j=1

bj〈ϕi,ϕj〉=αi, i =1,2, . . . , c.

(17)

Let

G=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈ψ1,ψ1〉 〈ψ1,ψ2〉. . .〈ψ1, ψn〉 〈ψ1, ϕ1〉 . . .〈ψ1, ϕc〉
...

...
...

...
...

...
...

〈ψn, ψ1〉〈ψn, ψ2〉. . . 〈ψn, ψn〉 〈ψn, ϕ1〉 . . .〈ψn, ϕc〉
〈ϕ1, ψ1〉 〈ϕ1, ψ2〉. . .〈ϕ1, ψn〉 〈ϕ1, ϕ1〉. . .〈ϕ1, ϕc〉

...
...

...
...

...
...

...

〈ϕc, ψ1〉 〈ϕc,ψ2〉 . . . 〈ϕc,ψn〉 〈ϕc,ϕ1〉 . . . 〈ϕc, ϕc〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f (X1)
...

f (Xn)

α1
...

αc

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is not difficult to prove that the matrix G is reversible.
Thus, we have

(a1, a2, . . . , an, b1, . . . , bc)
T = G−1f. (18)

Consequently, Un(X) given in eq. (16) can be calcu-
lated.

Overall, by applying our new approach, that is, the
combination of the HDM and the SRKM, we give
the process of obtaining the approximation of the
following nonlinear equation:{L(u) + g(u) = f (X), X ∈ �

R(u) = α, α ∈ Rc,
(19)

where L is linear and g is nonlinear.

(1◦) Construct ψi, i = 1,2, . . . , n and ϕi, i = 1,2,

. . . , c, then compute G.
(2◦) pk : Luk = fk,Ruk = α/2k+1, for k = 0, 1, . . . .

Compute the n+c coefficients (ak1, ak2, . . . , akn,

bk1, bk2, . . . , bkc)
T = G−1fk and get a n-term

approximation:

Un
k (X) =

n∑
i=1

akiψi(X) +
c∑

i=1

bkiϕi(X). (20)

(3◦) Get the m-term approximation Um,n(X) of eq.
(19),

Um,n(X) =
m∑

k=0

Un
k (X). (21)

4. Numerical examples

In this section, some higher-order nonlinear differen-
tial equations are considered to reveal the accuracy
of our algorithm. Compared with refs [12] and [17],
the results obtained demonstrate that our algorithm
is remarkably effective for the following numerical
examples.

Example 4.1. Consider the three-point BVP for the
second-order nonlinear differential equation presented
in [17]:⎧⎨
⎩

u′′(x) + (3/8)u(x) + (2/1089)[u′(x)]2 + 1 = 0,

x ∈ [0, 1],
u(0) = 0, u(1/3) = u(1).

Following the present method, we take m = 3 and n =
3, 10 and 50, and we obtain the approximation Um,n(x)

of u(x). As the exact solution u(x) of this problem is
unknown, we instead consider em,n(x) with

em,n(x) = U ′′
m,n(x)+ 3

8
Um,n(x)+ 2

1089
[U ′

m,n(x)]2+1.

(22)

In table 1, some values of em,n(x) are illustrated for
some values of x. By comparing our values with the val-
ues of em,n(x) obtained by different method [17], we
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Table 1. Comparison of some methods for Example 4.1.

xi e3,10 e3,50 Method in [17]

0.2 3.87 × 10−10 7.77 × 10−11 2.58 × 10−11

0.4 4.68 × 10−10 2.08 × 10−12 4.31 × 10−10

0.6 4.42 × 10−10 6.11 × 10−11 9.91 × 10−9

0.8 4.08 × 10−10 1.24 × 10−10 9.12 × 10−8

found that our method is in good agreement with other
methods.

Example 4.2. Consider the two-point BVP for the
third-order nonlinear differential equation with a rad-
ical nonlinearity proposed in [12].{

u′′′(x) = −√
1 − u2(x), 0 ≤ x ≤ (π/2),

u(0) = 0, u′(0) = 1, u(π/2) = 1.
(23)

By Example 2 of [12], its exact solution is u(x) =
sin(x). Applying our new method, we take m =

2, 4, 6, 8, 12 and n = 50, the absolute error MEn =
|u(x) − Um,n(x)|max is listed in table 2. At the same
time, one can see that the new method is much more
accurate from the comparison given in table 2. When
we take m = 3, 5, 8 and n = 100, the absolute errors
|u(x)−Um,n(x)| between the approximate solution and
exact solution are given in figure 1.

Example 4.3. Consider the four-point BVP for the
fourth-order nonlinear differential equation with a
product nonlinearity shown in [12].

{
u′′′′(x) + u(x)u′(x) − 4x7 − 24 = 0, x ∈ [0, 1],
u(0)=0, u′′′(0.25) = 6, u′′(0.5) = 3, u(1) = 1.

By Example 4 of [12], its exact solution is u(x) = x4.
When we take m = 3 and n = 2, 3, 4, 5 and 10, the
absolute errors MEn = |u(x) − Um,n(x)|, ME′

n =
|u′(x) − U ′

m,n(x)|, ME′′
n = |u′′(x) − U ′′

m,n(x)| are

Table 2. Comparison of some methods for Example 4.2.

m 2 4 6 8 12

New method 0.004839 0.000036 5.03 × 10−6 4.64 × 10−6 3.73 × 10−6

Method in [12] 0.024046 0.004132 0.00182015 0.00103552 0.00047603

0.5 1.0 1.5
x

5. 10 6

0.00001

0.000015

absolute error

0.5 1.0 1.5
x

5. 10 7

1. 10 6

1.5 10 6

2. 10 6

2.5 10 6

3. 10 6

absolute error

0.5 1.0 1.5
x

2. 10 7

4. 10 7

6. 10 7

8. 10 7

1. 10 6

1.2 10 6

absolute error

(a) (b)

(c)

Figure 1. (a) |u(x) − U3,100(x)|, (b) |u(x) − U5,100(x)| and (c) |u(x) − U8,100(x)|.
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shown in table 3. From the table, one can see that
the absolute error MEn reduces to 10−14 as n = 4,
which is much more accurate than the result, 10−9,
presented in Example 4 of [12]. Besides, ME′

n, ME′′
n

decline to 10−13 and 10−12, respectively. When we
take m = 2, 3, 4 and n = 4, the absolute errors
|u(x)−Um,n(x)| between the approximate solution and
exact solution are given in figure 2.

Example 4.4. Consider the following second-order
nonlinear partial differential equation:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u

∂x2
− ∂u

∂t
− u2(x, t)=f (x, t), x ∈[0, 1], t∈[0,1],

u(0, t) = 0, t ∈ [0, 1],
u(1, t) = sin(t), t ∈ [0, 1],
u(x, 0) = 0, x ∈ [0, 1].

Table 3. Numerical result for Example 4.3.

n 2 3 4 5 10

MEn 4.5 × 10−9 1.4 × 10−11 5.6 × 10−14 4.0 × 10−16 3.5 × 10−16

ME′
n 1.5 × 10−8 5.1 × 10−11 2.2 × 10−13 5.0 × 10−15 4.0 × 10−15

ME′′
n 2.0 × 10−7 4.5 × 10−10 2.0 × 10−12 1.5 × 10−14 1.4 × 10−14

0.2 0.4 0.6 0.8 1.0
x

2. 10 12

4. 10 12

6. 10 12

8. 10 12

1. 10 11

1.2 10 11

1.4 10 11

absolute error

0.2 0.4 0.6 0.8 1.0
x

2. 10 12

4. 10 12

6. 10 12

8. 10 12

absolute error

0.2 0.4 0.6 0.8 1.0
x

5. 10 15

1. 10 14

1.5 10 14

2. 10 14

2.5 10 14

3. 10 14

absolute error

(a) (b)

(c)

Figure 2. (a) |u(x) − U2,4(x)|, (b) |u(x) − U3,4(x)| and (c) |u(x) − U4,4(x)|.

Table 4. Numerical values and error analysis of Example 4.4.

Node u(x, t) U3,100(x, t) U3,200(x, t) |u(x, t) − U3,100(x, t)| |u(x, t) − U3,200(x, t)|

(0.1, 0.1) 0.00999983 0.00999521 0.0099994 4.6 × 10−6 4.3 × 10−7

(0.3, 0.3) 0.0898785 0.0899523 0.0898916 7.4 × 10−5 1.3 × 10−5

(0.5, 0.5) 0.247404 0.247576 0.247432 1.7 × 10−4 2.8 × 10−5

(0.7, 0.7) 0.470626 0.47079 0.470654 1.6 × 10−4 2.8 × 10−5

(0.9, 0.9) 0.724287 0.724338 0.724296 5.1 × 10−5 8.7 × 10−6
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0.2 0.4 0.6 0.8 1.0
x

5. 10

1.5 10 6

2. 10 6

2.5 10 6

1. 10 6

7 5. 10 6

absolute error

x

absolute error

0.00001

0.000015

0.00002

0.000025

0.00003

0.2 0.4 0.6 0.8 1.0(a) (b)

Figure 3. (a) |u(x, 0.1) − U3,200(x, 0.1)| and (b) |u(x, 0.6) − U3,200(x, 0.6)|.

When f (x, t) = −x cos(xt) − t2 sin(xt) − sin2(xt),
its exact solution is u(x, t) = sin(xt). Applying this
method, we take m = 3, n = 10 × 10 and n = 20 × 20
nodes in � = [0, 1] × [0, 1] to obtain the approximation
Um,n(x, t). Some values of exact and numerical solution
of some nodes as well as the errors between them are
given in table 4. One can see that the errors reduce
as nodes increase. When m = 3 and n = 200,
the absolute errors |u(x, t) − Um,n(x, t)| are given in
figure 3.

5. Conclusion

From the above analysis and the numerical exam-
ples, one can see that the combination of the HDM
and the SRKM is employed successfully for solving
higher-order nonlinear complicated BVPs. The numer-
ical results show that our algorithm is much more
accurate than other algorithms.
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