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Abstract. The Kramer radiating star uses the interior Schwarzschild solution as a seed solution to
generate a model of dissipative collapse. We investigate the thermal behaviour of the radiating star
by employing a causal heat transport equation. The causal temperature is explicitly determined for
the first time by integrating the transport equation. We further show that the dissipation of energy
to the exterior space-time renders the core more unstable than the cooler surface layers.
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1. Introduction

The study of relativistic radiating stars has revealed a rich spectrum of physics for dif-
ferent epochs of the gravitational process. Of particular interest is the end state of
gravitational collapse where it is widely debated whether the final outcome is that of a
black hole or naked singularity [1]. The first serious attempt in investigating the out-
come of gravitational collapse can be attributed to Oppenheimer and Snyder [2] who
considered a spherically symmetric dust cloud collapsing under its own gravity. This is
a highly idealized model and there is a need to incorporate more realistic effects such
as pressure anisotropy, shear, heat flow and bulk viscosity. The study of dissipative
systems became possible with the discovery of the Vaidya solution [3] which allowed
for energy loss from the stellar interior into the surrounding space-time. For a collapse
scenario, space-time is divided into two distinct regions, the interior of the star and the
exterior space-time. The smooth matching of the interior geometry to the exterior space-
time across a time-like hypersurface was first obtained by Santos [4]. The important
result obtained from these junction conditions is the nonvanishing of the pressure at the
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boundary of the collapsing star. With Santos junction conditions, it became possible to
model more realistic collapse scenarios incorporating bulk viscosity [5], shear viscosity
[6], pressure anisotropy [7-9] and electromagnetic field [10-12] within the stellar core.
The departure from spherical symmetry of a radiating body was also investigated [13].
These general models allowed for a transparent appreciation of the physics at play dur-
ing the collapse process. The so-called Euclidean star model first proposed by Herrera
and Santos [14] analysed the behaviour of a radiating sphere in which the areal radius
is always equal to the proper radius. Euclidean stars have close relationship with Lie
symmetries and algebras as shown by Abebe et al [15,16]. Govinder and Govender [17]
showed that these stars are reasonably well-behaved and obey a barotropic equation of
state. By assuming the vanishing of the expansion scalar, Di Prisco et al [18] showed
that this permits the existence of a vacuum cavity surrounding the centre of the stellar
configuration.

We are guided by an approach adopted first by Kramer [19] in which the static inte-
rior constant density Schwarzschild solution is transformed into a nonstatic solution by
allowing the mass function to become time-dependent. The energy—momentum tensor for
this Schwarzschild-like radiating solution is a perfect fluid with heat flow. This allows for
a spherically symmetric, shear-free star undergoing gravitational collapse because of the
radial heat dissipation with the interior Schwarzschild solution being the static limit. A
first integral of the boundary condition was provided by Kramer [19]. The full tempo-
ral evolution of the Kramer radiating star was obtained by Maharaj and Govender [20].
The time dependence of this particular model is given in terms of Li integrals which are
special functions. The complicated nature of the temporal evolution of metric functions
did not warrant a comprehensive study of the physical properties of the Kramer radiating
star. The physical behaviour of density, pressure and heat flux were analysed only in the
asymptotic limit. In this paper, we investigate the full dynamical nature of this particular
collapsing model by treating all the thermodynamical variables as functions of a single
temporal function. For the first time we are able to show that the Kramer ansatz leads to a
physically viable model of dissipative gravitational collapse. We further study the stabil-
ity of the collapsing core and evolution of the temperature profile by employing a causal
heat transport equation [21-25]. Our results agree with the earlier findings that relax-
ational effects can predict temperatures which are vastly different from their noncausal
counterparts.

This paper is organized as follows. In §2 we introduce the space-time geometry and
matter content for the interior and exterior of our stellar model. The Kramer ansatz is
reviewed in §3. In §4, we investigate the evolution of the temperature profile of the
Kramer radiating star within the framework of extended irreversible thermodynamics.

2. Shear-free space-times

We model a spherically symmetric radiating star in the limit of vanishing shear. The
interior metric in co-moving coordinates for shear-free matter is

ds?> = —A%dr? + B?[dr? 4 r?(d0? + sin” 6d¢?)], (1)
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where A and B are functions of both the temporal coordinate ¢ and the radial coordinate r.
The energy—momentum tensor for the interior matter distribution is described by a perfect
fluid with heat flux

T, = (p + p)uaub + P8ab + qalty + qrlUa, (2)

where p is the energy density, p is the isotropic pressure and ¢ is the heat flow vector.
For the line element (1) and matter distribution (2) the coupled Einstein field equation
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where the heat flux g = (0, ¢, 0, 0) consists of only the nonvanishing radial component.
The condition of pressure isotropy is obtained by equating (5) and (6) yielding
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We note that (8) does not contain any time derivatives. This implies that any static solution

in isotropic, co-moving coordinates will satisfy (8). The exterior space-time is taken to
be the Vaidya’s outgoing solution given by [3]

2
ds? = — <1 - $> dv? — 2dvdR + R* (d6* + sin® 0dg?) | )

where m(v) is the Newtonian mass of the star as measured by an observer at infinity. The
junction conditions required for the smooth matching of the interior space-time (1) to the
exterior space-time (9) have been extensively utilized as the atmosphere of a collapsing
star. We present the main results that are necessary for modelling a radiating star. The
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continuity of the intrinsic and extrinsic curvature components of the interior and exterior
space-times across a time-like hypersurface are

(v) = rs—BBZ— ’B —i32> (10)
= ot TP T )
(p)s = (@B)s. (11)

Relation (11) determines the temporal evolution of the collapsing star.

3. Kramer ansatz

Kramer started off by writing the static interior Schwarzschild solution in isotropic and
co-moving coordinates. The metric takes the following form:

L (2yr7 =2y —r?y?)*
(I+y)2(14yr?)?

(1+y)°
(1+yr?)?

ds? =

[dr? +72(d6* + sin’ 0dg?)], (12)

where y = M /2r is a constant. Kramer then allowed y = y(¢), i.e., he allowed the mass
function to become time-dependent. Equation (8) is satisfied and the resulting nonstatic
metric is also a solution of the Einstein field eq. (3). The matter variables for the interior
of the Kramer star are
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The physical analysis that follows is the first complete treatment for the Kramer model.
We require y > 0 for the energy density to be positive in the interior of the star. It
must be observed that (dy/df) < O which ensures that ¢ > 0 and that the heat flow is
directed outwards. The constant of integration y, gives the initial value of the function
y(t) for t — —oo when the solution approaches the static Schwarzschild limit. The mass
parameter is given by

1— 2

m@) _ v+ (mn AN

2ro LI —yo

which coincides with mass m(v) in the Vaidya solution (9). When y = yy this expression
becomes

m

2_r0 =)o,
which coincides with the interior Schwarzschild mass M. The requirement that
(dy/dt) < 0O and singularity in the metric at y = —1 places the following restriction
on y(t):

Yo=y>—1,

for a consistent model. In order to generate the plots of the thermodynamical quanti-
ties displayed in figures 1-4 we assumed that 0 < r < 1, where r = 1 defines the
boundary of the star at a particular snapshot of the collapse process. Kramer also fixed
the boundary at r = 1 which, without any loss of generality, simplifies the boundary
condition obtained from (11). The temporal function y(#) is chosen such that we avoid
the singularity at y = —1 and furthermore ensures that the physical quantities such as
density, pressure and temperature are well-behaved during this epoch. Figure 1 shows

0.0

0.0

Figure 1. Density profile as a function of the radial coordinate and the temporal
function y(z).
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the behaviour of density of the collapsing fluid sphere as a function of the radial coordi-
nate r and the temporal function y(¢). It is clear that the central density is higher than
each interior point of the stellar fluid and drops off towards the boundary. It can also be
noted that the density increases at late times. This is expected for a collapse model. As
the collapse proceeds, the proper radius of the star decreases thus squeezing more matter
into a smaller volume. Note that at y = —1 the density is undefined. The pressure for the
interior is displayed in figure 2. The central core pressure is higher than all interior points
of the collapsing star. This is expected as the central density is highest at the centre of
the star. The generation of heat flux is associated with the high central core pressure. The
heat production at the centre is greatest and decreases towards the cooler surface layers
of the star. Figure 3 shows the plot of 'cenire — Isurface @s @ function of y(z). It is clear
that Ucentre < [surface fOr all times. This indicates that the central regions of the collapsing
object are more unstable than the outer regions, close to the surface of the star. This
result confirms the earlier findings by Maharaj and Govender [26] for a conformally flat
radiating sphere.

4. Causal heat transport

To investigate the physical plausibility of the Kramer ansatz we shall now consider the
evolution of the temperature profile within the framework of extended irreversible ther-
modynamics. Early investigations of dissipative collapse in the form of radial heat flux
employed a noncausal heat transport equation to determine the behaviour of tempera-
ture within the stellar core. The Fourier heat transport equation suffers several drawbacks.
For example, it violates causality by predicting superluminous propagation velocities
for the thermodynamical fluxes and the equilibrium states are unstable. The general
framework for employing extended irreversible thermodynamics to study heat dissipation
during gravitational collapse was first considered by Herrera and co-workers [27-32].
Various studies have shown that relaxational effects are significant during the later stages

0.2
0.3 y

Figure 2. Pressure as a function of the radial coordinate and the temporal function
y(@).
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r
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Figure 3. Adiabatic index (I' = (dp/dp)) as a function of y(z).

of collapse leading to higher core temperatures. These findings hold true in both the shear-

free and shearing cases [33-35]. The relativistic Cattaneo equation for the heat transport
takes the following form:

the" Gy + go = =k (DT + Tit,), (16)

where t(p, n) is the relaxation time for the heat flux. For the line element (1) the causal
heat transport eq. (16) becomes
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Figure 4. Causal and noncausal temperature profiles.
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which governs the temperature behaviour. Substituting ¢ = 0 in (17) we obtain the
familiar Fourier heat transport equation
(AT) ,
A(gB) = —« 2 —, (18)

which predicts reasonable temperatures when the fluid is close to quasistationary
equilibrium.

We utilize the thermodynamic coefficients for radiative transfer as motivated by
Govender [36], in which heat dissipation within the core occurs via thermally generated
neutrinos. The thermal conductivity, mean collision time and relaxation time are given by

K = XT3‘[C7 T = <%> ’1"_(‘)7 T = (%) Te, (19)

where x (>0), ¢ (>0) and w (>0) are constants. We further assume a power-law
generalization for the mean collision time given by

o
T = <—) T, (20
X

where o (>0) and w (>0) are constants. We observe that the mean collision time
decreases as the temperature increases. A reasonable assumption would be to consider
relaxation time proportional to the collision time [37]:

. (ﬂ_X) - @1)
o

where 7 (>0) is a constant.
Using the above definitions for t and « we are in a position to integrate the causal
transport eq. (17) for constant collision (w = 0). The causal temperature profile for this

case is
.o F(t)  2P(r, 1)y
T(r,t)—G(r,t)|: 4 Q(r,t) :|
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where we have introduced
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The integration function F(¢) can be calculated from the effective surface temperature of

the star as
1 L
™. = —-—— =, 23
( )2 <rzB2>Z (4718) 23)
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where L, is the total luminosity at infinity and § (>0) is a constant. It is noted that
the expression for the casual temperature in (22) is a new result; it is remarkable that an
explicit expression can be obtained in terms of elementary functions involving the func-
tion y(¢). Figure 4 shows both the causal and noncausal temperature profiles as functions
of the radial coordinate. As expected, the temperature is highest at the centre of the radi-
ating star and decreases rapidly towards the surface layers of the star. It is also clear that
the causal temperature is higher at each interior point of the stellar fluid and is the same
as its noncausal counterpart at the surface.

We have shown that the Kramer ansatz is reasonable and produces a model of a
radiating star that predicts physically reasonable temperature profiles in both the causal
and noncausal theories. Our results are in agreement with the earlier investigations of
shear-free collapse, acceleration-free collapse (geodesic flows), conformally flat radiating
models (vanishing of Weyl stresses), collapse from an initial static configuration and col-
lapse to a final static core. It is clear that relaxational effects can alter the temperature
distribution as the collapse proceeds.
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