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Chaos in discrete fractional difference equations
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Abstract. Recently, the discrete fractional calculus (DFC) is receiving attention due to its potential applica-
tions in the mathematical modelling of real-world phenomena with memory effects. In the present paper, the
chaotic behaviour of fractional difference equations for the tent map, Gauss map and 2x(mod 1) map are studied
numerically. We analyse the chaotic behaviour of these fractional difference equations and compare them with
their integer counterparts. It is observed that fractional difference equations for the Gauss and tent maps are more
stable compared to their integer-order version.

Keywords. Fractional difference equation; chaos; Lyapunov exponent; Gauss map; tent map; discrete
fractional calculus.

PACS No. 05.45.Pq

1. Introduction

Fractional calculus (FC) has a history of more than 300
years, however it is being applied in several areas of
science and engineering since the nineties of the last
century [1–7]. FC enables us to interpolate the behaviour
between integer-order systems. Fractional-order deriva-
tives allow us to deal comfortably with memory effects
in dynamical systems [2].

Discrete fractional calculus (DFC) has been gaining
attention recently. Discrete fractional difference ope-
rator incorporates memory effect, and it can be used to
model many physical phenomena, in particular, growth
behaviour in biology [8]. For the history and basic
theory of DFC, we refer our readers to [8–13].

The purpose of this paper is to understand the chaotic
behaviour shown by fractional difference equations.
Recently, such a study has been done for the discrete
logistics map and discrete sine map [14,15]. In this
paper, we analyse numerically the chaotic behaviour of
three maps viz., discrete tent map, discrete 2x(mod1)

map and discrete Gauss map. Study of these maps is
important as they are standard one-dimensional maps,
well known to show characteristic bifurcation and
chaos for the integer-order, and have found applica-
tions in a number of fields ranging from biology to
number theory [16].

The rest of this paper is organized as follows. Section 2
introduces some of the required preliminaries. Section 3
is dedicated to the study of the discrete tent map. Section 4
studies the discrete Gauss map, while §5 deals with
the discrete 2x(mod 1) map. Section 6 sums up the
conclusions.

2. Preliminaries

In the present section, we set up notations and recall
some basic definitions from discrete fractional calculus
[9,10,17].

Let Na = {a, a + 1, a + 2, . . .} where a ∈ R.

DEFINITION 1

If u is a real-valued function defined on Na and α > 0,
then the discrete fractional sum of order α denoted as
�−α

a is defined as

�−α
a u(t) :=

t−α∑

s=a

(t − σ(s))α−1

�(α)
u(s), t ∈ Na+α. (1)

Here σ(s) = s + 1 is the forward shift operator and
tα denotes the falling factorial function given as

tα = �(t + 1)

�(t + 1 − α)
. (2)
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Remark. Notice that the domain is taken as Na+α for
the sum to be well-defined.

Regular forward difference operator is defined as
�u(t) = u(t + 1) − u(t).

DEFINITION 2

For α > 0, such that N − 1 < α < N for N ∈ N, u:
Na → R, the Caputo-type discrete fractional difference
operator is defined as

�α
au(t) := �−(N−α)

a �Nu(t) (3)

=
t−N+α∑

s=a

(t − σ(s))N−α−1

�(N − α)
�Nu(s),

t ∈ Na+N−α. (4)

Remark. Point a in the above definitions is called the
anchor point or starting point. Although integer-order
forward difference operator �N is independent of the
choice of the starting point, fractional difference oper-
ators (and sum operators) �α

a depend on the choice of
the starting point.

Theorem 1 (see [18]). For the fractional difference
equation where N − 1 < α < N , N ∈ N,

�α
au(t) = f (t + α − 1, u(t + α − 1))

�ku(a) = uk, uk ∈ R, k = 0, 1, 2, . . . , N − 1, (5)

the equivalent integral equation is given as

u(t) =
N−1∑

k=0

(t − a)k

k! uk

+
t−α∑

s=a+N−α

(t − σ(s))α−1

�(α)
f (s + α − 1,

u(s + α − 1)) , t ∈ Na+N. (6)

Hereafter, we always assume anchor point a = 0 and
restrict ourselves to 0 < α < 1. In view of this, eq. (6)
becomes

u(t) = u0 +
t−α∑

s=1−α

(t − σ(s))α−1

�(α)
f (s + α − 1,

u(s + α − 1)) , t ∈ N1, (7)

where u(0) = u0. As s + α ∈ N, let s + α = j and
using the fact that

(t − σ(s))α−1 = �(t − s)

�(t − s − α + 1)
,

we have

u(t) = u0 + 1

�(α)

t∑

j=1

�(t − j +α)

�(t − j +1)
f (j −1, u(j −1)),

t ∈ N1. (8)

3. Chaos in the discrete tent map

A tent map is defined as

f (x) := μ min{x, 1 − x}, x ∈ [0, 1], (9)

where μ is a parameter. The name comes from the
shape of the graph which looks like a tent with a sharp
corner at x = 1/2. We take 0 ≤ μ ≤ 2 to ensure that f

maps [0, 1] into [0, 1] and all orbits remain bounded.
Integer-order difference equation for the tent map is
given as

u(t + 1) = μ min{u(t), 1 − u(t)}, u(0) = c,

u(t + 1) − u(t) = μ min{u(t), 1 − u(t)} − u(t),

u(0) = c,

�u(t) = min{(μ − 1)u(t), μ − (μ + 1)u(t)},
u(0) = c. (10)
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Figure 1. The bifurcation diagram (a) and Lyapunov exponent distribution (b) for integer-order difference equation of the
tent map with u(0) = 0.3 and α = 1.



Pramana – J. Phys. (2016) 87: 49 Page 3 of 10 49

0.5 1.0 1.5 2.0

0.2

0.2

0.4

0.6

(a) (b)

(c) (d)

(e) (f)

0.0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0
u(t)

μ

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0
u(t)

μ

Figure 2. The bifurcation diagram and Lyapunov exponent distribution for fractional-order difference equation of the tent
map with u(0) = 0.3 and α = 0.7, 0.6 and 0.4.
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(a) (b)

Figure 3. μ = 1.90 orbit of the tent map for (a) α = 1 and (b) α = 0.6, with u(0) = 0.3 showing chaos.

Fractional difference equation equivalent to eq. (10) is
given as

�α
0u(t) = min{(μ − 1)u(t + α − 1),

μ − (μ + 1)u(t + α − 1)},
u(0) = c, t ∈ N1−α, 0 < α ≤ 1. (11)

In view of eq. (8), the integral form of (11) is

u(t) = c+ 1

�(α)

t∑

j=1

�(t − j +α)

�(t − j +1)
min{(μ−1)u(j −1),

μ − (μ + 1)u(j − 1)}, t ∈ N1. (12)

It should be noted that the present state u(t) of the
integer order map depends only on the previous state
u(t − 1) explicitly, whereas in the case of fractional
order map, state u(t) depends on the values u(0), u(1),
u(2), . . . , u(t − 1) explicitly. This phenomenon is
called the memory effect of the discrete fractional map.

In figure 1, the bifurcation diagram along with the
Lyapunov exponent distribution has been plotted for
the integer-order difference equation, while the same
has been plotted for fractional-order difference equa-
tions with α = 0.7, 0.6 and 0.4 in figure 2 (initial
condition u(0) = 0.3).

From the figures, we put forth the following
observations:

(1) Tent map is known for the sudden onset of chaos
after μ = 1 as seen from figure 1. However, in
the fractional version we observe the existence
of a ‘stability window’ between the bifurcation
at μ = 1 and the onset of chaos (see figure 2).

(2) The width of this ‘stability window’ increases as
the order of derivative α decreases.

(3) We observe that as α decreases, the number of
steps required for orbits to converge to the fixed
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Figure 4. The bifurcation diagram (a) and Lyapunov exponent distribution (b) for integer-order difference equation of the
Gauss map with u(0) = 0 and α = 1.
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Figure 5. The bifurcation diagram (a) and Lyapunov exponent distribution (b) for fractional-order difference equation of
the Gauss map with u(0) = 0 and α = 0.8.

point increases rapidly. Thus, the rate of conver-
gence decreases as α decreases. For α ≤ 0.2,

this rate is ultraslow.
(4) No significant change is observed by changing

the initial conditions.

In figure 3, we plot the chaotic orbit (t vs. u(t)) of the
tent map for α = 1 and α = 0.6.

4. Chaos in the discrete Gauss map

Gauss map is defined as

g(x) := exp(−νx2) + β, x ∈ R, (13)

where ν and β are parameters. The graph of the Gauss
map is a Gaussian curve. Parameter ν determines the
width of the peak, while β controls its position. Here-
after, we fix ν = 7.5 and study the features by varying β.

Integer-order difference equation for the Gauss map
is given as

u(t + 1) = exp(−7.5(u(t))2) + β, u(0) = c,

u(t + 1) − u(t) = exp(−7.5(u(t))2) + β − u(t),

u(0) = c,

�u(t) = exp(−7.5(u(t))2) + β − u(t),

u(0) = c. (14)
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Figure 6. The bifurcation diagram (a) and Lyapunov exponent distribution (b) for fractional-order difference equation of
the Gauss map with u(0) = 0 and α = 0.6.
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Fractional difference equation equivalent to (14) is
given as

�α
0u(t) = exp(−7.5(u(t+α−1))2)+β−u(t+α−1),

u(0)=c, t ∈ N1−α, 0 < α ≤ 1. (15)

In view of (8), the integral form of (15) is

u(t) = c + 1

�(α)

t∑

j=1

�(t − j + α)

�(t − j + 1)

× [exp(−7.5(u(j − 1))2) + β − u(j − 1)],
t ∈ N1. (16)

In figure 4, bifurcation diagram along with Lyapunov
exponent distribution has been plotted for integer-order
difference equation with initial condition u(0) = 0.

Here, we consider −1 ≤ β ≤ 1, as chaotic behaviour
and bifurcations are observed in this region. We observe
the following features:

(1) Series of period doubling bifurcations leading to
chaos.

(2) Two prominently visible period-3 windows
around β = −0.65 and β = −0.45.

(3) Sequence of period undoubling and again single
stable fixed point β ≥ 0.45.

Corresponding fractional counterparts for α = 0.8, 0.6,
0.4 are plotted in figures 5, 6, 7 and 8.
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Figure 8. The Lyapunov exponent distribution for
fractional-order difference equation of the Gauss map with
α = 0.4 and u(0) = 0.

From the figures, we make the following observations:

(1) All the features present in the integer-order bifur-
cation diagram can also be observed in fractional-
order bifurcation diagrams.

(2) We observe period doubling bifurcations leading
to chaos in all bifurcation diagrams.

(3) For α = 0.8, 0.6 we observe two prominently visi-
ble period-3 windows. As the value of α decreases,
we observe that the first window becomes
smaller in width, while this window completely
disappears in the α = 0.4 bifurcation dia-
gram. The second period-3 window (around β =
−0.45) increases in width as α decreases. For
α = 0.4, we observe another period doubling and
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Figure 7. The bifurcation diagram for fractional-order difference equation of the Gauss map with α = 0.4 and u(0) = 0.
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Figure 9. The bifurcation diagram for fractional-order difference equation of the Gauss map with initial condition as
u(0) = 0.5 and (a) α = 1, (b) α = 0.8, (c) α = 0.6 and (d) α = 0.4.

undoubling inside this period-3 window (around
β = −0.61).

(4) We observe period undoubling in all the bifur-
cation diagrams. Although for lower values of
α we see merging happening for larger values of
β, for α = 0.4, we see the last two threads merge

around β = 1.170. This elongates the bifurcation
diagram.

(5) We observe that the rate of convergence of the
orbit is very slow for lower values of α and hence
the system takes much longer time to obtain a
stable state, especially for α ≤ 0.4.

(a) (b)

Figure 10. Orbit α = 1 with initial condition (a) c = 22/70 (periodic orbit) and (b) c = π/10 (chaotic orbit).
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(6) With change in initial condition from u(0) = 0
to u(0) = 0.5, we do see a drastic ‘jump dis-
continuity’ in the bifurcation diagram of integer
order. The same can be observed in each of
the fractional bifurcation diagram as well (see
figure 9).

5. Chaos in the discrete 2x(mod 1) map

The 2x(mod 1) map is defined as

h(x) := 2x(mod 1), x ∈ R. (17)

The successive iterations of the map will shift a digit
towards left in the binary representation of x. Thus, the
map h(x) is also called a bit-shift map or Bernoulli
map.

Integer-order difference equation for the 2x(mod 1)

map is given as

u(t + 1) = 2u(t)(mod 1), u(0) = c,

u(t + 1) − u(t) = 2u(t) − u(t)(mod 1),

u(0) = c,

�u(t) = u(t)(mod 1), u(0) = c. (18)
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Figure 11. Orbits for the fractional difference equation (a) for c = 22/70 and α = 0.8, (b) for c = π/10 and α = 0.8,
(c) for c = 22/70 and α = 0.6, (d) for c = π/10 and α = 0.6, (e) for c = 22/70 and α = 0.5 and (f) for c = π/10
and α = 0.5.
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(a) (b)

Figure 12. Orbits for fractional difference equation (a) for c = 1/2 and α = 0.5 and (b) for c = 1/3 and α = 0.5.

Equation (18) is known for chaotic behaviour. For
every irrational c, a chaotic orbit is generated, while c ∈
Q leads to a periodic orbit (see figure 10 for t vs. u(t) plot).

It may be observed that the map does exhibit sen-
sitive dependence on initial conditions and hence is
chaotic. This is also confirmed by Lyapunov exponent
which is well known to be ln(2).

Fractional difference equation equivalent to (18) is
given as

�α
0u(t) = u(t + α − 1)(mod 1),

u(0) = c, t ∈ N1−α, 0 < α ≤ 1. (19)

In view of (8), the integral form of (19) is

u(t) = c + 1

�(α)

t∑

j=1

�(t − j +α)

�(t − j +1)
u(j−1)(mod 1),

t ∈ N1. (20)

In figures 11 and 12, we plot the orbits t vs. u(t) for
fractional difference equation (20) with various initial
conditions and for α = 0.8, 0.6, 0.5 respectively.

From the figures we make following observations:

(1) The interpretation of the integer-order map as a
bit-shift map no longer holds true for the frac-
tional version.

(2) For an irrational initial condition, a chaotic orbit
is generated like its integer version.

(3) In fractional case, the rational initial condition
may lead to a periodic orbit (see figure 12) or
a chaotic orbit (see figure 11), unlike its integer
version.

(4) As the map chops off one digit in each iteration,
it is heavily dependent on the accurate repre-
sentation of a decimal number in the computer
program. For all the above figures, we are using

precision of upto 500 digits after the decimal
point.

6. Conclusions

Fractional difference equations corresponding to the
discrete tent map, discrete Gauss map and discrete
2x(mod 1) map have been studied numerically. It is
observed that chaotic behaviour varies according to
fractional order. Fractional versions of the tent map
and the Gauss map are more stable than their inte-
ger counterparts. In case of fractional tent map, width
of the stability window increases as the fractional
order decreases. In case of Gauss map, width of the
period-3 window increases as the fractional order
decreases. It is further observed that the pattern of
chaotic behaviour is altered with changes in the ini-
tial conditions in the case of fractional Gauss and
2x(mod 1) maps.
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