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Abstract. Many overlapping community detection algorithms have been proposed. Most of them are unstable
and behave non-deterministically. In this paper, we use weighted consensus clustering for combining multiple
base covers obtained by classic non-deterministic algorithms to improve the quality of the results. We first eval-
uate a reliability measure for each community in all base covers and assign a proportional weight to each one.
Then we redefine the consensus matrix that takes into account not only the common membership of nodes, but
also the reliability of the communities. Experimental results on both artificial and real-world networks show that
our algorithm can find overlapping communities accurately.
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1. Introduction

Most complex systems in the real world can be des-
cribed in terms of networks or graphs. A key property
of many real-world networks is their community struc-
ture: the existence of groups of nodes such that nodes
within the groups have higher density of edges while
nodes among groups have lower density of edges [1,2].
Identifying the community structure is crucial to under-
stand the structural, functional and dynamical properties
of complex networks [3,4]. Thus, many community
detection algorithms have been proposed to detect
community structure in complex networks. Many of
them have been limited to partitions, where each node
belongs to one community.

However, communities in real-world networks are
usually overlapping such that some nodes may belong
to more than one community. For example, in social
networks, a person may be in several social groups like
family, friends and colleagues. Overlapping commu-
nity structure can be represented by a cover of network
[5], which is defined as a set of clusters such that each
node belongs to at least one cluster and no cluster is a
proper subset of any other cluster.

Many overlapping community detection algorithms
have been proposed. Most of them are unstable and
non-deterministic. The most typical algorithms are
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local expansion and optimization algorithms [5-7],
which first find the seeds of communities and then
expand these seeds by greedily optimizing a local com-
munity fitness function. In general, the algorithms are
very sensitive to the random seeds, and modifying
these may lead to different outcomes. The tie-break
rules adopted by algorithms may also produce diffe-
rent results. For instance, in COPRA algorithm [8], it
is possible that belonging coefficients of all pairs (com-
munity identifier, belonging coefficient) of a node are
less than a threshold. In this case, if more than one pair
has the same maximum belonging coefficient, the algo-
rithm randomly selects one of the pairs. Thus, this ran-
dom selection makes the algorithm non-deterministic.
In order to generate more reliable and accurate results,
combining outcomes of these algorithms is a promising
approach.

Lancichinetti and Fortunato [9] first applied consen-
sus clustering in community detection problems. The
core idea is based on the assumption that similar nodes
are very likely grouped together by the base algorithms
(e.g. classic non-deterministic community detection
algorithms) and, conversely, nodes that co-occur very
often in the same community should be regarded as
being very similar. Hence, a consensus matrix is con-
structed from the base partitions obtained by the base
algorithms. Each matrix entry is a similarity measure
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about how many times a given pair of nodes is allo-
cated to the same community. This consensus matrix
can then be used as an input for the same base algo-
rithm, leading to a new set of partitions, which generate
a new consensus matrix, etc., until a unique partition
is finally reached, which cannot be altered by further
iterations. Dahlin and Svenson [10] also adopted con-
sensus matrix and developed a node-based fusion of
community algorithms by agglomerative hierarchical
clustering using a special linkage rule. However, one
significant drawback of these algorithms is that they
assume that each community in all base partitions is
perfectly reliable. As the base algorithms are unstable,
all communities may not be reliable and the reliabil-
ity of individual communities may not be the same.
Hence, a simple average of all base partitions does not
have to be the best choice.

In this paper, we propose an overlapping commu-
nity detection algorithm by using weighted consensus
clustering. The intuition here is that, if two nodes are
assigned to a community with high reliability, both
the nodes are probably in this community. Based on
this intuition, we first evaluate a reliability measure for
each community in all base covers, which take into
account both the topology of the original network and
the information given by the base covers. Then we
redefine the consensus matrix, in which each entry rep-
resents the common membership of two nodes and its
value is proportional to the reliability of the community
they belong to. We evaluate our algorithm with stan-
dard measures such as modularity and omega index on
both artificial and real-world networks. Experimental
results show that our algorithm can detect overlapping
communities accurately.

The rest of this paper is organized as follows:
Section 2 proposes a consensus-based overlapping
community detection algorithm (COCDA). Experi-
mental results on LFR benchmark and several real-
world networks are given in §3. Section 4 concludes
this paper.

2. Detecting overlapping communities by weighted
consensus clustering

Let G = (V, E) be an undirected network or graph
representing a complex network, where V is a set
of |V| nodes and E is a set of |E| edges. A com-
munity ensemble is a set of base covers, represented
as P = {P!, P2, ..., PP}, where H is the ensem-
ble size. Each base cover is a set of communities
Pl = {Ci, Cé, el Cliw}’ where k; is the number of
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communities in the ith cover and C;. is the community

of the jth cover. In our algorithm, we allow C! (| C! #
¢ so that the community can overlap with each other.
The goal of our algorithm is to find a consensus cover
P*, which better represents the properties of each cover
in P. We use conventional non-deterministic algo-
rithms as base algorithms to obtain the base covers. In
the following, we use the default settings of parameters
in the base algorithms.

2.1 Measuring community reliability

Inspired by [11], we propose a method to evaluate
the reliability of individual communities within a base
cover. We first introduce a probability py, for the edge
between node x and node y of connecting two nodes in
the same community. The probability p,, is defined as

H

Pxy = %;a(vm, L'(y). (1)
where L’ (x) represents the associated label of the node
x in the base cover P! and 8(a,b) is 1, if a = b,
and O otherwise. The value of pyy is large only for
the edge (x, y) which is most frequently in the same
community, whereas low value indicates that the edge
probably connects two different communities.

Given a community C ; in the base cover P!, an

edge set Ein(Cj.) C E includes all such edges (x, y)
with both nodes x and y included in C ;, another edge
set Eout(Cj.) C E includes all such edges (x, y) with

only node x or y included in C%. We proposed a mea-
sure shown as eq. (2) to judge the reliability of the
community C;:

1
|Ein(C)| + | Eout(C})|

x D,
(X, )€Ein(CH U Eou(C))

+ (1 - pxy) 10g2(1 - pxy)’ (2)
where |Ein(C;) | and |E0ut(C;.)| are the number of edges
in Ein(Cj.) and Eout(Cj.), respectively. If all edges in

rel(Ch) =1 -

Pxy l0gy pxy

Ein(C j.) have probability p,, = 1 and all edges in
Eout(Cj.) have probability p,, = 0, rel(Cj.) = 1. We
can conclude that the community is very stable. If all
edges in Ein(C;) U Eout(C;) have probability p,, =
%, rel(C j.) = 0. We can conclude that the community
is totally unstable.
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2.2 Constructing consensus network

For each base cover P!, we first construct the member-
ship matrix U* € RIVI*ki in which the rows correspond
to nodes while the columns correspond to communi-
ties. Each element ui‘ j in the membership matrix repre-
sents the membership of node x to the jth community:

. 1/LL, if node x € Ct,
ul; = _ / 3)
0, if node x ¢ C;,

where [i is the number of communities the node
x belongs to in the ith cover. Clearly, when node x
only belongs to the jth community, i.e. I{ = 1, the
membership u; y is 1.

Given a membership matrix U, a | V| x| V| similarity
matrix is constructed, which is denoted as S?. Matrix
entries represent the similarity between nodes x and y:

ki

shy =D flul.ul;) x rel(Ch), 4)

j=1

where rel(Cj.) is the reliability of the community Cj.
and f(u'

xj°
algebraic product f(uij, u;j) = uij X uiyj), which is
interpreted as the common membership of two nodes x
and y to the same community.

Accordingly, {Sl, S2 ..., SH } are obtained from H
covers. All similarity matrices {S',S?, .-, S} are
combined into a single consensus matrix as shown in

eq. (9).

1 &
Mzﬁ;s’, (5)
1=

where each entry of this matrix My, reflects the aver-
age similarity between the nodes x and y. A large value
of M,y indicates that the two nodes x and y have a
high probability to be classified into the same commu-
nity, whereas low value indicates that the two nodes
have a small probability to be classified into the same
community.

To reduce the effects of noise and improve the algo-
rithm execution speed, we introduce a filtering proce-
dure. The new consensus matrix M"V is filtered from
M as shown in eq. (6).

ugj) is a suitable fuzzy t-norm (e.g. an

M;l;w — { 10"4Xy7

where rand(1) is a random number in the range [0,1].
Clearly, the larger the M,y is, the less probably the

if rand(1) < M,,,
otherwise,

(6)
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edge (x, y) is removed. From M;‘;W, we create a con-

sensus network G’ = (V, E’, W), where the weight of
the edge (x, y) is My5™.

2.3 Producing the consensus cover

We apply H times a non-deterministic overlapping
community detection algorithm to the consensus net-
work G’, where the algorithm used should be able to
detect overlapping communities in weighted networks,
because the consensus network is weighted. Then we
use the new set of covers produced to construct a new
community ensemble. The procedure is iterated until
all covers {P', P2, ..., PH} are equal. Here, we com-
pute the Omega index [12] between a given cover
and the rest of the covers. If all Omega indices are
1, we think that all covers are equal. As the filtering
procedure introduces the stochasticity, our algorithm
needs more iteration to converge. In practice, we have
observed that running our algorithm for ten iterations
gives good results.

3. Experiments

3.1 Experiments with LFR benchmark networks

We use the LFR benchmark proposed by Lancichinetti
et al [13]. The LFR benchmark introduces heterogene-
ity into degree and community size distributions of a
network and thus it is closer to the features observed in
real world than standard benchmarks. To evaluate the
accuracy and stability of the proposed COCDA algo-
rithm, we create 100 benchmark networks with the
same set of parameters. We set n = 5000, k = 10,
kmax =50, 0 = 03,11 = 2, 15 = 1, cmin = 20,
cmax = 100 and O, = {500, 1000}. For every net-
work we have produced H = 10 covers with the chosen
base algorithm and average the results. Using H cov-
ers obtained as input, we also perform the COCDA
algorithm H times and average the results. In the exper-
iments, we use Omega index to calculate how similar
the known cover is to the covers found by the algo-
rithms. The Omega index is between 0 and 1, with 1
corresponding to a perfect matching.

Figure 1 shows the Omega index between the known
covers and the covers found by the algorithm as a func-
tion of Oy,. The curve OLSOM shows the average of
the Omega index between each cover found by the
OLSOM algorithm and the known cover. The curve
COCDA reports the average of Omega index between
the consensus cover found by COCDA and the known
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Figure 1. The Omega index of the base algorithm and the
COCDA algorithm on the LFR benchmark with different
Oy, for (a) O, = 500 and (b) O,, = 1000.

cover. The data points shown in the figure are the result
of averaging 100 benchmark networks (each network
with the same of parameters). Error bars show the min-
imum and maximum Omega indices. As expected, the
performance of both algorithms consistently and sig-
nificantly drop as the diversity of overlapping increases
(i.e., Oy, getting larger). We can see that the COCDA
algorithm slightly improves the Omega index, because
the performance of OLSOM algorithms on the LFR
benchmark networks is very good already.
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3.2 Experiments with real-world networks

As real networks may have some topological properties
different from synthetic ones, we consider 17 represen-
tative real-world networks drawn from disparate fields.
Table 1 lists the real-world networks for our tests and
their statistics. n and m are the total numbers of nodes
and edges, respectively. (k) is the average degree of the
network. (d) denotes the average distance, (C) indicates
the clustering coefficient [14]. For the networks of
Roget, polblogs, ODLIS and CA-GrQc, we reduced the
sizes of these networks by only keeping the largest con-
nected component and by iteratively removing all the
one-degree vertices. In the following, we use an over-
lapping modularity (Q,y) measure [15] to evaluate the
performance of the algorithms. The values of Q,y vary
between 0 and 1. The larger the value is, the better the
performance is.

In table 2, we present the mean and the stan-
dard deviation of the modularity Q,y computed from
OLSOM and COCDA for 17 real-world networks. The
results of both algorithms are computed by 10 execu-
tions using Dell PowerEdge R820 (Xeon E5-4607
v2*4, 128GB main memory). For each network, the
mean modularity of COCDA is higher than that of
OLSOMs which obviously indicates that COCDA is
more accurate than OLSOM. While the standard devi-
ation of the modularity computed from COCDA is
smaller than that computed from OLSOM, we can
clearly figure out that COCDA is more stable than

Table 1. The basic topological features of the 17 real-world networks.

Networks Ref. n m (k) kmax (d) (C)

Karate [16] 34 78 4.59 17 241  0.5706
High school  [17] 69 219 6.35 14 2.96  0.4660
Lesmis [18] 77 254 6.60 36 2.64 0.5731
Jazz [19] 198 2742 27.70 100 224  0.6175
USAir [20] 332 2126 12.81 139 2.74  0.6252
C. elegans [14] 453 2025 8.94 237 2.66  0.6465
Roget [18] 994 3640 7.32 28 4.07 0.1541
Email [21] 1133 5451 9.62 71 3.61 0.2202
SmaGri [22] 1024 4916 9.60 232 298 0.3071
Polblogs [23] 1222 16714  27.36 351 274 0.3203
Yeast [24] 2375 11693 9.85 118 5.10  0.3057
ODLIS [25] 2898 16376  11.30 592 3.17  0.2967
Facebook [26] 4039 88234 43.69 1045 3.69  0.6055
Power [14] 4941 6584 2.67 19 18.99 0.0801
CA-GrQc [27] 4158 13422 6.46 81 6.05 0.5569
Router [28] 5022 6258 2.49 106 6.45 0.0116
PGP [29] 10680 24316 4.55 205 7.49  0.2659
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Table 2. The modularities of the base algorithm and the COCDA algorithm
on 17 real-world networks.

Oov Running time (s)
Nets OLSOM COCDA OLSOM COCDA
Karate 0.7194(0.0108) 0.7386(0.0053) 0.7 1
High school 0.7846(0.0234) 0.8097(0.0169) 1 2
Lesmis 0.6920(0.0164) 0.7426(0.0128) 0.5 0.8
Jazz 0.5395(0.0464) 0.6407(0.0151) 1 4
USAir 0.5937(0.0413) 0.6757(0.0034) 2 11
C. elegans 0.5098(0.0184) 0.6475(0.0186) 2 12
Roget 0.4039(0.0359) 0.5284(0.0142) 6 37
Email 0.4682(0.0384) 0.5722(0.0081) 4 31
SmaGri 0.6244(0.0036) 0.6369(0.0003) 3 22
Polblogs 0.4050(0.0359) 0.5257(0.0325) 28 113
Yeast 0.6202(0.0038) 0.6326(0.0002) 3 28
ODLIS 0.2711(0.0166) 0.4012(0.0086) 40 195
Facebook 0.5621(0.0154) 0.6411(0.0080) 55 275
Power 0.4040(0.0075) 0.4752(0.0034) 5 101
CA-GrQc 0.6475(0.0116)  0.7337(0.0033) 7 153
Router 0.5577(0.1960) 0.6316(0.0005) 3 26
PGP 0.5561(0.0090) 0.6596(0.0027) 42 956
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OLSOM. We also show the comparison of the aver-
age running time of both the algorithms in table 2.
COCDA has a similar time complexity when the exper-
iment is conducted in a small network like karate or
lemis. However, it has about 20 times higher time com-
plexity when the experiment is conducted in a rather
large network. For instance, when we execute our pro-
gram to CA-GrQc network, the OLSOM algorithm
takes 7 s while the consensus algorithms takes 153 s on
an average.

A high modularity might not necessarily result in
the true cover. We used the karate network with
known attributes to verify the output of the detec-
tion algorithms. This network characterizes the social
interactions between individuals in a karate club in an
American university, which has 34 members and 78
pairwise links. As a conflict had arisen between the
club’s administrator and the main teacher, the club
eventually splits into two smaller clubs. They are {1, 2,
3,4,5,6,7,8, 11, 12, 13, 14, 17, 18, 20, 22} and
{9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34}. By multiple executions applying
OLSOM algorithm to this network, different covers
are obtained. For example, at one time, the cover con-
tains two large communities (e.g. {1, 2, 3, 4, 5, 6, 7,
8, 11,13, 14,17, 18,22}, {9, 15, 16, 19, 21, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34}), and three smaller
communities which contains only one node (e.g. {12},
{20} and {10}). At another time, the cover contains

some different communities (e.g. {3, 9, 10, 15, 16, 19,
21,23, 24,25,26,217, 28, 29, 30, 31, 32, 33, 34}, {1, 2,
3,4,5,6,7,8, 11, 13, 14, 17, 18, 20, 22}, {12}). Our
algorithm combines the base covers obtained by each
OLSOM execution, and results in two communities,
which is in accordance with the real split.

4. Conclusion

In this paper, we presented an algorithm, COCDA, to
detect overlapping communities in complex networks
using weighted consensus clustering. We proposed a
method to evaluate the reliability of individual commu-
nities and redefined the consensus matrix. Experimen-
tal results showed that the COCDA algorithm can
combine the covers obtained from the base algorithms,
considerably enhancing both the stability and the accu-
racy. However, COCDA has some drawbacks. For exam-
ple, it has high time complexity. A possible approach
for speeding up COCDA is the use of parallel com-
puting. The community ensemble is simultaneously
generated on modern multicore processors and reduces
the running times.
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