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Abstract. The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of
light mass scales is reviewed. In quantum field theories containing elementary scalar fields, such as the Standard
Model of electroweak interactions containing the Higgs particle, mass of the scalar field is not a natural parameter
as it receives large radiative corrections. How supersymmetry solves this Naturalness Problem is outlined. There
are also other contexts where the presence of elementary scalar fields generically spoils the high—low mass scales
decoupling in the quantum theory. As an example of this, the non-decoupling of possible Planck scale violation
of Lorentz invariance due to quantum gravity effects from the physics at low scales in theories with elementary
scalar fields such as the Higgs field is described. Here again supersymmetry provides a mechanism for ensuring
that the decoupling of heavy-light mass scales is maintained.
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1. Introduction

Till recently, all elementary particles that were known
to exist in Nature were only spin-half fermions and
spin-one gauge particles. With the discovery of Higgs
particle at the LHC in 2012, we now have the first ele-
mentary spin-zero particle. An elementary scalar field,
such as the Higgs field, introduces a completely new fea-
ture in quantum field theories containing such a field.
This new feature is a generic non-decoupling of the
heavy mass scales from the physics of low mass scales.

A quantum field theoretic description for physical
processes with a characteristic smaller mass scale m
should not depend sensitively on the physics of larger
mass scales m . This decoupling requirement is a rea-
sonable expectation so that whatever low mass scale
quantum theory we have, can describe the physics at
that scale reliably. The only possible allowed depen-
dence of the physics at low mass scale m, on the higher
mass scale my is in the form of its inverse powers
and at the worst, a milder dependence through loga-
rithms of the high scale, but, as shall be discussed in
detail in the following, those with positive powers of

this scale are not acceptable at all. Another name for
this requirement is ‘Naturalness Principle’.

A quantum field theory containing only spin-half
fermions and gauge fields exhibits precisely this decou-
pling. Such theories are called natural theories and the
masses and the gauge couplings are natural parameters.
Examples of such theories are: Quantum electrody-
namics (QED) and quantum chromodynamics (QCD).

The notion of Naturalness emerged in the late 1970s
from the work of Wilson, Gildener and Weinberg and
’t Hooft [1,2]. A concise formulation is provided by
’t Hooft’s Doctrine of Naturalness [2]: A parameter
() at any energy scale . in the description of physical
reality can be small, if and only if, there is an enhanced
symmetry in the limit «(u) — 0. This implies a rule of
thumb: quantum corrections to the parameter o (masses
and couplings) should be proportional to a positive
power of that parameter itself: (Aa)quantum ~ ", n > 1.
This would be ensured by the associated approxi-
mate symmetry. Further, this property implies that the
enhanced symmetry holds even at the quantum level as
a— 0.

Let us look at QED in some detail. The theory
describes the interaction of fermions A of charge gy
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such as an electron with electromagnetic radiation
through a Lagrangian density:

1
LoD = _ZFMUFMV
+A[iy" @O —ieqr Ay) —me]A. (1)

Various parameters here, the electromagnetic coupling
e and electron mass me, can be naturally small. Limit
me — 0 leads to an enhanced symmetry, the chiral
symmetry: separate conservation of the number of left-
and right-handed electrons. It is for this reason that
one-loop correction to the electron mass in this theory
is given by logarithmically divergent diagrams and is
proportional to the electron mass itself.

(Ame)y loop ™ ezme In A. ()

In the limit me — 0, this correction disappears reflect-
ing the fact that chiral symmetry is preserved by such
perturbative quantum corrections in this limit. Also,
e — 0 results in enhanced symmetry: there is no
interaction and hence particle number of each type is
conserved. Again, quantum corrections to the coupling
e are logarithmically divergent and are, in the lowest
order, proportional to e>:

(Ae)1 1oop ~ € InA. (3)

It is for this reason that atomic physics described by the
interactions of electrons and photons is not disturbed
by the fact there are other heavier charged fermions
such as the muon, tau-lepton, top quarks and others in
Nature: m, ~ 200me, m; ~ 3500me, ..., myp ~ 3.4
x 10" me. Effects of heavier fermions are decoupled
from the physics of electrons and photons; showing up
at best through logarithmic dependence on them.

As against this, theories with elementary scalar
fields have completely different behaviour. Elementary
scalar fields spoil heavy—light decoupling: quantum
field theories with scalar fields are not natural. As an
example, consider a Yukawa theory of an elementary
scalar field ¢ of low mass my coupled to a heavy
fermion A of mass my:

1 1 -
L= 5" poup— 3 m3 % + A (iy" 8, —mu) A
+ yArQ; myg > my,. 4)

In this theory, the light scalar mass mj, is not a natu-
ral parameter. Smallness of m cannot be protected by
any approximate symmetry against perturbative quan-
tum corrections involving heavy fermions in the loops.
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In fact, such corrections to mi appear with quadratic
divergences:

k2 2
Am? ~ _yZ/d4k+—m§1
(kZ_mH)Z
~ —yPmi In(mi /), 5)

where we have used dimensional regularization and
minimal subtraction in the last step. Notice that this
correction is proportional to mlzq and not to m%. There-
fore, there is no decoupling of the heavy mass scale
from the light mass scale theory. Even in the limit
my, — 0, this correction does not go away.

2. Naturalness of electroweak theory

Standard Model (SM) of particle physics has an ele-
mentary scalar particle, the Higgs particle. Discussion
above then implies that its mass is not protected by any
symmetry against large radiative corrections.

Tree-level masses for the Higgs particle, gauge par-
ticles W*, Z° and the fermions in SM are given by:
MHiges = Vv, my = gv/2, mz = gv/(2cosfy),
my = Yyv/ V2, where v is the vacuum expectation
value of the scalar field, A is the quartic scalar coupling,
g is the gauge coupling, Y is the Yukawa coupling of
the fermions f to the scalar field and Oy is the weak
mixing angle.

Note that the limit v — 0 does enhance classical
symmetry: (i) all particles being massless in this limit,
we have scale invariance of the classical theory; (ii) the
weak gauge bosons are massless resulting in restored
SU (2) gauge symmetry and additionally (iii) there is
chiral symmetry due to zero masses of the fermions.
Yet, v is not a natural parameter. Consequently, masses
of the Higgs particle, weak gauge bosons and fermions
are not natural. This is due to the Coleman—Weinberg
mechanism of radiative breaking of symmetry: quan-
tum fluctuations generate a non-zero quantum vacuum
expectation value for the scalar field even when clas-
sically v is zero, breaking all these symmetries. There
is no enhancement of symmetry at the quantum level
in the limit where classical vacuum expectation value
v— 0.

In the SM, one-loop radiative corrections to the
Higgs mass come from the diagrams of the type where
fermions f, gauge fields (W4, Z) and Higgs field H go
around the loop (see figure 1). The diagrams contribute
correction to the Higgs mass as

2 _ 2
AmHiggS = aA
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Figure 1. Diagrams showing fermions f, Higgs field H and gauge fields (W4, Z) in the loop.

with

o (AL + Bg* — CY7),

1672
where A, B, C are numerical constants respectively
associated with the diagrams with scalar fields, gauge
fields and the fermions in the loops. Use dimensional
regularization (with minimal subtraction) to write this
correction as

Am2 e w2 1 M iges
MYyigos W MHiggs 1N ,bL2

m?2
272 gauge
+Bg " Myauge In 5

2
m
— Crim%In (—g)} .
n

Largest mass particle (top quark) in the loops gives the
dominant correction:

AmIzL{iggs ~ _amtzop ln(mt20p/:u2)- (6)

Thus, the radiative correction to scalar mass is gener-
ically controlled by the highest mass in the loops. This
is to be contrasted with QED where correction to the
square of the electron mass is proportional not to the
square of any other mass but only to square of the
electron mass itself: Amg ~ amg.

Now from eq. (6), for top mass mp = 175 GeV and
the coupling factor « ~ 1/100, the radiative contribu-
tion Am%ﬁggS is still small for myjges = 125 GeV. Butif
there were a much heavier particle in Nature, such as in
a Grand Unified Theory (containing the QCD and the
electroweak model), the radiative corrections to Higgs
mass would be controlled by this heavy scale and hence
very large.

Naturalness breakdown scale of the SM: As we have
seen above, one-loop correction to Higgs boson mass
due to quantum fluctuations of a size characterized
by the scale A may be written as: Am%nggs = aA>.
Square of the vacuum expectation value of the scalar
field, and also the masses of vector bosons W and
70 and fermions would obtain similar corrections. For
coupling o ~ (100)~! and mpyiggs ~ 100 GeV, if we
require that these radiative corrections to this mass do

not exceed its value, Am%{iggS ~ m%{iggs, we have
Amiy. .o (100 GeV)2
A2 = Sl (A00GEV)T 00 ey
o (100)~!
= (1 TeV)>. (7)

This leads to an estimate of the naturalness breakdown
scale for the electroweak theory as: Ay ~ 1 TeV.

3. Large logarithmically divergent corrections
in GUT

Not only are the quadratically divergent graphs with
heavy mass fields going around the loops responsi-
ble for destabilizing the lower mass scale, but there
are also some log divergent graphs which contribute
to this phenomenon [3]. These graphs appear generi-
cally in any grand unified theory (GUT) of the QCD
and electroweak SU (2) x U (1) model.

Consider a gauge theory based on a gauge group G
which is spontaneously broken at two stages:

¢56, LGy F>r

This is achieved through vacuum expectation values of
two scalar fields: (®)yae = F ~ M; and (¢)vac =
f ~ M>. It was in this context of GUTs that the Natu-
ralness Problem was noticed in its earliest versions by
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Figure 2. Large log divergent graph.

Gildener and Weinberg [1] who realized that the rela-
tive stability of the smaller scale f as against the larger
scale F cannot be maintained under radiative quantum
effects and this was given the name: Gauge Hierarchy
Problem.

Quadratically divergent graphs for the two-point cor-
relations of light scalar fields give large corrections
(~ F?) to its M22 (~ fz). Besides these, there are also
large logarithmically divergent contributions from the
graphs involving large (~F) three-point coupling [3].
These come from the mixed light-heavy field interac-
tion terms of the type:

Ling ~ k®*¢? = k(Hy + F)* (Ha + f)?
~ 4 cH12H2+dH1H22 4o
¢~ f, d~F. (8)

The relevant three-point vertex is from the interaction
term d Hj H22 with coupling strength proportional to
the heavy mass scale, d ~ F. As shown in figure
2, this leads to a logarithmically divergent two-point
graph with light fields H» on the external lines and one
heavy (H;) and one light (H>) fields propagating on
the internal lines in the loop. This diagram contributes
a correction to the light mass square, M22, given by

AM3 ~ F*In(F?/u?) 9)

which is proportional to the square of the larger mass
scale due the presence of factor F2 coming from the
two interaction vertices. This results in a destabiliza-
tion of the light-heavy mass hierarchy.

4. A window to physics beyond SM:
Supersymmetry

In a Grand Unified Theory, perturbative quantum cor-
rections tend to draw the smaller electroweak scale
(Mgw ~ 100 GeV) towards the GUT scale (Mgut ~
10'® GeV). Even without grand unification, now with
the established non-zero masses for neutrinos, though
very small, as indicated by the neutrino oscillations,
the see-saw mechanism for these masses also suggests
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a new physical high scale of the order of 10" GeV or
so linked to the mass of the right-handed neutrino. This
would imply that the radiative corrections would drag
the Higgs mass to such high values. Even if we ignore
both these sources of possible high mass scales, there is
yet another high physical mass scale, Mp; = 10'° GeV
in Nature, associated with quantum gravity. Radiative
corrections would draw the masses of electroweak the-
ory to this high scale and hence their natural values
would be ~10'” GeV and not the physical values char-
acterized by the low SM scale! All these suggest that
there has to be some new physics beyond 1 TeV such
that the SM with its characteristic scale of 100 GeV
stays natural beyond this scale.

There are several proposed solutions to the Natural-
ness Problem (for a review, see [4]). Of these, with
Higgs mass at 126 GeV, supersymmetry is the most
promising solution.

An elementary property of quantum field theory
which gives an extra minus sign for the radiative
diagram with a fermion as against a boson field
going around in the loop allows for the possibility
that naturalness-violating effects due to bosonic and
fermionic quantum fluctuations can be arranged to can-
cel against each other. For this to happen, the various
couplings and masses of bosons and fermions have to
be related to each other in a highly restrictive manner.
Further, for such a cancellation to hold at every order of
perturbation, a symmetry between bosons and fermions
would be imperative. This is what supersymmetry does
indeed provide.

A historical note: Supersymmetric solution of the
Naturalness Problem (or Non-decoupling Problem or
Gauge Hierarchy Problem) was discovered in 1981 in
Bangalore, requiring supersymmetry to become opera-
tive at about 1 TeV for the masses of Standard Model
to be stable against radiative corrections:

(i) Inref. [5], the quadratic divergences were shown
to be absent in a supersymmetric theory with
spontaneously broken anomaly-free U(1) gauge
symmetry.

(i1) In [3], absence of the naturalness-spoiling quad-
ratic divergences as well as the large logarithmic
divergences was shown in a supersymmetric
theory with two distinctly different scales, heavy
F and light f, associated with sequential gauge
symmetry breaking through vacuum expectation
values of two sets of scalar fields. This de-
monstrated that the hierarchy f2/F? « 1 is
radiatively maintained even when quantum
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corrections are included in a supersymmetric
framework.

(iii) Inref. [6], it was demonstrated that (a) in a super-
symmetric theory with anomalous U(1) gauge
invariance (where the U(1) charges do not add
up to zero, y Quqy # 0), quadratic diver-
gences are not absent; but in a theory which is
anomaly-free (3 Qu 1) = 0), these are absent
and (b) in a supersymmetric theory with anom-
aly-free SU(2) x U(1) gauge invariance, quad-
ratic divergences due to the boson and fermion
fields in the loops cancel out completely with
no net quadratic divergences and hence such a
theory is perfectly natural.

(iv) In ref. [7], technicolour and supersymmetric
solutions of the Naturalness Problem of SM are
reviewed.

(v) It was argued in [8] that, in a general GUT with
two distinct mass scales, the decoupling of the
high mass scale from the low mass scale is spoiled
by the same features of elementary scalar fields
as are responsible for the Coleman—Weinberg
radiative symmetry breaking. In a supersymmet-
ric theory, Coleman—Weinberg mechanism is not
operative and hence, the low-high mass scale
distinction holds even when quantum correc-
tions are incorporated.

(vi) In supersymmetric theories with spontaneously
broken U(1) gauge symmetry even when trace
of U(1) charges is zero, the D term can get
one-loop corrections, but that these are only
logarithmically divergent was proved in ref. [9].

5. Supersymmetric extension of the Standard
Model

Supersymmetric theories with non-Abelian gauge in-
variances are always free of quadratic divergences. On
the other hand, those with U(1) gauge invariance have
quadratically divergent radiative corrections propor-
tional to the sum of U(1) charges of all the fields. If
the U(1) charges sum to zero, quadratic divergences
are absent even in these theories. Supersymmetrized
Standard Model is one such theory.

Also for theories with two widely separated scales
such as a supersymmetric GUT, the large logarithmic
divergences are also separately absent.

In supersymmetric theories with spontaneously bro-
ken gauge symmetries through non-zero vacuum expec-
tation value (VEV) of elementary scalar fields, the limit
VEV — 0 does lead to an enhanced symmetry even at
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the quantum level (provided, in the presence of a U(1)
gauge symmetry, all the U(1) charges add up to zero).
Coleman—Weinberg mechanism does not produce radi-
ative breaking of the gauge symmetry in such theories.

Supersymmetry requires that bosons and fermions
come in families. For supersymmetric model build-
ing, see ref. [10]. Simplest supersymmetric model is
the minimal supersymmetric Standard Model (MSSM)
where every SM particle has a superpartner with oppo-
site statistics: for the photon we have a Majorana
fermion, the photino, as its supersymmetric partner;
for the leptons we have scalar sleptons; for the quarks
scalar squarks; etc.

Exact supersymmetry requires that all properties,
except the spin, of particles in a supermultiplet are the
same: masses are equal and so are the couplings; elec-
troweak and colour quantum numbers are identical.
But, supersymmetry cannot be an exact symmetry of
Nature: otherwise we should already have seen a scalar
superpartner of an electron with the same mass and
charge. So supersymmetry has to be broken in a way
that the superpartners are much heavier than the SM
particles. Yet naturalness-violating effects should not
appear: in particular the quadratic divergences should
not reappear in the radiative corrections. This indeed
happens if supersymmetry is spontaneously broken
or explicitly broken by the so-called soft terms (i.e.,
broken by masses only and not by dimensionless cou-
plings) in the action at a scale Msysy ~ 1 TeV.

MSSM has a whole variety of possible new interac-
tions: a large number of new free parameters (~100)
with all possible soft supersymmetry breaking terms.
This makes it difficult to make any robust and easily
verifiable predictions. An important requirement in
supersymmetric theories is the suppression of un-
wanted flavour changing neutral current (FCNC) which
are otherwise generically present in large sizes in such
theories. Sometimes, people make certain assumptions
about the nature of the new interactions which reduces
the number of the extra parameters. Different possible
choices of these parameters lead to predictions with
different possible masses and also different decay pat-
terns. One such model, the constrained minimal super-
symmetric model (cMSSM), has only a few extra free
parameters, five in all.

So far, no evidence for supersymmetry has emerged
from the 8 TeV data collected at LHC. This may change
over time when more data become available. But, it
is perfectly possible that the simplest form of super-
symmetric model, i.e., cMSSM, is not the right picture.
More involved supersymmetric models may have to be
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explored. A MSSM with more parameters or a next-to-
minimal supersymmetric Standard Model (NMSSM)
[6,11] or even a non-minimal model with more struc-
ture may be required. A recent example of a more
involved model is the gauge-mediated supersymmetry
breaking (GMSB) with an unconventional messenger
content [12] as against the 5 and 5 multiplets of the
grand unification gauge group SU (5) in the minimal
conventional GMSB model.

It is important to realize that, except for the com-
pelling naturalness argument which predicts supersym-
metry as operative at about 1000 GeV, so far there are
really not enough strong theoretical or experimental
constraints available to guide us to a reliable supersym-
metric model. Besides, the properties of the Standard
Model including the fact that Higgs mass is now known
to be around 126 GeV, other important and strin-
gent restrictions for supersymmetry model building
come from the requirement of sufficient suppression
of flavour changing neutral currents (FCNCs) which
otherwise can tend to be generically large in the
supersymmetric theories. Hopefully, more experimen-
tal results from the LHC will provide enough discrim-
inating guidance that will finally result in the correct
supersymmetric model.

6. Other non-decoupling problems:
Lorentz non-invariance

There can be many other physical situations where
presence of elementary scalar fields can cause the
same non-decoupling problems. These again would be
cured by supersymmetry. We shall now discuss such an
example which concerns possible Lorentz non-invari-
ance generated by quantum gravity effects at the Planck
scale.

Large quantum fluctuations in the gravitational field
would introduce granularity of space at extremely
short distances (~ £panck = 10733 cm). This would
imply a minimum spatial length beyond which no
physical process can penetrate. This is in conflict
with Lorentz invariance (LI) because LI implies that
we can make an arbitrarily large boost transformation
which would result in Lorentz contraction of lengths
to arbitrarily small values. This violation of LI would
reflect itself through a change of the dispersion relation
for a particle. These features are known to emerge in
theories of quantum gravity such as the loop quantum
gravity (LQG) as well as the string theory [13].

Do these Planck scale effects decouple from low-
energy physics? In quantum field theory of fermions
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and gauge fields where only low-high mass scales
decoupling holds, this would indeed be realized. But,
as discussed by Collins et al [14], theories containing
elementary scalar fields would not exhibit such a prop-
erty. We now present their argument for this behaviour
in the following.

Lorentz invariance implies a unique form of disper-
sion relation for a particle: E> — p?> — m? = 0, in
units where velocity of light c = 1. A Lorentz non-
invariance effect would change the dispersion relation
to: E2 — p*> —m? — II(E, p) = 0, where II rep-
resents the result of all the self-energy graphs with a
small Lorentz-violating contribution from the quantum
gravity effects.

We may parametrize the Lorentz violation through a
dimensionless parameter [14]:

lim|:(a 0 + 0 8>1'[( )i| (10)
=0 [\apodpe " aipla151) )

For exact Lorentz invariance I'T(p) would be a function
of the Lorentz-invariant combination p% — p? implying
that £ is zero. Thus, & # 0 would provide a measure
of violation of Lorentz invariance.

Now, as an example, consider a Yukawa theory of a
fermion and a scalar field with their small masses given
by the low scale mjow. Let us study the contribution to
& for the scalar field from the correction to the scalar
two-point function IT(po, p) due to a fermion loop in
this theory:

é:

4
M(p) = —4iy* Ik (k- (k+ p)+mi ]
(27_[)4 low

><[kz—mlzow—i-ie]_1

x[(p+k)>—mi  +ie]™!

= —2iy?

d*k 1
Q) | k2 —mi, +ie

2 2
+ 4mlow_p
K2—m?_+iell’
low

where y is the Yukawa coupling. This integral has a
quadratic divergence which gets converted to a loga-
rithmic divergence in & due to the momentum deriva-
tives in its definition above:

S
k+p)=+my, +ie

d*k k2 + 3k
Qm)* (k2 —m?,, +i€)’

4m?
X |14 ——dow |
|: kK2 —m% +ie

low

£ = —16iy?
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This integral can be evaluated by Euclidean continua-
tion of ko to imaginary values i ky:

@he K3k [
@m)* (k2+n112ow)3

4 2
k2 mlOW j|' (11)

low

£ =16y>

We may use an ultraviolet cut-off A for the Euclidean

internal loop momentum k = /ktk, = ,/ki + k2
which is invariant under four-dimensional Euclidean

rotations. It is straightforward to check that such a
calculation yields the Lorentz symmetric answer & = 0.

However, due to the possible Lorentz violations from
the Planck scale physics, the free fermion propagator
used in this calculation would get significantly modi-
fied at high scales. The momentum cut-off would have
to be Lorentz violating, introducing different cut-offs
for the ko and |k| integrations. One way to intro-
duce this order-one non-invariance is by introducing a
Lorentz non-invariant cut-off by multiplying the free
fermion propagator by a smooth function f(|k|/A)
which for the momenta much below the Planck-scale
cut-off A (~ Mpy) goes to 1, f(0) = 1, so that the
low-energy propagator stays largely unaffected, and for
high momenta this function goes to zero, f(oco0) = O,
to tame the ultraviolet behaviour in a Lorentz non-
invariant manner. This would lead to a one-loop con-
tribution to the two-point scalar function as

o [1()(52)

— _9iy2
(p) = —2iy )

kK2 —mi  +ie

/() (5)

2 .
(k+ p)? —mj,, + i€

4 2 _ 2
X 1+—ml°“2’ P .
k? —mi, + i€

A simple example of such a cut-off function is
FUKI/A) = (14 (k2/A%)~L. Such a regulator yields
a large Lorentz violation at low energies as can be
seen by evaluating & from this I1(p) after Euclidean
continuation of kg to iky:

e o2 (@R (%) (%) [1 __Ami, }
Qo)* | (kK2 +m? )} k2 +m?
X <k2 — ll_c'2>
3
d*k)e
3 ) n)H
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/(8 () o(5)(3)

|KIAGK? +mi,)

(8 () () (3)

KIAGK? +mi)

()7 (8)

Ak? + mlow)2

——5 [ & w0+ w)

m
ol
2 mi
dx x(f'(x))"+0 (ﬁ) ,

where prime denotes derivative with respect to the
argument. Note that the leading effect is independent
of the Planck scale cut-off A (~ Mp;). That is, there is
no mlzow / MPZ,1 factor in the leading term and we have
only a coupling constant suppression. Hence, there
is no decoupling of the Planck scale effects from light
mass scale! This result implies a low-energy violation
of Lorentz invariance of a size which is very large com-
pared to the measured limits on such non-invariance.

It is important to emphasize that this non-decoupling
behaviour again emerges from those parts of the radia-
tive corrections in the two-point scalar correlation
which, without the cut-off, are quadratically divergent.

The amount of non-invariance of Lorentz symmetry
at low energies depends on the exact cut-off function
f(x). Clearly, if we replace f(x) = 1 in the above
expression for &£, we obtain, as expected, the Lorentz
symmetric answer & = 0.

We emphasize again that in theories with only gauge
fields and fermions and no elementary scalar fields,
where there are no quadratic divergences, this order,
one quantum gravity-induced Lorentz violation at the
Planck scale would radiatively percolate down to low
energies in a highly suppressed form, with only order
(m?,,/M3,) effects.

Obviously, in theories with elementary scalar fields,
supersymmetry again provides a protection mechanism

2 o0

Y

=5 (12)
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against the above discussed large radiative transmis-
sion of Lorentz violation from Planck scale to low
scales: there are no quadratic divergences in the scalar
self-energy graphs in supersymmetric theories. In the
supersymmetrized version of field theory example
discussed above, exact supersymmetry will completely
cancel out the quadratically divergent contributions
in the two-point scalar correlator from graphs with
boson fields going around the loops with those with
fermion fields going around the loops. Consequently,
Planck scale violations of Lorentz invariance will leave
behind in & only a highly suppressed low-energy effect
[15] of a size O(mlzoW / Mfz,l). But as supersymmetry is
softly broken at low energies below a scale Msysy in
Nature, the Bose—Fermi cancellation will not be exact,
but will happen up to logarithmic effects: & ~
Y2 (M3ygy/M3DIn(ME /M3;gy). In  the Standard
Model, radiative stability of the Higgs mass requires
Msusy ~ 10° GeV. Though approximate supersym-
metry provides a suppression, yet this discussion
implies a profound result that quantum gravity effects
predict a tiny violation of Lorentz invariance at low-
energy scales given by: £ ~ yX M%USY /M%l) ~
(100)~! (10%/10'%)2 ~ 1073*. Non-zero value of &
modifies the Lorentz symmetry respecting dispersion
relation To(p) = —p? + m?>c? = —(E?/c?) + p>
+ m?c? = 0 by a change of velocity of light ¢ by an
amount given by Ac/c = & /4+ 0 (£%). The estimate of
violation of Lorentz invariance here may be contrasted
with the present day observational /experimental limits
on this violation as represented by the varying velocity
of light as: Ac/c < 10722, The violation of Lorentz
invariance suggested above is significantly smaller, by
some 12 orders magnitude, than this limit.

7. Conclusion

Quantum field theories with elementary scalar fields
do not exhibit low-high energy decoupling behaviour:
such theories are not natural. The various low mass
parameters are not stable under quantum radiative cor-
rections which tend to drag them to the highest mass
scale.

The Naturalness Problem of the SM has proved to
be an ideational fountain-head for a whole variety of
new beyond Standard Model (BSM) ideas over last
several decades. Supersymmetry is the most promising
of these. Now is the time to confront these with experi-
ments at LHC. Surely, experimental search for super-
symmetry and related phenomenological developments
are the present day frontier of high-energy physics.
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Hopefully, experimental discovery of supersymme-
try, though very likely not in the simplest version as
represented by the cMSSM, but as in a more general
MSSM framework, or even perhaps in a non-minimal
form, may happen in the near future.

Besides the naturalness issues related to the masses
in the Standard Model, there are other places where
similar problems arise. For example, generic non-
decoupling of the (possible) Planck scale violation of
Lorentz invariance due to quantum gravity effects in
theories with elementary scalar fields has the same ori-
gin. Supersymmetry again can ensure decoupling of
this Planck scale violation from the low-energy physics.
This implies a suppressed low-energy violation of
Lorentz invariance as reflected by a variable velocity
of light of a size § ~ 4(Ac/c) ~ yAMZygy/Mp) ~
10~3* for a supersymmetry breaking scale of Msysy ~
10° GeV (which is required by the radiative stability of
the 100 GeV scale of electroweak theory).
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