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Abstract. We investigate the way the total mass sum of neutrinos can be constrained from the neu-

trinoless double beta-decay and cosmological probes with cosmic microwave background (CMBR),

large-scale structures including 2dFGRS and SDSS datasets. First we discuss, in brief, the current

status of neutrino mass bounds from neutrino beta decays and cosmic constraint within the flat

�CMD model. In addition, we explore the interacting neutrino dark-energy model, where the

evolution of neutrino masses is determined by quintessence scalar field, which is responsible for

cosmic acceleration. Assuming the flatness of the Universe, the constraint we can derive from

the current observation is
∑

mν < 0.87 eV at 95% confidence level, which is consistent with
∑

mν < 0.68 eV in the flat �CDM model without Lyman alpha forest data. In the presence of

Lyman-α forest data, interacting dark-energy models prefer a weaker bound
∑

mν < 0.43 eV

to
∑

mν < 0.17 eV (Seljark et al). Finally, we discuss the future prospect of the neutrino mass

bound with weak-lensing effects.

Keywords. Neutrino masses; neutrinoless double beta decay; large-scale structures; interacting

neutrino dark-energy model.
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1. Neutrino mass bounds from neutrinoless double beta decays

The standard method for measuring absolute value of the neutrino mass is based on the

detailed investigation of the high-energy part of the β-spectrum of the decay of tritium:
3H −→ 3He + e− + ν̄e. (1)

This decay has a small energy release (E0 ≃ 18.6 keV) and a convenient lifetime (T1/2 =
12.3 yr). As the flavour eigenstates are different from mass eigenstates in neutrino sector,

in general, electron neutrino can be expressed as

νeL =
∑

i

Uei νiL, (2)
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where νi is the field of neutrino with mass mi and U is the unitary mixing matrix. Neglec-

ting the recoil of the final nucleus, the spectrum of the electrons is given by

dŴ

dE
=

∑

i

|Uei |
2 dŴi

dE
, (3)

and the resulting spectrum can be analysed in terms of a single mean-squared electron

neutrino mass

〈mβ〉2 =
∑

j

m2
j |Uej |

2 = m2
1|Ue1|

2 + m2
2|Ue2|

2 + m2
3|Ue3|

2. (4)

If the neutrino mass spectrum is practically degenerate, m1 ≃ m2 ≃ m3, the neutrino

mass can be measured in these experiments. Present-day tritium experiments Mainz [1]

and Troitsk [2] gave the following results:

m2
1 = (−1.2 ± 2.2 ± 2.1) eV2 (Mainz), (5)

= (−2.3 ± 2.5 ± 2.0) eV2 (Troitsk). (6)

This value corresponds to the upper bound

m1 < 2.2 eV (95% CL). (7)

Another useful method is by using the neutrinoless double beta (0νββ) decay. The search

for neutrinoless double β-decay

(A,Z) −→ (A,Z2) + e− + e− (8)

for some even–even nuclei is the most sensitive and direct way of investigating the nature

of neutrinos with definite masses. In this process, total lepton number is violated (�L =
2) and is allowed only if massive neutrinos are Majorana particles. The rate of 0νββ-decay

is approximately

1

T 0ν
1/2

= G0ν(Qββ , Z)|M0ν |
2〈mββ〉2, (9)

where G0ν is the phase-space factor for the emission of the two electrons, M0ν is the

nuclear matrix element and 〈mββ〉 is the effective Majorana mass of the electron neutrino:

〈mββ〉 ≡

∣

∣

∣

∣

∣

∑

i

U 2
eimi

∣

∣

∣

∣

∣

. (10)

We can write eq. (10), for normal and inverted hierarchy respectively, in terms of mixing

angles and �2
s = m2

2 − m2
1 = (7.9+2.8

−2.9) · 10−5 eV2, �a = ±(m2
3 − m2

2) ≃ ±(2.6 ± 0.2) ·

10−3 eV2 and CP phases as follows:

Normal hierarchy:

〈mee〉 =

∣

∣

∣

∣

c2
2c

2
3m1 + c2

2s
2
3 eiφ2

√

�2
s + m2

1 + s2
2 eiφ3

√

�2
a + m2

1

∣

∣

∣

∣

.

Inverted hierarchy:

〈mee〉 =

∣

∣

∣

∣

s2
2m1 + c2

2s
2
3 eiφ2

√

�2
a − �2

s + m2
1 + c2

2s
2
2 eiφ3

∣

∣

∣

∣

. (11)
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From these relations, we can have the correlation plot between mlight and |mββ | with cur-

rently observed datasets of mixing angles and �2
s,a from neutrino oscillation experiments.

However, 0νββ decays have not yet been seen experimentally.

The most stringent lower bounds for the time of life of 0νββ-decay were obtained in

the Heidelberg–Moscow [4] and IGEX [5] 76Ge experiments:

T 0ν
1/2 ≥ 1.9 · 1025 yr (90% CL) Heidelberg–Moscow, (12)

T 0ν
1/2 ≥ 1.57 · 1025 yr (90% CL) IGEX. (13)

Taking into account different calculations of the nuclear matrix elements, from these

results, the following upper bounds were obtained for the effective Majorana mass:

|mββ | < (0.35−1.24) eV. (14)

Many new experiments (including CAMEO, CUORE, COBRA, EXO, GENIUS, MAJO-

RANA, MOON and XMASS experiments) on the search for neutrinoless double β-decay

are in preparation at present. In these experiments, sensitivities

|mββ | ≃ (0.1 − 0.015) eV (15)

are expected to be achieved. The detailed upper limit of |mββ | and the sensitivities of the

future 0νββ-decay experiments are summarized in table 1. It is very difficult to confirm

the normal hierarchy pattern of neutrino mass when m1 < 1.7 · 10−3 eV. However, for

the inverted case, it can be detected if m3 < 8.9 · 10−3 eV and mee > 0.012 eV.

Table 1. The current upper limits on the effective Majorana neutrino mass

|mββ | and the sensitivities of the future 0νββ-decay experiments. We used

the matrix elements M0ν with reduced uncertainty [3]. T 0ν
1/2 denotes the

current lower limit on the 0νββ-decay half-life or the sensitivity of planned

0νββ-decay experiments.

Nucleus M0ν T 0ν
1/2 (yr) Experiment |mββ | (eV)

76Ge 2.40 1.9 · 1025 Heidelberg–Moscow 0.55

3 · 1027 Majorana 0.044

7 · 1027 GEM 0.028

1 · 1028 GENIUS 0.023
100Mo 1.16 6.0 · 1022 NEM03 7.8

4 · 1024 NEM03 0.92

1 · 1027 MOON 0.058
130Te 1.50 1.4 · 1023 CUORE 3.9

2 · 1026 CUORE 0.10
136Xe 0.98 1.2 · 1024 DAMA 2.3

3 · 1026 XMASS 0.10

2 · 1027 EXO(1t) 0.055

4 · 1028 EXO(10t) 0.012
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2. Neutrino mass bounds from cosmological constraints within the standard

cosmology

Within the standard cosmological model, the relic abundance of neutrinos at the present

epoch comes out straightforwardly from the fact that they follow the Fermi–Dirac distri-

bution after freeze-out, and their temperature is related to the CMB radiation temperature

TCMB today by Tν = (4/11)1/3TCMB with TCMB = 2.726 K, providing

nν =
6ζ(3)

11π2
T 3

CMB, (16)

where ζ(3) ≃ 1.202, which gives nν ≃ 112 cm−3 for each family of neutrinos at present.

By now the massive neutrinos become non-relativistic, and their contribution to the mass

density (�ν) of the Universe can be expressed as

�νh
2 =

�

93.14 eV
, (17)

where � stands for the sum of the neutrino masses. In this relation, we include the effect

of three neutrino oscillations [6]. We should notice that when obtaining the limit of neutri-

no masses one usually assumes

(a) the standard spatially flat �CDM model with adiabatic primordial perturbations,

(b) they have no non-standard interactions,

(c) neutrinos decoupled from the thermal background at the temperatures of order 1

MeV.

These simple conditions can be modified due to a sizable neutrino–antineutrino

asymmetry, due to additional light scalar field coupled with neutrinos [7], and due to

the light sterile neutrino [8]. However, analysis of WMAP and 2dFGRS data gave inde-

pendent evidence for small lepton asymmetries [9,10], and such a scenario with a light

scalar field is strongly disfavoured by the current CMB power spectrum data [11]. We

shall not therefore take into account such non-standard couplings of neutrinos in the fol-

lowing. In addition, current cosmological observations are sensitive to neutrino masses

0.1 eV < � < 2.0 eV. In this mass scale, the mass-square differences are small enough

and all three active neutrinos are nearly degenerate in mass. Therefore, we assume degen-

erate mass hierarchy. Even if we consider a different mass hierarchy pattern, it will be

very difficult to distinguish such hierarchy patterns from cosmological data alone [12].

After neutrinos decoupled from the thermal background, they stream freely and their

density perturbations are damped on a scale smaller than their free-streaming scale. Con-

sequently, the perturbations of cold dark matter (CDM) and baryons grow more slowly

because of the missing gravitational contribution from neutrinos. The free-streaming scale

of relativistic neutrinos grows with the Hubble horizon. When the neutrinos become non-

relativistic, their free-streaming scale shrinks, and they fall back into the potential wells.

The neutrino density perturbation with scales larger than the free-streaming scale resumes

to trace those of the other species. Thus the free-streaming effect suppresses the power

spectrum on scales smaller than the horizon when the neutrinos become non-relativistic.

The co-moving wavenumber corresponding to this scale is given by

knr = 0.026
( mν

1 eV

)1/2

�1/2
m h Mpc−1, (18)

440 Pramana – J. Phys., Vol. 86, No. 2, February 2016



Neutrino mass bounds from neutrinoless double beta-decays

for degenerated neutrinos, with almost the same mass mν . The growth of Fourier modes

with k > knr will be suppressed because of neutrino free-streaming. The power spectrum

of matter fluctuations can be written as

Pm(k, z) = P∗(k) T 2(k, z), (19)

where P∗(k) is the primordial spectrum of matter fluctuations, to be a simple power law

P∗(k) = Akn, where A is the amplitude and n is the spectral index. Here the transfer

function T (k, z) represents the evolution of perturbation relative to the largest scale. If

some fraction of the matter density (e.g., neutrinos or dark energy) is unable to cluster, the

speed of growth of perturbation becomes slower. Because the contribution to the fraction

of matter density from neutrinos is propotional to their masses (eq. (17)), the larger mass

leads to the smaller growth of perturbation. The suppression of the power spectrum on

small scales is roughly proportional to fν [21]:

�Pm(k)

Pm(k)
≃ −8fν, (20)

where fν = �ν/�M is the fractional contribution of neutrinos to the total matter density.

This result can be understood qualitatively from the fact that only a fraction (1 − fν)

of the matter can cluster when massive neutrinos are present [22]. Analyses of CMB

data are not sensitive to neutrino masses if neutrinos behave as massless particles at

the epoch of last scattering. According to the analytic consideration in [23], as the red-

shift when neutrino becomes non-relativistic is given by 1 + znr = 6.24 · 104 �ν h2 and

zrec = 1088, neutrinos become non-relativistic before the last scattering when �νh
2 >

0.017 (i.e., � > 1.6 eV). Therefore, the dependence of the position and the height of

the first peak on �νh
2 has a turning point at �νh

2 ≃ 0.017. This value also affects

CMB anisotropy by modifying the integrated Sachs–Wolfe effect due to the massive

neutrinos. However, the CMB data constrain other parameters that are degenerate with

�. Also, as there is a range of scales common to the CMB and LSS experiments, CMB

data provide an important constraint on the bias parameters. We summarize some of the

recent cosmological neutrino mass bounds within the flat-�CDM model in table 2.

Table 2. Recent cosmological neutrino mass bounds (95% CL).

Cosmological dataset � bound (2σ ) References

CMB (WMAP-3 year alone) < 2.0 eV Fukugita et al [13]

LSS[2dFGRS] < 1.8 eV Elgaroy et al [14]

CMB + LSS[2dFGRS] < 1.2 eV Sanchez et al [15]

” < 1.0 eV Hannestad [16]

CMB + LSS + SN1a < 0.75 eV Barger et al [17]

” < 0.68 eV Spergel et al [18]

CMB + LSS + SN1a + BAO < 0.62 eV Goobar et al [19]

” < 0.58 eV

CMB + LSS + SN1a + Ly-α < 0.21 eV Seljak et al [20]

CMB + LSS + SN1a + BAO + Ly-α < 0.17 eV Seljak et al [20]
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3. Neutrino mass bounds in interacting neutrino-dark energy model

Using our previous works [24–26], we investigate the cosmological implication of an idea

of the dark energy interacting with neutrinos [27,28]. For simplicity, we consider the case

that dark energy and neutrinos are coupled such that the mass of the neutrinos is a function

of the scalar field which drives the late-time accelerated expansion of the Universe.

In our scenario, equations for quintessence scalar field are given by

φ̈ + 2Hφ̇ + a2 dVeff(φ)

dφ
= 0, (21)

Veff(φ) = V (φ) + VI(φ), (22)

VI(φ) = a−4

∫

d3q

(2π)3

√

q2 + a2m2
ν(φ)f (q), (23)

mν(φ) = m̄ie
β(φ/Mpl), (24)

where V (φ) is the potential of quintessence scalar field, VnI (φ) is the additional potential

due to the coupling to neutrino particles [28,29] and mν(φ) is the mass of neutrino coupled

to the scalar field, where we assume the exponential coupling with a coupling parameter

β. H is ȧ/a, where the dot represents the derivative with respect to the conformal time τ .

Energy densities of mass-varying neutrino (MaVaNs) and quintessence scalar field are

described as

ρν = a−4

∫

d3q

(2π)3

√

q2 + a2m2
νf0(q), (25)

3Pν = a−4

∫

d3q

(2π)3

q2

√

q2 + a2m2
ν

f0(q), (26)

ρφ =
1

2a2
φ̇2 + V (φ), (27)

Pφ =
1

2a2
φ̇2 − V (φ). (28)

From eqs (25) and (26), the equation of motion for the background energy density of neu-

trinos is given by

ρ̇ν + 3H(ρν + Pν) =
∂ ln mν

∂φ
φ̇(ρν − 3Pν). (29)

The evolution of neutrinos requires solving the Boltzmann equations in the case [24,25]:

dq

dτ
= −

1

2
ḣijqninj − a2 m

q

∂m

∂xi

dxi

dτ
. (30)

Our analytic formula in eq. (30) is different from those of [30] and [31], because they have

omitted the contribution of the varying neutrino mass term. The first-order Boltzmann

equations written in the synchronous gauge reads [32] as

∂�

∂τ
+ i

q

ǫ
(n̂ · k)� +

(

η̇ − (k̂ · n̂)2 ḣ + 6η̇

2

)

∂ ln f0

∂ ln q

= −i
q

ǫ
(n̂ · k)kδφ

a2m2

q2

∂ ln m

∂φ

∂ ln f0

∂ ln q
. (31)
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The Bolzmann hierarchy for neutrinos, obtained by expanding the perturbation � in a

Legendre series can be written as [24,25]

�̇0 = −
q

ǫ
k�1 +

ḣ

6

∂ ln f0

∂ ln q
, (32)

�̇1 =
1

3

q

ǫ
k (�0 − 2�2) + κ, (33)

�̇2 =
1

5

q

ǫ
k(2�1 − 3�3) −

(

1

15
ḣ +

2

5
η̇

)

∂ ln f0

∂ ln q
, (34)

�̇ℓ =
q

ǫ
k

(

ℓ

2ℓ + 1
�ℓ−1 −

ℓ + 1

2ℓ + 1
�ℓ+1

)

, (35)

where

κ = −
1

3

q

ǫ
k
a2m2

q2
δφ

∂ ln mν

∂φ

∂ ln f0

∂ ln q
. (36)

In our analysis, we consider three different types of quintessence potential: (1) inverse

power law potentials (Model I), (2) SUGRA-type potential models (Model II), (3)

exponential-type potentials (Model III), which are respectively, given by

V (φ) = M4

(

Mpl

φ

)α

; M4

(

Mpl

φ

)α

e3φ2/2M2
pl; M4e−α(φ/Mpl). (37)

The coupling between cosmological neutrinos and dark energy quintessence could modify

the CMB and matter power spectra significantly. It is therefore possible and also important

to put constraints on coupling parameters from current observations. For this purpose, we

use the WMAP3 [33,34] and 2dFGRS [35] datasets.

The flux power spectrum of the Lyman-α forest can be used to measure the matter

power spectrum at small scales around z < 3 [36,37]. It has been shown, however, that

the resultant constraint on neutrino mass can vary significantly from
∑

mν < 0.2 eV to

0.4 eV depending on the specific Lyman-α analysis used [38]. The complication arises

because the result suffers from the systematic uncertainty regarding the model for the

intergalactic physical effects, i.e., damping wings, ionizing radiation fluctuations, galactic

winds, and so on [39]. Therefore, we conservatively omit the Lyman-α forest data from

our current analysis.

Because there are many other cosmological parameters compared to Mass Varying

Neutinos (MaVaNs) parameters, we follow the Markov chain Monte Carlo (MCMC)

global fit approach [40] to explore the likelihood parameter space and marginalize over

the nuisance parameters to obtain the constraint on parameters in which we are interested.

Our parameter space consists of


P ≡ (�bh
2,�ch

2,H, τ,As, ns,mi, α, β), (38)

where ωbh
2 and �ch

2 are the baryon and CDM densities in units of critical density, H is

the Hubble parameter, τ is the optical depth of Compton scattering to the last scattering

surface, As and ns are the amplitude and spectral index of primordial density fluctuations,

and (mi, α, β) are the parameters of MaVaNs.

As an example, the allowed space for the parameter are shown in figure 1 for Models

I and III. In this figure, we do not observe the strong degeneracy between the introduced
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Figure 1. (a) Contours of constant relative probabilities in two-dimensional param-

eter planes for inverse power-law models. Lines correspond to 68% and 95.4%

confidence limits. (b) Same as (a), but for exponential-type models.

parameters. That is why one can put tight constraints on MaVaNs parameters from the

observations. Presently, for both models we consider that larger α leads to larger w.

Therefore, large α is not allowed due to the same reason that larger w is not allowed from

the current observations. We find no observational signature which favours the coupling

between MaVaNs and quintessence scalar field, and obtain the upper limit on the coupling

parameter as shown in table 3.

β < 0.46, 0.47, 0.58 (1 σ); [1.12, 1.36, 1.53 (2 σ)], (39)

Table 3. Global analysis data within 2σ deviation for different types of quintessence

potential.

Quantites Model I Model II Model III WMAP-3 data (�CDM)

α < 4.38 0.10–11.82 < 1.41 –

β < 1.12 < 1.36 < 1.53 –

�B h2[102] 2.09–2.36 2.09–2.35 2.08–2.34 2.23 ± 0.07

�CDM h2[102] 9.87–12.30 9.85–12.40 9.84–12.33 12.8 ± 0.8

H0 58.39–72.10 58.55–71.70 58.99–71.58 72 ± 8

Zre 6.13–14.94 4.00–14.78 6.64–14.78 –

ns 0.92–0.99 0.92–0.98 0.92–0.98 0.958 ± 0.016

As [1010] 18.25–23.41 18.20–23.32 18.33–23.27 –

�Q[102] 57.43–75.60 57.59–75.02 58.45–75.05 71.6 ± 5.5

Age/Gyr 13.59–14.40 13.59–14.35 13.61–14.36 13.73 ± 0.16

�MaVaNs h2[102] < 0.95 < 0.91 < 0.84 < 1.97 (95% CL)

τ 0.031–0.143 0.028–0.139 0.032–0.140 0.089 ± 0.030
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Table 4. Global analysis data for the SUGRA-type quintessence potential (Model II)

which is constrained by both WMAP3 and Ly-α forests.

WMAP-3 data

Quantites Mean SDDEV Lower 1σ Upper 1σ Lower 2σ Upper 2σ (�CDM)

α 6.65 2.98 5.01 7.92 2.24 12.26 –

β 0.42 0.42 0.00 0.47 0.00 1.35 –

amnui 0.02 0.02 0.00 0.02 0.00 0.07 –

�B h2[102] 2.27 0.06 2.20 2.34 2.14 2.39 2.23 ± 0.07

�CDM h2[102] 12.22 0.56 11.65 12.78 11.19 13.39 12.8 ± 0.8

H0 65.68 3.31 62.40 68.99 58.62 71.52 72 ± 8

Zre 12.81 2.16 11.83 13.86 9.23 16.22 –

ns 0.970 0.015 0.956 0.985 0.941 1.000 0.958 ± 0.016

As [1010] 22.86 1.16 21.74 23.97 20.78 25.34 –

�Q[102] 66.11 4.47 61.75 70.48 56.18 73.42 71.6 ± 5.5

Age/Gyr 13.76 0.15 13.60 13.91 13.46 14.07 13.73 ± 0.16

�MaVaNs h2[102] 0.14 0.12 0.00 0.17 0.00 0.38 < 1.97 (95% CL)

τ 0.105 0.026 0.079 0.131 0.055 0.158 0.089 ± 0.030

and the present mass of neutrinos is also limited to

�νh
2
today < 0.0044, 0.0048, 0.0048 (1 σ); [0.0095, 0.0090, 0.0084 (2 σ)],

(40)

for Models I, II and III, respectively (see table 4).

4. Results and discussions

Here we comment on some important points of this work: (1) Equation of states, (2) the

impact of the scattering term of the Boltzmann equation, (3) the instability issue in our

models and (4) neutrino mass bounds in the interacting neutrino dark-energy models.

(a) Equation of states: As pointed out by earlier works, it is possible to have the obser-

vational equation of state weff less than −1 in the neutrino-dark energy interacting

models. The point is that any observer would be unaware of the dark energy interac-

tions, and attribute any unusual evolution of neutrino energy density to dark energy.

This is seen as follows. Let us consider the recent epoch where the neutrinos have

already become massive enough so that the energy density of neutrinos can be

described as

ρν = mν(φ)nν = mν(φ)nν,0/a
3, (41)

where nν, 0 is the number density of neutrinos at the present time. One can

decompose this into two parts as

ρν = mν(φ0)nν,0/a
3 +

(

mν(φ)

mν(φ0)
− 1

)

mν(φ0)nν,0/a
3, (42)
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and hence the Friedmann equation (neglecting baryon and photon contributions)

H 2 =
8πG

3

(

ρCDM + ρν + ρφ

)

=
8πG

3

(

(

ρCDM,0 + ρν,0

)

/a3

+

(

mν(φ)

mν(φ0)
− 1

)

mν(φ0)nν,0/a
3 + ρφ

)

. (43)

Therefore, while the first term in the above equation is regarded as (total) mat-

ter density of our Universe, the second and third terms comprise effective energy

density which would be recognized as dark energy,

ρeff ≡

(

mν(φ)

mν(φ0)
− 1

)

mν(φ0)nν,0/a
3 + ρφ . (44)

In observations, one measures the equation of state of dark energy weff defined by

dρeff

dt
= −3H(1 + weff)ρeff. (45)

Here weff is related to the equation of state of quintessence wφ through

weff =
wφ

1 − x
, (46)

x =

(

mν(φ)

mν(φ0)
− 1

)

mν(φ0)nν,0/a
3

ρφ

, (47)

which are derived from eqs (21), (27) and (44). An example of time evolution of

weff is depicted in figure 2.
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Figure 2. Time evolution of the effective equation of state parameter weff for models

with potentials of inverse power law (Model I) and exponential types (Model III). The

parameters are fixed to the best-fitting values except for those shown in the figure. The

effective equation of state parameter can be smaller than −1 at z > 0.
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(b) Impact of the new scattering term: Recently, perturbation equations for the

MaVaNs models were nicely presented by Brookfield et al [30] (see also [31])

which are necessary to compute CMB and LSS spectra. The main difference

here from their works is that we correctly take into account the scattering term

in the geodesic equation of neutrinos, which was omitted there (see however,

[41]). As the term is proportional to ∂m/∂x and first-order quantity in per-

turbation, our results and those of earlier works [30,31] remain the same in

the background evolutions. However, neglecting this term violates the energy–

momentum conservation law at linear level leading to the anomalously large ISW

effect. As the term becomes important when neutrinos become massive, the

late-time ISW is mainly affected by the interaction between dark energy and

neutrinos. Consequently, the differences show up at large angular scales. In

figure 3, the differences are shown with and without the scattering term. The early

ISW can also be affected by this term to some extent in some massive neutrino

models and the height of the first acoustic peak could be changed. However, the

position of the peaks stays almost unchanged because the background expansion

histories are the same.

(c) Instability issue: As shown in [42,43], some classes of models with mass-varying

neutrinos suffer from the adiabatic instability at the first-order perturbation level.

This is caused by an additional force on neutrinos mediated by the quintessence

scalar field and occurs when its effective mass is much larger than the Hubble hori-

zon scale, where the effective mass is defined by m2
eff = d2Veff/dφ2. To remedy

this situation one should consider an appropriate quintessential potential which has

a mass comparable to the horizon scale at present, and the models considered in

this paper are from [30]. Interestingly, some researchers have found that one can

construct viable MaVaNs models by choosing certain couplings and/or quintessen-

tial potentials [44–46]. Some of these models even realize meff ≫ H . In figure 4,

masses of the scalar field relative to the horizon scale meff/H are plotted. We find

that meff < H for almost all periods and the models are stable. We also depict in

10 100 1000
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1000

2000

3000

4000

5000

l(
l+

1
)C

l/2

with scattering term

neglecting scattering term

Figure 3. Differences between the CMB power spectra with and without the scat-

tering term in the geodesic equation of neutrinos with the same cosmological

parameters.
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Figure 4. (a) Typical evolution of the effective mass of the quintessence scalar

field relative to the Hubble scale, for all models considered in this paper. (b) Typ-

ical evolution of the sound speed of neutrinos cs = δPν/δρν with the wavenumber

k = 2.3 × 10−3 Mpc−1, for models as indicated. The values stay positive starting

from 1/3 (relativistic) and neutrinos are stable against the density fluctuation.

figure 4, the sound speed of neutrinos defined by c2
s = δPν/δρν with the wave-

number k = 2.3 × 10−3 Mpc−1.

(d) Neutrino mass bounds: When we apply the relation between the total sum of the

neutrino masses Mν and their contributions to the energy density of the Universe,

�νh
2 = Mν/(93.14 eV), we obtain the constraint on the total neutrino mass:

Mν < 0.87 eV (95% CL) in the neutrino probe dark-energy model. The total neu-

trino mass contributions in the power spectrum is shown in figure 5, where we can

see significant deviation from the observation data in the case of large neutrino

masses.
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Figure 5. Examples of the total mass contributions in the matter power spectrum in

(a) Model I and (b) Model III. For both (a) and (b) we plot the best-fitting lines (green

dashed), lines with larger neutrino masses Mν = 0.3 eV (blue dotted) and Mν = 1.0

eV (cyan dot–dashed) with the other parameters fixed to the best-fitting values. Note

that while lines with Mν = 0.3 eV can fit to the data well by arranging the other

cosmological parameters, lines with Mν = 1.0 eV cannot.
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Figure 6. Forecast of 2σ sensitivities to the total neutrino mass from future cosmo-

logical experiments, compared to the values in agreement with the present neutrino

oscillation data. (a) Sensitivities expected for future CMB experiments (without lens-

ing extraction), alone and combined with the completed SDSS galaxy red-shift survey

and (b) sensitivities expected for future CMB experiments including lensing informa-

tion, alone and combined with future cosmic shear surveys. Here CMBpol refers to a

hypothetical CMB experiment roughly corresponding to the inflation probe mission.

Beyond the scope of our current analysis, there are other possibilities in cosmological

probes of neutrino masses:

(a) the evolution of cluster abundance with red-shit may provide further constraints on

neutrino masses,

(b) the Lyman-α forest provides constraints on the matter power spectrum on a scale

of k ∼ 1 h Mpc−1, where the effect of massive neutrinos is most viable,

(c) deep and wide weak lensing survey will make it possible, in the future, to perform

weak lensing tomography of the matter density field.

As shown in figure 6, the combination of weak lensing tomography and high-precision

CMB polarization experiments may reach sensitivities down to the lower bound of 0.06

eV on the sum of the neutrino masses [47–49]. In this case, normal hierarchy pattern will

be detectable.
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