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Abstract. Cylindrically symmetric non-static space–time is investigated in the presence of bulk stress given
by Landau and Lifshitz. To get a solution, a supplementary condition between metric potentials is used. The
viscosity coefficient of the bulk viscous fluid is assumed to be a power function of mass density whereas the
coefficient of shear viscosity is considered as proportional to the scale of expansion in the model. Also some
physical and geometrical properties of the model are discussed.
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1. Introduction

In Einstein’s theory of gravity, the Newtonian gravi-
tational constant G and the cosmological term � are
considered as fundamental constants. The Newtonian
constant of gravitation G plays the role of a cou-
pling constant between geometry of space and matter
in Einstein’s field equations. In an evolving Universe,
it is natural to take this constant as a function of
time. The generalized Einstein’s theory of gravita-
tion with time-dependent G and � has been pro-
posed by Lau [1]. The possibility of variables G

and � in Einstein’s theory has also been studied by
Dersarkissian [2]. The cosmological model with vari-
ables G and � have been studied recently by several
researchers. Some of the recent discussions on the
cosmological constant and consequence on cosmol-
ogy with a time-varying cosmological constant have
been discussed in refs [3–11]. Also, the role of vis-
cosity is important in cosmology for a number of
reasons. Weinberger [12], Heller and Klimek [13],
Misner [14,15] have studied the effect of viscosity
on the evolution of cosmological models. Collins and
Stewart [16] have studied the effect of viscosity on
the formation of galaxies. Xing-Xiang Wang [17] dis-
cussed Kantowski–Sachs string cosmological model

with bulk viscosity in general relativity. Also, several
aspects of viscous fluid cosmological model in early
Universe have been extensively investigated by many
researchers. Raj Bali and Dave [18] have studied
Bianchi Type-III string cosmological models with
time-dependent bulk viscosity. Bianchi Type-V string
cosmological model with bulk viscous fluid in general
relativity has been presented by Adhav et al [19].

Recently, Verma [20] studied spatially homogeneous
bulk viscous fluid models with time-dependent gravi-
tational constant and cosmological term. Kantowski–
Sachs cosmological model in the presence of massless
scalar field with flat potential has been investigated
in [21,22]. Mete et al [23] have studied Kantowski–
Sachs bulk viscous fluid cosmological model with
time-dependent �-term.

In this paper, we discuss cylindrically symmetric
non-static cosmological model with varying �, in the
presence of bulk stress given by Landau and Lifshitz.
This paper is organized as follows:

In §2 we have derived the field equations, while
§3 deals with the solution of field equations in the
presence of viscous fluid. Some particular cases are
discussed in §4. Section 5 is mainly concerned with
the physical and kinematical properties of the model
and the last section contains concluding remarks.
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2. The metric and field equations

We consider the cylindrically symmetric space–time
given by Bhattacharya and Karade [24] in the form

ds2 = dt2 −A2(t)
[
dχ2 + f 2(χ)dφ2]−B2(t)dz2, (1)

with the convention x1 = χ, x2 = φ, x3 = z, x4 =
t, A and B are functions of the proper time t alone,
while f is a function of coordinate χ alone.

The Einstein’s field equations (in gravitational units
C = 1, G = 1) read as
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of bulk stress given by Landau and Lifshitz.
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Here ρ, p, η and ξ are the energy density, isotropic
pressure, coefficient of shear velocity and bulk vis-
cous coefficient, respectively and vi is the flow vector
satisfying the relations

gij v
ivj = 1. (4)

The semicolon (;) indicates covariant differentiation.
We choose the coordinates to be comoving, so that

v1 = 0 = v2 = v3, v4 = 1. (5)

The Einstein’s field equations (2) for the line element
(1) has been set up as
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where suffix 4 at the symbols A and B denotes ordi-
nary differentiation with respect to t and θ is the shear
expansion given by

θ = v
j

;i . (9)

The functional dependence of the metric together with
eqs (7) and (8) imply

f11

f
= k2, k2 = constant. (10)

If k = 0, then f (χ) = constant χ , 0 < χ < ∞.
This constant can be made equal to 1 by suitably

choosing units for φ. Thus we shall have

f (χ) = χ

resulting in the flat model of the Universe as shown by
Hawking and Ellis [25].

3. Solution of the field equations

Using eq. (10), the set of eqs (6) to (8) reduces to
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Equations (11)–(13) are three independent equations
in seven unknowns A, B, ρ, p, η, ξ and �. For the
complete determinancy of the system, we need four
extra conditions. Firstly, we assume a relation in metric
potential as

A = Bm (14)

and secondly, we assume that the coefficient of shear
viscosity is proportional to the scale expansion, i.e.,

η ∝ θ, (15)

where m is a real number.
Equations (11) and (12) lead to
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Condition (15) leads to

η = l

(
2
A4

A
+ B4

B

)
, (17)

where l is the proportionality constant.
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Equation (16) together with eqs (14) and (17) lead to

BB44 + αB2
4 = 0 (18)

which can be rewritten as

d

dB
(f 2) + 2α

B
(f 2) = 0, (19)

where

α = 2m − 16πl(2m + 1) (20)

and

B4 = f (B). (21)

From (19), we obtain
(

dB

dt

)2

= β

B2α
. (22)

Integrating eq. (22), we can easily obtain the metric
functions

B = [(α + 1)(k1t + k2)]
1/(α+1)

and

A = [(α + 1)(k1t + k2)]
m/(α+1) , (23)

where k1 is the expression term of the integrating
constant β and k2 is a constant.

The metric (1) takes the form

ds2 = dt2 − [(α + 1)(k1t + k2)]
2m/(α+1)

×[
dχ2 + f 2(χ)dφ2]

− [(α + 1)(k1t + k2)]
2/(α+1) dz2.

After a suitable transformation of coordinates, the
above metric reduces to the form

ds2 =
[

β

T 2α

]−1

dT 2 −T 2m
[
dχ2 +f 2(χ)dφ2]−T 2dz2,

(24)

where B = T .
The pressure and density for the model (24) are given

by

8πp = [−m2 (32πl + 3) + (m + 1) (16πl + 3α)]β
3T 2(α+1)

−8πξ(2m + 1)
√

β
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and

8πρ = m(m + 2)β

T 2(α+1)
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For the specification of ξ , we assume that the fluid
obeys an equation of state of the form

p = γρ, (27)

where γ (0 ≤ γ ≤ 1) is a constant.
Thus, given ξ(t), we can solve the cosmological

parameters. In most of the investigations involving
bulk viscosity, it is assumed to be a simple power
function of the energy density [26–28]

ξ(t) = ξ0ρ
n, (28)

where ξ0 and n are constants. If n = 1 eq. (28) may
correspond to a relative fluid [29]. However, more real-
istic models [30] are based on n lying in the regime
0 ≤ n ≤ 1

2 . Using (28) in (25), we obtain

8πp = [−m2 (32πl + 3) + (m + 1) (16πl + 3α)]β
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β
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4. Particular cases

Case I. Solution for ξ(t) = ξ0
When n = 0, eq. (28) reduces to ξ(t) = ξ0 = con-

stant. Hence, in this case, eq. (29), with the use of (26)
and (27), leads to

8πρ(1 + γ )

= [−m2(32πl + 3) + (m + 1)(16πl + 3α) + 3m(m + 2)]β
3T 2(α+1)

−8πξ0 (2m + 1)
√
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Eliminating ρ(t) between (26) and (30), we have
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Case II. Solution for ξ(t) = ξ0ρ

When n = 1, eq. (27) reduces to ξ(t) = ξ0ρ. Hence,
in this case, eq. (29), with the use of (26) and (27),
leads to

8πp =
⎡
⎣ 1

1 + γ + ξ0(2m+1)
√
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.
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Eliminating ρ(t) between eqs (26) and (32), we have
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From eq. (33), we observe that if α > 0, m > 0
and α < 0, m < 0, positive cosmological constant is
a decreasing function of time and approaches a small
value in the present epoch but when α < 0, m < 0
and α < 0, m > 0, the cosmological term −� remains
constant.

5. Some physical and kinematical properties

In this section, we discuss some physical and kinemat-
ical properties of the velocity vector vi of the metric
(24). The spatial volume (V ), the scalar expansion (θ),
the shear scalar (σ ) and deceleration parameter (q) of
the fluid are given by

V = √−g = T 2m+1, (34)

θ = (2m + 1)
√

β

T (α+1)
, (35)

σ =
√

7

18
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√

β
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and

q = 2 + 3α − 2m

1 + 2m
. (37)

For α > 0, the expansion factor θ is a decreasing func-
tion of T and approaches, asymptotically to zero with
ρ and also approaching zero as T → ∞.

6. Conclusions

We have considered a cylindrically symmetric non-
static cosmological model in the presence of bulk stress
given by Landau and Lifshitz. To solve the field equa-
tions, we have assumed the relation between metric
coefficient and the viscosity coefficient of bulk viscous
fluid. Here the viscosity coefficient of the bulk vis-
cous fluid is assumed to be the power function of mass
density, whereas coefficient of the shear viscosity is
considered to be proportional to the scale of expansion.
The model is expanding, shearing and non-rotating in
the standard way.
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