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Abstract. This paper studies the global synchronization of non-autonomous, time-delay, chaotic
power systems via linear state-error feedback control. The frequency domain criterion and the LMI
criterion are proposed and applied to design the coupling matrix. Some algebraic criteria via a
single-variable linear coupling are derived and formulated in simple algebraic inequalities. The
effectiveness of the new criteria is illustrated with numerical examples.

Keywords. Chaos, synchronization; frequency-domain criterion; linear state-error feedback
control; time-delay; power system.

PACS Nos 05.45.Pq; 05.45.Gg; 05.45.Xt

1. Introduction

Chaotic dynamics for the time-delay systems has been extensively investigated in the
past [1–5]. An interesting phenomenon for such a class of chaotic systems is that the
arbitrary dimension of the time-delay systems can keep their chaotic characteristic as
long as their delayed time is large enough [2]. From this point of view, it is possible to
improve the security of chaotic secure communication based on a chaotic key produced
by the time-delay chaotic systems.

As a basic theory on chaotic secure communication, synchronization of time-delay
chaotic system is an issue worthy to be considered. From the theoretical point of view,
research on synchronization of time-delay chaotic systems presented by the delay differ-
ential equations (DDE) may be more difficult and challenging than those presented by
the ordinary differential equations (ODE). Sun [6,7] has investigated time-delay effects
on the master–slave synchronization scheme and obtained some synchronization criteria
expressed by means of linear matrix inequalities (LMI). However, the frequency-domain
criterion, which can also be applied conveniently to design the controller and analyse
system parameters, has received less attention.
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The single-machine-infinite-bus (SMIB) system is a type of non-autonomous electri-
cal power system which can be presented by either ODE or DDE [8]. Very recently, the
synchronization of ODE power systems via a single-variable linear coupling has been
investigated in [9]. However, the method of applying the Lyapunov stability theory to
study the sufficient criterion for the synchronization of DDE power systems still remains
an issue that needs to be solved.

We are thus motivated to study the frequency-domain criterion for the synchronization
of DDE power systems via liner state-error feedback control. We verify that a very simple
controller can be obtained using frequency-domain criterion and through an example we
show that the controller obtained by the frequency-domain criterion is sharper than that
obtained by the LMI criterion.

The paper is organized as follows. In §2, some definitions and lemmas are given. In
§3, a master–slave feedback-controlled synchronization scheme is constructed and the
global synchronization of such a scheme is converted to the global asymptotical stability
of a corresponding dynamical error system. In §4, the new frequency-domain criterion
and the LMI criterion are presented and applied to deduce the algebraic criterion. In §5,
numerical examples are given to verify the effectiveness of the obtained results. Finally,
§6 concludes the paper.

2. Definition and lemmas

DEFINITION 1 [10]
The complex-valued function T (z) belongs to a class of strictly positive real functions
(SPR), T (z) ∈ {SPR}, if for any real value of z, this function is real and if Re z ≥ 0, then
this function satisfies Re T (z) > 0.

Lemma 1 [11]. The complex-valued function T (z) ∈ {SPR}, if and only if the following
conditions are satisfied:

(i) for real values of z, the function T (z) takes on real values only;
(ii) the function T (z) has no poles in Re z > 0;

(iii) on the imaginary semi-axis, the function T (z) can have only simple poles with
positive residues;

(iv) inequality Re T (jω) > 0 holds for ∀ω ∈ R ∪ {∞}, where j = √−1.

Lemma 2 (MKY) [10]. Suppose A ∈ Rn×n, B ∈ Rn, F ∈ Rn, Re λ(A) < 0, and the
constant r > 0. Then for any real symmetric matrices P ∈ Rn×n and D ∈ Rn×n, and any
vector q ∈ Rn, the following matrix equations{

PA + AT P = −qqT − D,

PB − F = √
rq,

have solutions P > 0 and D > 0 if and only if

T (z) = r + 2FTA(z)−1B ∈ {SPR} ,

where A(z) = zI − A.
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Lemma 3. Let x, y, m, n be real vectors of appropriate dimensions and the constant
a > 0, we have

2xT mnT y ≤ axT mmT x + yT nnT y/a.

3. The global synchronization scheme

The DDE power system can be described by [12]

ẋ = Ax(t) + f(x(t), x(t − τ)) + m(t), (1)

where x = (x1, x2)
T ∈ R2 and

A =
[

0 1
0 −c

]
, m(t) =

[
0

h sin ωt

]
,

f(x(t), x(t − τ)) =
[

0
−β sin x1 + ξ sin(Rx1(t − τ))

]
. (2)

Here, all the parameters c, β, ω, ξ, h, R are positive constants. It is well known that such
a DDE power system demonstrates the complex dynamics including chaos [12], as shown
in figure 1.

Now, a master–slave synchronization scheme by using a linear state-error feedback
controller u(t) to couple two SMIB power systems is constituted and formulated as⎧⎨

⎩
Master: ẋ = Ax(t) + f(x(t), x(t − τ)) + m(t),

Slave: ż = Az(t) + f(z(t), z(t − τ)) + m(t) + u(t),

Controller: u(t) = K(x(t) − z(t)),

(3)

where the state variables x, z ∈ R2 and K ∈ R2×2 is a constant matrix, referred to as the
coupling matrix.

Figure 1. The master system with the parameters c = 0.5, β = 1, ω = 1, h = 2.34,
ξ = 0.03, τ = 1, R = 2.65 and the initial condition x(0) = (−6, 2.5)T .
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The task here is to design a constant coupling matrix K such that for any initial condi-
tions x(0) of the chaotic master system and any initial conditions z(0) of the slave system,
the trajectories x(t) and z(t) satisfy

lim
t→∞ ‖x(t) − z(t)‖ = 0. (4)

The description above is called the global chaos synchronization.
Defining a state-error vector e(t) = x(t) − z(t), one can obtain a dynamical error

system for scheme (3), as follows:

ė(t) = (A − K + Q(t))e(t) + Q1(t − τ)e(t − τ), (5)

where

Q(t) =
[

0 0
q(t) 0

]
, (6)

q(t) = −β(sin x1 − sin z1)/(x1 − z1) (7)

and

Q1(t − τ) =
[

0 0
q1(t − τ) 0

]
, (8)

q1(t − τ) = ξ(sin(Rx1(t−τ))

− sin(Rz1(t−τ)))/(x1(t − τ) − z1(t − τ)). (9)

Clearly, the master–slave synchronization scheme (3) achieves global chaos synchro-
nization in the sense of (4) provided that the error system (5) is globally asymptotically
stable at e = 0.

4. Main results

First, for q(t) defined by (7) and q1(t − τ) defined by (9), one has [13]

|q(t)| ≤ β, ∀t ≥ 0 (10)

and

|q1(t − τ)| ≤ ξR, ∀t ≥ 0 and τ ≥ 0. (11)

Theorem 1. Define the complex matrices

G(z) = zI − (
A − K + HFT

)
,

W(z) = FT G−1(z)H,

where z is a complex variable, the vectors

F =
(√

β2 + a−1ξ 2R2, 0
)T

, H =
(

0,
√

1 + a
)T
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and a is a positive constant. Then the master–slave synchronization scheme (3) achieves
the global chaos synchronization provided that

Re λ(A − K + HFT ) < 0 (12)

and

1 + 2 ReW(jω) > 0, ∀ω ∈ R ∪ {∞}, (13)

where λ (·) denotes any eigenvalue of a real matrix, Re (·) is the real part of a complex
variable and j = √−1.

Proof. Let L(t − τ) = (q1(t − τ), 0), B = (0, 1)T . Then Q1(t − τ) = BL(t − τ).
The error system (5) can thus be rewritten as

ė(t) = (A − K + Q(t))e(t) + BL(t − τ)e(t − τ). (14)

Choose a Lyapunov–Krasovskii function candidate:

V = e
T

P e + a−1
∫ t

t−τ

e
T

(s)LT(t − τ)L(t − τ)e(s)ds,

where P = diag{p1, p2} with p1 > 0 and p2 > 0.
By Lemma 3, the time derivative of V along the orbit of error system (14) equals

V̇ = eT(A − K + Q(t))TP e + eTP (A − K + Q(t))e

+2eTPBL(t − τ)e(t − τ) + a−1eTLT(t − τ)L(t − τ)e

−a−1eT (t − τ)LT (t − τ)L(t − τ)e(t − τ)

≤ eT
[
(A − K + Q(t))TP + P(A − K + Q(t))

]
e

+aeT PB(PB)Te + a−1eT LT(t − τ)L(t − τ)e

+a−1eT(t − τ)LT(t − τ)L(t − τ)e(t − τ)

−a−1eT(t − τ)LT(t − τ)L(t − τ)e(t − τ)

= eT
[
(A − K)TP + P(A − K) + QT(t)P + PQ(t)

+aPB(PB)T + a−1LT(t − τ)L(t − τ)
]
e.

It follows from (10) that

eT [QT(t)P + PQ(t)]e = 2p2q(t)e1e2 ≤ q2(t)e2
1 + (p2e2)

2

≤ β2e2
1 + (p2e2)

2 = eT
[
a−1EET + PB(PB)T

]
e,

where

E = (√
aβ, 0

)T
.

It follows from (11) that

eT
[
a−1LT(t − τ)L(t − τ)

]
e ≤ eT

[
a−1CCT

]
e,
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where

C = (ξR, 0)T .

Thus, for any e 
= 0, V̇(e) < 0 provided that

(A−K)TP + P(A−K) + a−1EET

+PB(PB)T + aPB(PB)T + a−1CCT<0. (15)

Therefore, inequality (15) is sufficient for the stability of the error system (14) at e = 0.
Transform (15) as

(A − K)TP + P(A − K) + (1 + a)PB(PB)T

+a−1(EET + CCT ) = −D, (16)

where D ∈ R2×2 is a symmetric positive definite matrix.
It is easily verified that a−1(EET + CCT ) = FFT and (1 + a)PB(PB)T = PH(PH)T .

Equality (16) can thus be rewritten as

(A − K + HF)TP + P(A − K + HF) = −(PH − F)(PH − F)T − D,

or, equivalently,{
P(A − K + HFT ) + (

A − K + HFT
)T

P = −qqT − D,

PH − F = q.
(17)

By Lemma 2, one knows that the matrix eqs (17) have resolutions P > 0 and D > 0 if
and only if the function

T (z) = 1 + 2FG−1(z)H ∈ {SPR} .

It follows from (12) that the function T (z) does not have any pole in Re z > 0. By
Lemma 1 we know that T (z) ∈ {SPR}, if and only if, inequality (13) is satisfied. This
completes the proof. �

The following theorem also gives a criterion for the global synchronization of the
master–slave synchronization scheme (3), which is formulated in linear matrix inequality
(LMI).

Theorem 2 [6]. If there exists a symmetric positive definite matrix P ∈ R2×2, a constant
a > 0 and a constant coupling matrix K ∈ R2×2 such that for any t ≥ 0 and any τ > 0,

(A − K + Q(t))T P + P(A − K+Q(t))

+aP T P + a−1QT
1 (t − τ)Q1(t − τ)<0, (18)

then the master–slave synchronization scheme (3) achieves global chaos synchronization

Remark 1. Both the frequency domain criteria (12) and (13) and the LMI criterion (18)
can be applied to design the coupling matrix K ∈ R2×2 for global chaos synchronization
in the sense of (4). In what follows, some synchronization criteria of the scale inequal-
ities will be derived from (12), (13) and (18) respectively for the coupling matrix K =
diag{k, 0}, which implies that only a pair of state variables (x1, z1) of the master–slave
systems are linearly fed into the first differential equation of the slave system.
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PROPOSITION 1

If there exists a single-variable coupling matrix K = diag{k, 0} such that

k > g (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{√
2(1 + a)

(
β2 + a−1ξ 2R2

) − 2
√

(1 + a)
(
β2 + a−1ξ 2R2

) − c2,√
(1 + a)

(
β2 + a−1ξ 2R2

)
/c

}
, if 2(1 + a)

(
β2 + a−1ξ 2R2

)
−2

√
(1 + a)

(
β2 + a−1ξ 2R2

) ≥ c2,√
(1 + a)

(
β2 + a−1ξ 2R2

)
/c, others,

(19)

then the master–slave synchronization scheme (3) achieves global chaos synchronization.

Proof. Choosing K = diag{k, 0}, the eigenvalues λ of the matrix A − K + HFT can be
obtained from∣∣λI − (

A − K + HFT
)∣∣

=
∣∣∣∣∣

λ + k −1

−
√

(1 + a)
(
β2 + a−1ξ 2R2

)
λ + c

∣∣∣∣∣
= λ2 + (k + c) λ + kc −

√
(1 + a)

(
β2 + a−1ξ 2R2

) = 0.

By Hurwitz criterion, we know that Re λ
(
A − K + HFT

)
< 0, if and only if,{

k + c > 0,

kc −
√

(1 + a)
(
β2 + a−1ξ 2R2

)
> 0.

(20)

Obviously, inequalities (20) hold if

k >
1

c

√
(1 + a)

(
β2 + a−1ξ 2R2

)
, (21)

is satisfied.
Again,

W(z) = FT G−1(z)H

=
(√

β2+a−1ξ 2R2 0
)(

z + k −1
−√

(1+a)(β2+a−1ξ 2R2)z+c

)−1
⎛
⎝ 0√

1+a

⎞
⎠

= (1 + a)(β2 + a−1ξ 2R2)

z2 + (k + c) z + kc −
√

(1 + a)
(
β2 + a−1ξ 2R2

)
β

.

By letting

� =
[
kc −

√
(1 + a)

(
β2 + a−1ξ 2R2

) − ω2

]2

+ (k + c)2 ω2,
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one can obtain that

1 + 2 Re W(jω)

= 1

�
×(

ω4+(
k2 + c2 − 2(1 + a)

(
β2 + a−1ξ 2R2

)
+2

√
(1 + a)

(
β2 + a−1ξ 2R2

))
ω2

+
(
kc−

√
(1+a)(β2+a−1ξ 2R2)

)2

+2(1+a)(β2+a−1ξ 2R2)
(
kc−

√
(1+a)(β2+a−1ξ 2R2)

))
.

It is clear that 1 + 2 Re W(jω) > 0, ∀ω ∈ R ∪ {∞}, if

k2 + c2 − 2(1 + a)
(
β2 + a−1ξ 2R2

) + 2
√

(1 + a)
(
β2 + a−1ξ 2R2

)
> 0 (22)

and

kc −
√

(1 + a)
(
β2 + a−1ξ 2R2

)
> 0. (23)

Therefore, it follows from Theorem 1 that the master–slave synchronization scheme
(3) achieves global chaos synchronization if the inequalities (21) and (22) are satisfied
simultaneously.

Again, the inequalities (21) and (22) hold if the condition (19) is satisfied. This
completes the proof. �

Remark 2. The synchronization condition (19) depends on the constant a > 0, which
needed to be selected in applications. As presented in [14], a sharp criterion, which means
the coupling coefficient k is as close as possible to the values determined by the necessary
synchronization conditions (if any), is more valuable. Thus, to improve the sharpness of
criterion (19), let us select the constant a such that g(a) defined by (19) is as small as
possible.

Based on Lemma 3, we have√
(1 + a)

(
β2 + a−1ξ 2R2

) = √
β2 + a−1ξ 2R2 + aβ2 + ξ 2R2

≥ √
β2 + 2ξRβ + ξ 2R2 = β + ξR.

Thus, the function g(a) defined by (9) can be minimized, which leads to a sharper
criterion as follows.

PROPOSITION 2

If there exists a single-variable coupling matrix K = diag{k, 0} such that

k >

⎧⎨
⎩

max
{√

2(β + ξR)2 − 2 (β + ξR) − c2,

(β + ξR)/c} , if 2 (β + ξR)2 − 2 (β + ξR) ≥ c2,

(β + ξR)/c, others,
(24)

then the master–slave synchronization scheme (3) achieves global chaos synchronization.

The following algebraic criterion is derived from LMI criterion (18).
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PROPOSITION 3

If the single-variable coupling matrix K = diag{k, 0} is selected such that for the
constants a > 0 and 0 < μ < 2c/a

k > g(μ, a) = a/2 + (
ξ 2R2

)
/(2a) + (1 + μβ)2/

(
4cμ − 2aμ2

)
, (25)

then the master–slave synchronization scheme (3) achieves global synchronization.

Proof. Take a positive definite matrix

P = diag{1, μ} with a > 0 and 0 < μ < 2c/a, (26)

and then one has

(A−K+Q(t))TP +P(A−K+Q(t)) + aP TP + a−1Q1(t − τ)T Q1(t − τ)

=
[ −2k + a + a−1q2

1 (t − τ) 1 + μq(t)

1 + μq(t) −2cμ + aμ2

]
.

The above symmetric matrix is negative definite if and only if, for any t ≥ 0 and any
τ > 0,

−2k + a + a−1q2
1 (t − τ) < 0 (27)

and (−2k + a + a−1q2
1 (t − τ)

) (−2cμ + aμ2
) − (1 + μq(t))2 > 0. (28)

It follows from (10) and (11) that inequalities (27) and (28) hold, provided

−2k + a + a−1ξ 2R2 < 0 (29)

and (−2k + a + a−1ξ 2R2
) (−2cμ + aμ2

) − (1 + μβ)2 > 0. (30)

It is easily verified that for 0 < μ < 2c/a, inequalities (29) and (30) hold provided
condition (25) is satisfied. This completes the proof. �

In order to improve the sharpness of criterion (25), let us select the constants μ and a

such that g(μ, a) defined by (25) achieves the minimal value. To do so, calculate the first
partial derivative of g(μ, a) with respect to μ and a as follows:

∂g (μ, a)/∂μ = (1 + μβ) (μβc + aμ − c)/
(
μ2(aμ − 2c)2) ,

∂g (μ, a)/∂a = 1/2−ξ 2R2/2a2+μ2 (1 + μβ)2/
(
2(2cμ − aμ)2

)
.

Let (
μ∗, a∗) =

(√
c2 + 1/

(
ξR + β

√
c2 + 1

)
, ξRc/

√
c2 + 1

)
. (31)

It can be verified that μ∗ and a∗ satisfy constraint (26), and

(∂g(μ, a)/∂μ)(μ∗, a∗) = (∂g(μ, a)/∂a), (μ∗, a∗) = 0.
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Let us further observe that the corresponding second partial derivative:(
∂2g/∂2a

) (
μ∗, a∗) = (

c2a∗ + 2a∗ + 2c3β + 2cβ
)
/
(
c2a∗ (

a∗ + 2cβ
))

> 0,(
∂2g/∂2μ

) (
μ∗, a∗) = (

a∗ + cβ
)2

(c3β2 + cβ2 + ξ 2R2c + 2a∗βc2

+2a∗β)/((c5 + c3)(a∗ + 2cβ)) > 0,

(∂2g/∂2a)(μ∗, a∗) × (∂2g/∂2μ)(μ∗, a∗) − (∂2g/∂a∂μ)(μ∗, a∗)
= (a∗ + cβ)2(cξ 2R2 + 2a∗βc2+ 2a∗β + β2c3 + β2c)/(c5a∗(a∗+ cβ))>0.

Thus, the stationary point (μ∗, a∗) is a unique minimal point of g(μ, a) subject to
conditions (26), and the corresponding minimal value g(μ∗, a∗) is

g(μ∗, a∗) =
(
ξR

√
c2 + 1 + β

)
/c,

where μ∗ and a∗ are determined by (31).
The above discussion can be summarized to yield a sharper algebraic synchronization

criterion as follows.

PROPOSITION 4

If the single-variable coupling matrix K = diag{k, 0} is selected such that

k >
(
ξR

√
c2 + 1 + β

)
/c, (32)

then the master–slave synchronization scheme (3) achieves global synchronization

Note that if ξ = 0 the DDE power system can be presented by the ordinary differential
equations (ODE) as follows:

ẋ = Ax + f (x) + m(t), (33)

where x = (x1, x2)
T and

A =
[

0 1
0 −c

]
, f (x) =

[
0

−β sin x1

]
, m(t) =

[
0

h sin ωt

]
.

Form Proposition 4, the following corollary can be easily derived.

COROLLARY 1

If the single-variable coupling matrix K = diag{k, 0} is selected such that

k > β/c, (34)

then two identical ODE power systems can achieve global chaos synchronization.

Obviously, criterion (34) is the same as Theorem 3 in [9].

5. Numerical example

Consider the master–slave synchronization scheme (3) where the parameters of the DDE
power system are c = 0.5, β = 1, ω = 1, h = 2.45, ξ = 0.03, τ = 1 and R = 2.65.
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Figure 2. The synchronization evolution for K = diag{k, 0} with k = 2.16, where
initial conditions are x(0) = (−6, 2.5)T and z(0) = (5, − 9)T .

The initial conditions of the master and slave DDE power systems are freely chosen as
x(0) = (−6, 2.5)T and z(0) = (5, − 9)T . Simply computing by the algebraic criteria (24)
and (32), we obtain the feedback matrix K = diag{k, 0} of the synchronization controller
as follows:

By the algebraic criterion (24): k > 2.159;
By the algebraic criterion (31): k > 2.178.
It is clear that the synchronizing condition obtained by the algebraic criterion (24) is

weaker than that obtained by the algebraic criterion (32). Hence the frequency-domain
criteria (12) and (13) are sharper than the LMI criteria (18) in this example. We take
k = 2.16, illustrating the synchronization results in figure 2.

6. Conclusion

This paper proposes the frequency-domain criteria for the global synchronization of the
time-delay chaotic power systems coupled by the linear state-error feedback control.
Based on the new frequency-domain criterion and the LMI criterion, some sufficient alge-
braic synchronization criteria for the single-variable linear coupling have been derived and
formulated in simple algebraic inequalities, facilitating the design of synchronization con-
troller. An example shows that the controller obtained by the frequency-domain criterion
is sharper than that obtained by the LMI criterion.
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