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1. Introduction

This work is based on the papers [1–5].

I had the pleasure to work with Charan Aulakh (3 papers together) and it was a very

fruitful experience (the average citation per paper is, at the day of writing, 112), from

which I learned a lot. These were (for me) magic years spent together in ICTP. We have

been discussing mainly SO(10), one of Charan’s strongholds. He had given a very nice

review on the subject. So I will try to cover the other two realistic groups, SU (5) and E6.

The best known example of interplay between supersymmetry (SUSY) and grand uni-

fied theories (GUTs) is the gauge coupling unification. Renormalization group equations

make the SM gauge coupling run as shown in figure 1a. The unification is not perfect,

although we are pretty close. Nevertheless, the experimental value and the theoretical

knowledge is so good, that new states are needed for unification to occur.

If we add the minimal superymmetric Standard Model (MSSM) partners at ≈1 TeV

and run at 1-loop, we get unification at MGUT ≈ 1016 GeV [6–9], as shown in figure 1b.

This solution is of course not unique, but enough to motivate supersymmetry.

Usually GUTs do not give new ingredients in the search for dark matter candidates.

MSSM has its own candidate, the light neutralino, provided we assume R-parity conser-

vation. But, R-parity is just a subgroup of SO(10). So, taking large representation (126) to
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Figure 1. The 1-loop RGE running of the three SM gauge couplings in (a) SM and

(b) low-energy MSSM.

break the rank, Aulakh and his collaborators [10–12] have showed that R-parity is exact

all the way down to low energies. In this case, grand unification tells us something about

supersymmetry and even dark matter.

In this article, the interplay between supersymmetry and grand unification will be

studied in the following two cases:

(1) In minimal SU(5), the requirement of unification of couplings, Higgs mass, proton

decay bounds, perturbativity and correct fermion masses, put constraints on SUSY

parameters like sfermion spectrum.

(2) In E6, the relation is only tiny, the usual one: the renormalizable superpotential gives

a restricted potential and the search of vacua is simplified.

2. Minimal supersymmetric SU (5)

The usual reaction here is: hasn’t this been ruled out long ago? The argument goes as

follows [13]. On one side unification constraint of the gauge couplings at 2-loop order

needs light colour triplet mT � 1015 GeV. On the other side, proton decay constraint needs
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heavy colour triplet mT � 1017 GeV. So we arrive at a contradiction. But, this is true only

if

(1) we employ renormalizable couplings;

(2) Gaugini, Higgsino and third generation superpartners’ masses are O (TeV).

Renormalizability is crucial for this conclusion [14]. In fact in general

(1) triplet mass can get large threshold correction from the colour octet (m8) and weak

triplet (m3) in SU (5) adjoint [15,16]:

mT ≈
(

m3

m8

)5/2

1015 GeV. (1)

In the renormalizable case m3 = m8, but in general m3/m8 is arbitrary;

(2) non-renormalizable contributions to the superpotential change the relation between

Higgs doublet Yukawa and colour triplet Yukawa, which can have a crucial impact

on the proton decay estimates [17,18];

(3) these terms can also change the relations between fermion and sfermion mixings

without endangering the flavour changing neutral current (FCNC) constraints [19].

Is the second requirement – O (TeV) spartners – also crucial to rule out the model?

This is discussed below based on [1,2]. We shall be considering

(1) renormalizable minimal supersymmetric SU (5) with superfield content

3 × (10F + 5̄F ) + (24H + 5H + 5̄H ) + 24V , (2)

(2) soft terms SU (5) symmetric at MGUT but otherwise arbitrary; to keep small FCNC

effects, we shall assume equality between the first and second generation soft

masses:

m̃1 ≈ m̃2. (3)

We have to take into account several constraints:

(1) Higgs mass,

(2) fermion masses,

(3) perturbativity (couplings � 1),

(4) vacuum metastability (no tachyons, UFB, CCB),

(5) proton decay (decay width Ŵp ∝ sin β cos β, so small tan β � 5 preferred),

(6) unification constraints (g1 = g2 = g3, yb = yτ ).

Let us now go through some of them in greater detail.

2.1 Higgs mass

It is defined as

m2
h = 2λ(mh)v

2. (4)
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The matching scale between SM and MSSM is MEWSB ≡ mt̃ . The self-coupling is

λ(m̃t) = λ0(tan β)︸ ︷︷ ︸
tree level

+ λ1

(
yt ,

Xt

m̃t

)

︸ ︷︷ ︸
>0

+ λ1

(
yb,

Xb

m̃b

)

︸ ︷︷ ︸
<0

+ · · · , (5)

where

m̃t = MEWSB ≡
√

m̃tLm̃tR , (6)

Xt = At/yt − μ/tan β, (7)

Xb = Ab/yb − μ tan β. (8)

The Higgs mass is thus a function of tan β, stop mass m̃t and trilinear couplings Xt,b:

mh = mh

(
tan β, m̃t ,

Xt

m̃t

,
Xb

m̃b

)
. (9)

More precisely, eq. (5) is

λ(m̃t) =
m2

Z

2v2
(m̃t ) cos2 (2β)

︸ ︷︷ ︸
small for tan β=O(1)

+
6(yt sin β)4

(4π)2

(
Xt

m̃t

)2
[

1 −
1

12

(
Xt

m̃t

)2
]

︸ ︷︷ ︸
maximally positive for |Xt/m̃t |=

√
6

+
6(yb cos β)4

(4π)2

(
Xb

m̃b

)2
[

1 −
1

12

(
Xb

m̃b

)2
]

︸ ︷︷ ︸
maximally negative for |Xb/m̃b |≈1/yb

+ · · · . (10)

We can see form figure 2a which values among the input parameters MEWSB and tan β are

allowed by the Higgs mass.

2.2 Fermion masses

SU(5) constraints them at MGUT: yb = yτ , ys = yμ, yd = ye. At low energy, we must

correct them to be in accord with data. Assuming that lepton masses are exact, we need

δmd

md

≈ 2,
δms

ms

≈ −3,
δmb

mb

≈ −0.3. (11)

1-loop finite SUSY threshold corrections (for leptons we would have α1,2 instead of α3,

this is why we neglect them) give

δmi

mi

= −
α3

3π

Xi

m̃i

I

(
mg̃

m̃i

)
. (12)

MSSM vacuum stability requires [20]∣∣∣∣
Xi

m̃i

∣∣∣∣ � 1. (13)
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Figure 2. Allowed parameter space for (a) Higgs mass and (b) bottom quark mass.

The white region is excluded.
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We need large |Xi/m̃i | which leads to a metastable vacuum. The requirement that the

Universe is long-lived enough means that (see for example [21])

∣∣∣∣
Xi

m̃i

∣∣∣∣ �
1

yi

. (14)

From here we see that it is harder to get corrections for b than for s or d, in spite of the

fact that the strange quark and down quark need in percentage larger corrections. So only

the bottom quark could be a problem.

The function I(x) in (12) peaks around x = 2 (I1(2) ≈ 1), and so to maximize corrections

we shall take mg̃ ≈ m̃b1
, i.e., gluino and heaviest sbottom masses comparable.

Putting together constraints on Higgs mass and fermion masses, we get figure 3. From

left to right: the black dots denote the forbidden region due to non-perturbative yt , the

green (red, orange) dots show the parameter space that can account for the correct (90–

100%, 80–90%) b quark mass, while the orange crosses satisfy both Higgs mass and

80–90% of the bottom mass.

Figure 3. From left to right: the black dots denote the forbidden region due to non-

perturbative yt , the green (red, orange ) dots show the parameter space that can account

for the correct (90–100%, 80–90%) b quark mass, while the orange crosses satisfy

both Higgs mass and 80–90% of the bottom mass.
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We can see that very little region survives so that essentially there is a correlation

between the MSSM parameters mt̃ and tan β.
Anyway, large Xis with different signs are needed to get (12) mean large Ais. In

SO(10), this automatically means also large At . Aulakh and Garg [22] (based on even

earlier papers) used a large value for the soft trilinear A0(MX) in a gravity-mediated

scenario to fit charged fermion masses from 10 + 120 VEVs combined with large tan β

driven threshold corrections at MSUSY to down and strange quark yukawa couplings. This

also made it easy for them to obtain large radiative corrections to the Higgs mass: like the

one measured four years later by ATLAS and CMS.

2.3 Summary of SU(5) results

(1) fermion masses make the MSSM vacuum metastable,

(2) from correction to b, mass m̃b ≈ mg̃ follows,

(3) SU (5) implies mg̃ ≈ mw̃,

(4) Higgs mass and correction to b mass lead to m̃t = m̃t (tan β),

(5) corrections to s and d quarks much easier (X/m̃ allowed to be much larger).

3. Minimal supersymmetric E6

Until recently only a few explicit examples of renormalizable realistic Higgs sectors have

been considered. What is known is that renormalizable supersymmetric E6 with 78, 27,

27 could be spontaneously broken only to SO(10) [23].

Here 1-step unification, i.e., mSUSY ≈ 1 TeV will be assumed.

3.1 Generic Yukawa sector in E6

In all generality, there are three types of Yukawas:

W = 27i

(
Y

ij

27 27H + Y
ij

351
′ 351

′
H + Y

ij

351
351H

)
27j , (15)

where

Y
27,351

′ = Y T

27,351
′ symmetric, Y351 = −Y T

351
antisymmetric.

This is completely analogous to SO(10) where

W = 16i

(
Y

ij

10 10H + Y
ij

126
126H + Y

ij

120 120H

)
16j (16)

with

Y10,126 = Y T

10,126
symmetric, Y120 = −Y T

120 antisymmetric.

The antisymmetric 351, similar to 120 in SO(10), is less promising. So it will be removed

in the following. What remains can be decomposed in the SO(10) language as

W =
(

16 10 1
)
Y27

⎛
⎝

10 16 0

16 1 10

0 10 0

⎞
⎠

H

⎛
⎝

16

10

1

⎞
⎠

+
(

16 10 1
)
Y

351
′

⎛
⎝

126 + 10 144 16

144 54 10

16 10 1

⎞
⎠

H

⎛
⎝

16

10

1

⎞
⎠. (17)
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There are some differences with respect to SO(10):

(1) several new Higgs doublets (not only in 10H and 126H );

(2) some fields have large O(MGUT) VEVs, which means

– mixing between 5̄ ∈ 16 and 5̄ ∈ 10 (dc, L),

– mixing between 1 ∈ 1 and 1 ∈ 16 (νc);

(3) mass matrices are typically bigger and to get the light fermion masses one needs

to integrate out the heavy vector-like states: from the original MU
3×3, MD

6×6, ME
6×6,

MN
15×15, we end up with light (MU,D,E,N )3×3.

We can ask ourselves now:

(1) What are the large VEVs that produce family mixings with vector-like extra matter?

(2) Where are the MSSM Higgs doublets?

To answer this we need the full model.

3.2 Higgs sector with 351′ + 351
′ + 27 + 27

The minimal Higgs sector with E6 → SM is composed of 351′
H + 351

′
H + 27H + 27H

[3,4], with the superpotential

W = m351′351
′
H 351′

H + λ1351′3
H + λ2351

′3
H

+m2727H 27H + λ327H 27H 351
′
H + λ427H 27H 351′

H

+λ5273
H + λ627

3

H . (18)

There are 14 SM singlets denoted as

27H : c1,2, 27H : d1,2, 351′
H : e1,2,3,4,5, 351

′
H : f1,2,3,4,5. (19)

There is more than one solution. As an example [3,4]

c2 = e2 = e4 = 0, d2 = f2 = f4 = 0 (20)

d1 =
m351′m27

2λ3λ4c1

(21)

e1 = −
m351′

6λ
2/3

1 λ
1/3

2

, f1 = −
m351′

6λ
1/3

1 λ
2/3

2

(22)

e3 = −λ3c
2
1/m351′ , f3 = −

m351′m2
27

4λ2
3λ4c

2
1

(23)

e5 =
m351′

3
√

2λ
2/3

1 λ
1/3

2

, f5 =
m351′

3
√

2λ
1/3

1 λ
2/3

2

(24)

with

0 = |m351′ |4|m27|4 + 2|m351′ |4|m27|2|λ3|2|c1|2

−8|m351′ |2|λ3|4|λ4|2|c1|6 − 16|λ3|6|λ4|2|c1|8. (25)
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This case seems really minimal: 27H and 351
′
H that participate in symmetry breaking

could in principle contribute to Yukawa terms. This is however not automatic even though

correct quantum numbers are available. Hence we have to answer the following question:

Can linear combinations of the weak doublets with Y = ±1 in 27H and 351
′
H be the

Higgses H, H̄ of the MSSM? As E6 is a GUT, the question is: Can we make the doublet–

triplet splitting with the massless eigenvector living in both 27H and 351
′
H ?

3.3 The doublet–triplet splitting

This issue is present in all GUTs. The prototype example is SU (5), where the MSSM

Higgses H and H̄ live in the same multiplet as the colour triplets T and T̄ :

5H =
(

T

H

)
, 5̄H =

(
T̄

H̄

)
. (26)

When we decompose the renormalizable SU (5) invariant Yukawa sector into the SM

fields, we get

WYukawa = Y
ij

5̄
5̄i10j 5̄H + Y

ij

1010i10j 5H

→ Y
ij

5̄

(
dc

i Qj + Lie
c
j

)
H̄ + Y

ij

10u
c
i QjH

+ Y
ij

5̄

(
LiQj + dc

i u
c
j

)
T̄ + Y

ij

10

(
QiQj + uc

i e
c
j

)
T . (27)

The doublet–triplet splitting problem appears because on one side H, H̄ Higgses of

MSSM are light, MH ≈ mZ , but on the other side eq. (27) makes the triplets T , T̄ mediate

proton decay with τ ∝ M2
T . So in order to be long-lived, we need MT ≈ MGUT ≫ mZ .

How can we get such a large splitting from components of the same multiplet? The

renormalizable superpotential is

W = μ5̄H 5H + η5̄H 24H 5H (28)

and as the adjoint breaks SU (5) spontaneously

〈24H 〉 = MGUT

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3

⎞
⎟⎟⎟⎟⎠

, (29)

the masses get split:

W = H̄ (μ − 3ηMGUT)H + T̄ (μ + 2ηMGUT)T . (30)

What we phenomenologically need is

MH = μ − 3ηMGUT ≈ 0, (31)

MT = μ + 2ηMGUT ≈ MGUT, (32)

i.e.,

μ = 3ηMGUT ≈ MGUT. (33)
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The conclusion is that fine-tuning is unavoidable in minimal models.

In our E6 case doublets and triplets live in 351′
H , 351

′
H , 27H , 27H . More precisely,

351′
H has 8 doublets (9 triplets), 351

′
H has 8 doublets (9 triplets), 27H has 3 doublets

(3 triplets) and 27H has 3 doublets (3 triplets).

Altogether there are 22 doublets (11 with Y = +1 and 11 with Y = −1), i.e., the

doublet matrix MD is 11×11 and 24 triplets (12 with Y = +2/3 and 12 with Y = −2/3).

i.e., the triplet matrix MT is 12 × 12.

The breaking of E6 into SM gives rise to 78 − 12 = 66 would-be-Goldstones. Among

them, there are also 16 + 16 ∈ 78 and so the mass matrices MT ,D have automatically one

zero eignevalue. We need thus the determinant without these zero modes:

Det(M) ≡
n∏

i=2

mi . (34)

Doublet–triplet splitting means

Det(MD) = 0, Det(MT ) 
= 0. (35)

But after a long calculation the result is [3,4]:

Det(MT ) = #Det(MD), (36)

i.e., doublet–triplet splitting is impossible!

This is a bizarre situation: although the symmetry breaking was successful, we failed

on the doublet–triplet splitting. And not because we do not like fine-tuning, we cannot

even fine-tune!

We can think of two (simplest) solutions:

(1) add another 27 + 27 pair with couplings

WDT = m27 27 27 + κ1 27 27 351
′
H + κ2 27 27 351′

H

+κ3 27 27 27H + κ4 27 27 27H (37)

with 〈27〉 , 〈27〉 = O(mZ).

DT splitting is now possible: MSSM Higgs live only in 27, 27. The bad point is

that three Yukawa matrices are involved, which makes the model too easily realistic

and so not predictable [3,4].

(2) add another 78H : although it does not contribute to Yukawas, it changes the

symmetry breaking pattern (not being needed) thus relaxing constraints on DT.

DT is now possible in the old sector: MSSM Higgses live also in 351
′
H and 27H !

This possibility is more minimal, only two Yukawas appear [5]. Let us now study

this case in more detail.

3.4 Higgs sector with 351′ + 351
′ + 27 + 27 + 78

W = m351′351
′
H 351′

H + λ1351′3
H + λ2351

′3
H

+m2727H 27H + λ3272
H 351

′
H + λ427

2

H 351′
H

+λ5273
H + λ627

3

H

+m78782
H + λ727H 78H 27H + λ8351′

H 78H 351
′
H . (38)
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In addition to (19), we now have other SM singlets:

78H : a1, a2, a3, a4, a5. (39)

Solution with ai 
= 0 are explicitly shown to be possible. They are disconnected with the

previous one (20)–(24), i.e. no limit gives the previous solution with ai → 0.

3.5 Yukawa sector in the minimal E6 model

As an example of what happens let us see the down sector:

(
dcT d ′cT )

⎛
⎜⎜⎝

v̄2Y27 +
(

1

2
√

10
v̄4 +

1

2
√

6
v̄8

)
Y

351
′ c2Y27

−v̄3Y27 −
(

1

2
√

10
v̄9 +

1

2
√

6
v̄11

)
Y

351
′ 1√

15
f4Ỹ351

′

⎞
⎟⎟⎠
(

d

d ′

)
, (40)

where v̄2,3,4,8,9,11 = O(mZ), while c2, f4 = O(MGUT).

The different states are:

(
dc ∈ 5̄SU(5) ∈ 16SO(10)

d ′c ∈ 5̄SU(5) ∈ 10SO(10)

)}
mix, (41)

d ∈ 10SU(5) ∈ 16SO(10), (42)

d ′ ∈ 5SU(5) ∈ 10SO(10) . . . heavy. (43)

The 6 × 6 matrix above has the form

M =
(

m1 M1

m2 M2

)
(44)

with the 3 × 3 matrices m1,2 = O(mZ) and M1,2 = O(MGUT). The idea is to find a 6 × 6

unitary matrix U that projects the heavy states into the lower block:

U

(
M1

M2

)
=

(
0

something

)
. (45)

The solution is

U =
( (

1 + XX†
)−1/2 −

(
1 + XX†

)−1/2
X

X†
(
1 + XX†

)−1/2 (
1 + X†X

)−1/2

)
(46)

with

X = M1M
−1
2 (47)

so that

UM =

⎛
⎝

O(mZ)︸ ︷︷ ︸
light sector

0

O(mZ) O(MGUT)

⎞
⎠. (48)
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The mass matrices for the light-charged fermions turn out to be

MU = −v1Y27 +
(

1

2
√

10
v5 −

1

2
√

6
v7

)
Y

351
′ , (49)

MT
D =

(
1 + XX†

)−1/2
(v̄2 − v̄3X)Y27

+
(

1

2
√

10
(v̄4 − v̄9X) +

1

2
√

6
(v̄8 − v̄11X)

)
Y

351
′

)
, (50)

ME =
(

1 +
4

9
XX†

)−1/2 ((
−v̄2 −

2

3
v̄3X

)
Y27

+
(

−
1

2
√

10
(v̄4 +

2

3
v̄9X) +

√
3

8

(
v̄8 +

2

3
v̄11X

))
Y

351
′

)
(51)

with

X = −3

√
5

3

c2

f4

Y27 Y−1

351
′ , (52)

X → 0 gives minimal SO(10), but this limit is not available here (c2 
= 0).

As Y27 and Y
351

′ are symmetric, so is MU . This is however not true for X and so not

for MD,E . Let us now choose a basis with MU = Md
U (diagonal). Then we can always

parametrize

X = Md
UY (53)

with

Y = Y T symmetric. (54)

Equations (49)–(51) plus the light neutrino mass can be rewritten as

MT
D =

(
1 + Md

UYY ∗Md
U

)−1/2

×
(
a + b (Md

UY ) + c (Md
UY )2

)(
d + (Md

UY )
)−1

Md
U , (55)

ME =
(
1 + (4/9)Md

UYY ∗Md
U

)−1/2

×
(
a′ + b′ (Md

UY ) + c′(Md
UY )2

)(
d + (Md

UY )
)−1

Md
U , (56)

MN =
(
1 + (4/9) Md

UYY ∗Md
U

)−1/2 (
a′′ + b′′(Md

UY )

+ c′′(Md
UY )2 + d ′′(Md

UY )3 + e′′(Md
UY )4

)

×
(
d + (Md

UY )
)−1

Md
U

(
1 + (4/9) Md

UY ∗YMd
U

)−1/2
. (57)

A few comments:

(1) The neutrino mass is a sum of type-I and type-II contributions;

(2) a, b, c, d, a′, b′, c′, a′′, b′′, c′′, d ′′, e′′ are functions of the superpotential parame-

ters mi, λj and VEVs ca, fb, vi, v̄j which are also functions of the superpotentials

parameters;

242 Pramana – J. Phys., Vol. 86, No. 2, February 2016



Interplay between grand unification and supersymmetry in SU(5) and E6

(3) the relations are highly nonlinear, the analysis seems hopeless (unless numerical).

But things become slightly easier if we remember that (assuming Ng = 2)

(1) any (reasonable) function of a 2 × 2 matrix M can be expanded as

f (M) = α + βM (58)

with α, β written with invariants of M;

(2) any 2 × 2 matrix A can be written as (with the chosen basis)

A = α1 + α2M
d
U + α3Y + α4M

d
UY. (59)

This simplifies the work and decreases the number of unknowns (combinations):

MT
D =

(
1 + Md

UYY ∗Md
U

)−1/2(
α + βMd

UY
)
Md

U , (60)

ME =
(
1 + (4/9)Md

UYY ∗Md
U

)−1/2(
α′ + β ′Md

UY
)
Md

U , (61)

MN =
(
1 + (4/9)Md

UYY ∗Md
U

)−1/2(
α′′ + β ′′Md

UY
)
Md

U

×
(
1 + (4/9) Md

UY ∗YMd
U

)−1/2
. (62)

3.6 Ng = 2 case

The number of unknowns is 9: α, β, α′, β ′, α′′, β ′′, Y1 ≡ Tr(Y ), Y2 ≡ det(Y ) and

Z ≡ Tr(Md
UY ).

We have to fit seven quantities: ms , mb, mμ, mτ , Vcb, �m2
23, sin2 θ23.

The fit is naively possible, and it has been shown to work explicitly in [5].

3.7 Ng = 3 case

Equation (58) now generalizes to

f (M) = α + βM + γM2. (63)

There are more unknowns, 15: α, β, γ , α′, β ′, γ ′, α′′, β ′′, γ ′′, Y1,2,3 and Z1,2,3.

The quantities to fit are 14: md , ms , mb, me, mμ, mτ , θ
q

1,2,3, θ l
1,2,3, �m2

23 and �m2
12.

It looks still possible, but harder than before. It has not yet been checked.

3.8 Summary of E6

(1) E6 is a respectable (although complicated) theory;

(2) we showed examples of (so far) possibly realistic cases (Ng = 2).

Some open questions:

(1) Neutrino mass scale should be lower than MGUT. To get it, the full mass spectrum

at that scale should be known and included in gauge couplings RGEs;

(2) the Landau pole is very close, just above MGUT. Any possibility to treat it?
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[11] C S Aulakh, A Melfo and G Senjanović, Phys. Rev. D 57, 4174 (1998), hep-ph/9707256

[12] C S Aulakh, A Melfo, A Rasin and G Senjanović, Phys. Lett. B 459, 557 (1999),
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