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Abstract. Unified models incorporating right-handed neutrino in a symmetric way generically

possess parity symmetry. If this is broken spontaneously, it results in the formation of domain walls

in the early Universe, whose persistence is unwanted. A generic mechanism for the destabilization

of such walls is a small pressure difference signalled by difference in free energy across the walls.

It is interesting to explore the possibility of such effects in conjunction with the effects that break

supersymmetry in a phenomenologically acceptable way. This possibility when realized in the con-

text of several scenarios of supersymmetry breaking, leads to an upper bound on the scale of spon-

taneous parity breaking, often much lower than the GUT scale. In the left–right symmetric models

studied, the upper bound is no higher than 1011 GeV but a scale as low as 105 GeV is acceptable.
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1. Left–right symmetry: A supersymmetric revival

The pioneering contributions of Charan, some of them with Goran, to unification with

right handed neutrinos have been a very useful source for some ideas I have had about

how cosmology and unification might work and I have presented them in several other

conferences. It is certainly very special to be able to present them here, with title as

phrased above.

Chirality seems to be an essential feature of fundamental physics, allowing dynamical

generation of fermion masses. However, the observed parity violation of the Standard

Model (SM) is not warranted by chirality. Discovery of neutrino masses in the past two

decades strongly suggests the existence of right-handed neutrino states. The resulting
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parity balanced spectrum of fermions begs a parity symmetric theory and parity violation

could then be explained to be of dynamical origin. An interesting fact to emerge is that the

see-saw mechanism generically suggests an MR scale considerably smaller than the scale

of coupling constant unification in SO(10). It is therefore appealing to look for left–right

symmetry as an intermediate stage in the sequence of symmetry breaking, and explore the

possible range of masses acceptable for MR . The crucial phenomenological question is,

could the new symmetries be within the accessible range of the LHC and the colliders of

foreseeable future, and hence deserve the name just beyond the Standard Model (JBSM)?

Left–right symmetric model [1,2] needs a supersymmetric extension as an expedient

for avoiding the hierarchy problem. The minimal set of Higgs superfields required, with

their SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L is,

�i = (1, 2, 2, 0), i = 1, 2,

� = (1, 3, 1, 2), �̄ = (1, 3, 1,−2),

�c = (1, 1, 3,−2), �̄c = (1, 1, 3, 2),

� = (1, 3, 1, 0), �c = (1, 1, 3, 0) (1)

and further details of the model can be found in the references.

There is an awkward impasse with this model, namely we would like to retain super-

symmetry down to the TeV scale. So the first stage of gauge symmetry breaking has

to respect supersymmetry. If we choose the parameters of the superpotential to ensure

spontaneous parity breaking, then either the electromagnetic gauge invariance or the R

parity has to be sacrificed [3]. The first of these is unacceptable and the second entails

the requirement of inelegant fixes. This problem was elegantly resolved by Aulakh,

Benakli and Senjanovic [4], and further developed in [5,6]. It contains the two additional

triplet Higgs fields introduced above. We refer to this as ABMRS model. Supersymmetric

minima breaking SU(2)R symmetry are signalled by the ansatz

〈�c〉 =

(

ωc 0

0 −ωc

)

, 〈�c〉 =

(

0 0

dc 0

)

. (2)

In this model, with an enhanced R symmetry, we are led naturally to a see-saw relation

M2
B−L = MEWMR . This means leptogenesis is postponed to a lower energy scale closer to

MEW. Being generically below 109 GeV, this avoids the gravitino mass bound but requires

non-thermal leptogensis [7].

For comparison, we also take an alternative model to this, considered in [8], where a

superfield S(1, 1, 1, 0), also singlet under parity, is included in addition to the minimal

set of Higgs required. This is referred to here as BM model.

2. Cosmology of breaking and soft terms

SUSY breaking soft terms emerge below the SUSY breaking scale MS . As either the left

or the right gauge symmetry also breaks, the renormalization group evolution of the coef-

ficients of the soft terms of the corresponding sectors is also expected to make the former

unequal below this scale. In the following we do not pursue this approach, but only deter-

mine cosmological constraint on their differences. We now proceed with the stipulation
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advanced in [9] that the role of the hidden sector dynamics is not only to break SUSY but

also to break parity. In principle, this permits a relation between observables arising from

the two apparently independent breaking effects.

The soft terms which arise in the two models ABMRS and BM may be parametrized

as follows:

L
1
soft = m2

1Tr(��†) + m2
2Tr(�̄�̄†) + m2

3Tr(�c�
†
c) + m2

4Tr(�̄c�̄
†
c), (3)

L
2
soft = α1Tr(���†) + α2Tr(�̄��̄†)

+ α3Tr(�c�c�
†
c) + α4Tr(�̄c�c�̄

†
c), (4)

L
3
soft = β1Tr(��†) + β2Tr(�c�

†
c), (5)

L
4
soft = S[γ1Tr(��†) + γ2Tr(�̄�̄†)] + S∗[γ3Tr(�c�

†
c) + γ4Tr(�̄c�̄

†
c)], (6)

L
5
soft = σ̃ 2|S|2. (7)

For ABMRS model the relevant soft terms are given by

Lsoft = L
1
soft + L

2
soft + L

3
soft. (8)

For BM model, the soft terms are given by

Lsoft = L
1
soft + L

4
soft + L

5
soft. (9)

Using the requirement δρ ∼ T 4
D we can constrain the differences between the soft terms

in the left and right sectors [10,11]. In the BM model, the S field does not acquire a VEV

in the physically relevant vacua and hence the terms in eqs (6) and (7) do not contribute

to the vacuum energy. The terms in eq. (4) are suppressed in magnitude relative to those

in eq. (5) due to having � VEVs to one power lower. This argument assumes that the

magnitude of the coefficients α are such as to not mix up the symmetry breaking scales

of the �s and the �s.

To obtain orders of magnitude we have taken m2
i to be of the form m2

1 ∼ m2
2 ∼ m2 and

m2
3 ∼ m2

4 ∼ m′2 [11] with TD in the range 10–103 GeV [12]. For both the models, we

have taken the value of the � VEVs as d ∼ 104 GeV. For ABMRS model, additionally,

we take ω ∼ 106 GeV. The resulting differences required for the successful removal of

domain walls are shown in table 1.

Table 1. Differences in values of soft supersymmetry breaking

parameters for a range of domain wall decay temperature values

TD. The differences signify the extent of parity breaking.

TD/GeV 10 102 103

(m2 − m2′)/GeV2 10−4 1 104

(β1 − β2)/GeV2 10−8 10−4 1
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We see from table 1 that if we assume both the mass-squared differences m2 − m′2 and

β1 − β2 arise from the same dynamics, � fields are the determinant of the cosmology.

This is because the lower bound on the wall disappearance temperature TD required by

� fields is higher and the corresponding TD is reached sooner. This situation changes if

for some reason �s do not contribute to the pressure difference across the walls. The BM

model does not have �s and falls in this category.

During the period between destabilization of the DW and their decay, leptogenesis

occurs due to these unstable DW as discussed in [11,13]. After the disappearance of the

walls at the scale TD, electroweak symmetry breaks at a scale MEW ∼ 102 GeV and stan-

dard cosmology takes over. In the next section, we discuss the implementation of GMSB

scenario for these models.

3. Transitory domain walls

Spontaneous parity breaking leads to the formation of domain walls which quickly domi-

nate the energy density of the Universe. It is necessary that these walls disappear for reco-

vering standard cosmology at least before the Big Bang nucleosynthesis (BBN). In an

intrinsically parity symmetric theory, difference in the vacua resulting in destabilization is

not permitted. We may seek these effects to have arisen from the hidden sector and com-

municated along with the messenger fields [14]. Constraints on the hidden sector model

and the communication mechanism can be obtained in this way. Here, we report other

possibilities.

There are several studies of wall evolution, and an estimate of the temperature at which

the walls may destabilize, parametrically expressed in terms of the surface tension of the

walls, in turn determined by the parity breaking scale MR . By equating the terms leading

to small symmetry breaking discussed above with this parametric dependence, we get a

bound on MR .

The dynamics of the walls in a radiation-dominated Universe is determined by two

quantities: [15] tension force fT ∼ σ/R, where σ is the energy per unit area and R is

the average scale of radius of curvature and friction force fF ∼ βT 4 for walls moving

with speed β in a medium of temperature T . The scaling law for the growth of the scale

R(t) on which the wall complex is smoothed out, is taken to be R(t) ≈ (Gσ)1/2t3/2.

Also, fF ∼ 1/(Gt2) and fT ∼ (σ/(Gt3))1/2. Then the pressure difference required to

overcome the above forces and destabilize the walls is

δρRD ≥ Gσ 2 ≈
M6

R

M2
Pl

∼ M4
R

M2
R

M2
Pl

. (10)

The case of matter-dominated evolution is relevant to moduli fields copiously produced

in generic string-inspired models [12] of the Universe. A wall complex formed at tem-

perature Ti ∼ MR is assumed to have first relaxed to being one wall segment per horizon

volume. It then becomes comparable in energy density to the ambient matter density, due

to the difference in evolution rates, 1/a(t) for walls compared to 1/a3(t) for matter. For

simplicity, the epoch of equality of the two contributions is the epoch also of instability, so
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as to avoid dominance by domain walls. Thus we can set M−2
Pl T 4

D ∼ H 2
eq ∼ σ 3/4H

1/4

i M−3
Pl .

The corresponding temperature permits the estimate of the required pressure difference

δρMD > M4
R

(

MR

MPl

)3/2

. (11)

Thus, in this case we find (MR/MPl)
3/2 [16], a suppression factor milder than in the

radiation-dominated case above.

4. Parity breaking from Planck suppressed effects

For a generic neutral scalar field φ, the higher-dimensional operators that may break parity

have the simple form [17], Veff = (C5/MPl)φ
5. But this is only instructional because in

realistic theories, the structure and effectiveness of such terms is conditioned by gauge

invariance and supersymmetry and the presence of several scalar species.

One possibility is that the parity breaking operators arise at Planck scale [16]. We shall

assume the structure of the symmetry breaking terms as dictated by the Kahler potential

formalism and treat the cases of two different kinds of domain wall evolution. Substituting

the VEVs in the effective potential, we get

V R
eff ∼

a(cR + dR)

MPl

M4
RMW +

a(aR + dR)

MPl

M3
RM2

W (12)

and likewise R ↔ L. Hence, with generic coefficients κ , which for naturalness should

remain order unity,

δρ ∼ κA M4
RMW

MPl

+ κ ′A M3
RM2

W

MPl

. (13)

Then equating to δρRD , δρMD derived above,

κA
RD > 10−10

(

MR

106 GeV

)2

. (14)

For MR scale tuned to 109 GeV needed to avoid gravitino problem after reheating at the

end of inflation, κRD ∼ 10−4, a reasonable constraint. But κA
RD is required to be O(1) or

unnaturally large for the scale of MR greater than the intermediate scale 1011 GeV.

Next,

κA
MD > 10−2

(

MR

106 GeV

)3/2

, (15)

which seems to be a modest requirement, but taking MR ∼ 109 GeV required to have

thermal leptogenesis without the undesirable gravitino production, leading to unnatural

κMD > 105/2.

Concluding this section, we note that the least restrictive requirement on δρ is

>
∼(1 MeV)4 in order for the walls not to ruin BBN. This requirement gives a lower bound

on the MR scale, generically much closer to the TeV scale.
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5. Customized GMSB for left–right symmetric models

The differences required between the soft terms of the left and the right sectors for the

DW to disappear at a temperature TD are not unnaturally large. However, the reasons for

the appearance of even a small asymmetry between the left and the right fields is hard

to explain because the original theory is parity symmetric. We now try to explain the

origin of this small difference by focussing on the hidden sector, and relating it to SUSY

breaking.

For this purpose, we assume that the strong dynamics responsible for SUSY breaking

also breaks parity, which is then transmitted to the visible sector via the messenger sec-

tor and encoded in the soft supersymmetry breaking terms. We implement this idea by

introducing two singlet fields X and X′, respectively even and odd under parity.

X ↔ X, X′ ↔ −X′. (16)

The messenger sector superpotential then contains the terms

W =
∑

n

[

λnX
(

�nL�̄nL + �nR�̄nR

)

+ λ′
nX

′
(

�nL�̄nL − �nR�̄nR

)]

. (17)

For simplicity, we consider n = 1. The fields �L, �̄L and �R , �̄R are complete rep-

resentations of a simple gauge group embedding the L–R symmetry group. Further we

require that the fields labelled L get exchanged with fields labelled R under an inner

automorphism which exchanges SU(2)L and SU(2)R charges, e.g., the charge conju-

gation operation in SO(10). As a simple possibility we consider the case when �L,

�̄L (respectively, �R , �̄R) are neutral under SU(2)R (SU(2)L). Generalization to other

representations is straightforward.

As a result of the dynamical SUSY breaking, we expect the fields X and X′ to develop

nontrivial VEVs and F terms and hence give rise to the mass scales

�X =
〈FX〉

〈X〉
, �X′ =

〈FX′〉

〈X′〉
. (18)

Both of these are related to the dynamical SUSY breaking scale MS . However, their values

are different unless additional reasons of symmetry would force them to be identical.

Assuming that they are different but comparable in magnitude, we can show that left–right

breaking can be achieved simultaneously with SUSY breaking being communicated.

In the proposed model, the messenger fermions receive respective mass contributions

mfL
= |λ〈X〉 + λ′〈X′〉|,

mfR
= |λ〈X〉 − λ′〈X′〉|. (19)

while the messenger scalars develop the masses

m2
φL

= |λ〈X〉 + λ′〈X′〉|2 ± |λ〈FX〉 + λ′〈FX′〉|,

m2
φR

= |λ〈X〉 − λ′〈X′〉|2 ± |λ〈FX〉 − λ′〈FX′〉|. (20)

We thus have both SUSY and parity breaking communicated through these particles.
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As a result, the mass contributions to the gauginos of SU(2)L and SU(2)R from both

the X and X′ fields with their corresponding auxiliary parts take the simple form,

MaL
=

αa

4π

λ〈FX〉 + λ′〈FX′〉

λ〈X〉 + λ′〈X′〉
(21)

and

MaR
=

αa

4π

λ〈FX〉 − λ′〈FX′〉

λ〈X〉 − λ′〈X′〉
(22)

upto terms suppressed by ∼F/X2. Here a = 1, 2, 3. In turn, there is a modification

to scalar masses, through two-loop corrections, expressed to leading orders in xL or xR

respectively, by the generic formulae

m2
φL

= 2

(

λ〈FX〉 + λ′〈FX′〉

λ〈X〉 + λ′〈X′〉

)2

×

[

( α3

4π

)2

C
φ

3 +
( α2

4π

)2

(C
φ

2L) +
( α1

4π

)2

C
φ

1

]

, (23)

m2
φR

= 2

(

λ〈FX〉 − λ′〈FX′〉

λ〈X〉 − λ′〈X′〉

)2

×

[

( α3

4π

)2

C
φ

3 +
( α2

4π

)2

(C
φ

2R) +
( α1

4π

)2

C
φ

1

]

. (24)

The resulting difference between the mass squared of the left and right sectors are

obtained as

δm2
� = 2(�X)2f (γ, σ )

{

( α2

4π

)2

+
6

5

( α1

4π

)2
}

, (25)

where

f (γ, σ ) =

(

1 + tan γ

1 + tan σ

)2

−

(

1 − tan γ

1 − tan σ

)2

. (26)

We have brought �X out as the representative mass scale and parametrized the ratio of

mass scales by introducing

tan γ =
λ′〈FX′〉

λ〈FX〉
, tan σ =

λ′〈X′〉

λ〈X〉
. (27)

Similarly,

δm2
� = 2(�X)2f (γ, σ )

( α2

4π

)2

. (28)

In the models studied here, the ABMRS model will have contribution from both the above

terms. The BM model will have contribution only from the � fields.
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Table 2. The values of the parameter f (γ, σ ), required to ensure

wall disappearance at temperature TD displayed in the header row.

The table should be read in conjuction with table 1, with the rows

corresponding to each other.

TD/GeV 10 102 103

Adequate (m2 − m′2) 10−7 10−3 10

Adequate (β1 − β2) 10−11 10−7 10−3

The contribution to slepton masses is also obtained from eqs (23) and (24). This can

be used to estimate the magnitude of the overall scale �X to be ≥30 TeV [18] from

collider limits. Substituting this in eqs (25) and (28), we obtain the magnitude of the

factor f (γ, σ ) required for cosmology as estimated in table 1. The resulting values of

f (γ, σ ) are tabulated in table 2. We see that obtaining low values of TD compared to

TeV scale requires considerable fine-tuning of f . The natural range of temperature for

the disappearance of domain walls therefore remains TeV or higher, i.e., upto a few order

of magnitudes lower than the scale at which they form.

Consider for instance TD ∼ 3 × 102 GeV, which allows (m2 − m′2) to range over

∼102 GeV2 to 103 GeV2. Consider two representative values of tan γ and tan σ for (m2 −

m′2). First, (m2 − m′2) = (2 ± 1.5) × 103 GeV2. This results in sufficient paramour

space for the F and X parameters. However, when we consider (m2 − m′2) ∼ 10 GeV2,

we find that it requires the two parameters to be fine-tuned to each other as tan γ ∼ 0.4

and tan σ > 3. While this is specific to the particular scheme we have proposed for the

communication of parity violation along with SUSY violation, we believe our scheme is

fairly generic and the results may persist for other implementations of this idea.

6. Supersymmetry breaking in metastable vacua

The dilemma of phenomenology with broken supersymmetry can be captured in the fate

of R-symmetry generic to superpotentials [19]. An unbroken R-symmetry in the theory is

required for SUSY breaking. R-symmetry, when spontaneously broken, leads to R-axions

which are unacceptable. If we give up R-symmetry, the ground state remains supersym-

metric. The solution proposed in [19,20], is to break R-symmetry mildly, governed by

a small parameter ǫ. Supersymmetric vacuum persists, but this can be pushed far away

in field space. SUSY breaking local minimum is ensured near the origin, as it persists in

the limit ǫ → 0. A specific example of this scenario [21] referred to as ISS, envisages

SU(Nc) SQCD (UV-free) with Nf (>Nc) flavours such that it is dual to a SU(Nf − Nc)

gauge theory (IR-free) the so-called magnetic phase, with N2
f singlet mesons M and Nf

flavours of quarks q, q̃.

Thus, we consider a left–right symmetric model with ISS mechanism as proposed

in [22]. The particle content of the electric theory is Qa
L ∼ (3, 1, 2, 1, 1), Q̃a

L ∼

(3∗, 1, 2, 1,−1) and Qa
R ∼ (1, 3, 1, 2,−1), Q̃a

R ∼ (1, 3∗, 1, 2, 1), where a = 1, Nf with

the gauge group G33221. This SQCD has Nc = 3, and we need Nf ≥ 4.
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For Nf = 4, the dual magnetic theory has left–right gauge group SU(2)L × SU(2)R ×

U(1)B−L and the effective fields are the squarks and nonet mesons carrying either the

SU(2)L or the SU(2)R charges. The left–right symmetric renormalizable superpotential

of this magnetic theory is

W 0
LR = hTrφL�Lφ̃L − hμ2Tr�L + hTrφR�Rφ̃R − hμ2Tr�R. (29)

After integrating out the right-handed chiral fields, the superpotential becomes

W 0
L = hTrφL�Lφ̃L − hμ2Tr�L + h4�−1 det �R − hμ2Tr�R, (30)

which gives rise to SUSY-preserving vacua at

〈h�R〉 = �mǫ2/3 = μ
1

ǫ1/3
, (31)

where ǫ = μ/�m. Thus, the right-handed sector exists in a metastable SUSY breaking

vacuum, whereas the left-handed sector is in a SUSY preserving vacuum breaking D-

parity spontaneously.

We next consider [23] Planck scale suppressed terms that may signal parity breaking

W 1
LR = fL

Tr(φL�Lφ̃L)Tr�L

�m

+ fR

Tr(φR�Rφ̃R)Tr�R

�m

+f ′
L

(Tr�L)4

�m

+ f ′
R

(Tr�R)4

�m

. (32)

The terms of order 1/�m are given by

V 1
R =

h

�m

SR[fR(φ0
Rφ̃0

R)2 + f ′
Rφ0

Rφ̃0
RS2

R + (δ0
R − SR)2((φ0

R)2 + (φ̃0
R)2)]. (33)

The minimization conditions give φφ̃ = μ2 and S0 = −δ0. Denoting 〈φ0
R〉 = 〈φ̃0

R〉 = μ

and 〈δ0
R〉 = −〈S0

R〉 = MR , we have

V 1
R =

hfR

�m

(|μ|4MR + |μ|2M3
R), (34)

where we have also assumed f ′
R ≈ fR . For |μ| < MR , thus the effective energy density

difference between the two types of vacua is

δρ ∼ h(fR − fL)
|μ|2M3

R

�m

. (35)

Thus, for walls disappearing in matter-dominated era, we get

MR < |μ|5/9M
4/9

Pl ∼ 1.3 × 1010 GeV (36)

with μ ∼ TeV. Similarly, for the walls disappearing in radiation-dominated era,

MR < |μ|10/21M
11/21

Pl ∼ 1011 GeV. (37)
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7. Conclusions

We have pursued the possibility of left–right symmetric models as just beyond Standard

Models (JBSM), not possessing a large hierarchy. We also adopt the natural points of

view that right-handed neutrinos must be included in the JBSM in a symmetric way and

that the required parity breaking to match low-energy physics arises from spontaneous

breakdown. The latter scenario is often eschewed due to the domain walls it entails in

the early Universe. We turn the question around to ask, given that the domain walls

occur, what physics could be responsible for their successful removal without jeopardising

naturalness.

We do not advance any preferred way to provide the small asymmetry required to get

rid of the domain walls. However, it is interesting to correlate the possibility that these

small effects may be correlated to the supersymmetry breaking. We have considered

three models along these lines: (1) in which the hidden sector breaking of supersymme-

try is at a low energy, and mediated by a gauge sector, (2) in which the generic scale of

supersymmetry breaking is at Planck scale and the breaking effects are conveyed purely

through Planck scale suppressed terms and (3) we have also considered a possible imple-

mentation of the scenarios in which the supersymmetry breaking is not in a hidden sector

but occurs due to a metastable vacuum protected from decay by a large suppression of

tunnelling.

The general message seems to be that the parity breaking scale in any case is not war-

ranted to be as high as required for a full unification in SO(10) and further, several

scenarios suggest that left–right symmetry as the larger package incorporating the SM

may be within the reach of future colliders.
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