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Abstract. In this paper, a unified formula of a series of rogue wave solutions for the standard
(1+1)-dimensional nonlinear Schrödinger equation is obtained through exp-function method. Fur-
ther, by means of an appropriate transformation and previously obtained solutions, rogue wave
solutions of the variable coefficient Schrödinger equation are also obtained. Two free functions of
time t and several arbitrary parameters are involved to generate a large number of wave structures.
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1. Introduction

The (1+1)-dimensional variable coefficient nonlinear Schrödinger equation (VCNLSE)
is written as [1–3]

iut + κ(t)uxx + χ(t)|u|2u = i�(t)u, (1)

where u = u(x, t) is a complex-valued function of two real variables (x, t), κ(t) repre-
sents the group velocity dispersion, χ(t) is the nonlinearity parameter which represents
the self-focussing (χ > 0) or de-focussing (χ < 0) cubic nonlinearity, and �(t) denotes
the amplification (� > 0) or absorption (� < 0) coefficient. There are three nonzero
real functions. This equation describes the evolution of modulations of dispersive waves
with weak nonlinearity. It occurs in various areas of physics, including nonlinear optics,
plasma physics, superconductivity and quantum mechanics.
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In nonlinear optics, the variable t generally represents propagation distance and x repre-
sents the retarded time in eq. (1). In this case, it describes the amplification or absorption
of pulses propagating in a single-mode optical fibre with distributed dispersion and
nonlinearity. In practical applications, the model is of primary interest not only in the
amplification and compression of optical solitons in inhomogeneous systems, but also
in the stable transmission of managed soliton. Recently, the applications of eq. (1) with
various forms have been studied by many researchers. In these literatures, the analytic
solution of the harmonic form and Jacobian elliptic function solution are obtained by Hao
et al by employing perturbation and F-expansion methods [1,2]. Exact rogue wave solu-
tions of the (2+1)-dimensional nonlinear Schrödinger equation with varying coefficients
are obtained by Zhang et al [3]. When κ(t) = α, χ(t) = β, eq. (1) reduces to the standard
nonlinear Schrödinger equation (NLSE) [4]

iut + αuxx + β|u|2u = 0, (2)

where α and β are two nonzero real constants. Depending on the character of its solutions,
it is called the ‘self-focussing’ (α > 0, β > 0) and ‘de-focussing’ (α > 0, β < 0) NLSE,
respectively. In this study, we use NLSE+ and NLSE− to denote them.

In recent years, rogue wave phenomenon has become a hot topic for many researchers.
They found that rogue waves appear not only in oceanic conditions [5–7] but also in
plasmon [8], optics [9–14], superfluids [15], Bose–Einstein condensates [16,17] and in
the form of capillary waves [18]. Moslem et al found that the electrostatic surface
plasma rogue waves can be excited and propagated along a plasma–vacuum interface due
to the nonlinear coupling between high-frequency surface plasmons and low-frequency
ion oscillations. They also discussed the nonlinear pulse propagation condition and its
behaviour. They believed that the nonlinear structures may be useful for controlling and
maximizing plasmonic energy along the plasma surface [8]. Solli et al introduced the con-
cept of optical rogue waves, a counterpart of the infamous rare water waves. Using a new
real-time detection technique, they studied a system that exposes extremely steep, large
waves as rare outcomes from an almost identically prepared initial population of waves.
Specifically, they reported the observation of rogue waves in an optical system, based on a
microstructured optical fibre, near the threshold of soliton-fission supercontinuum gene-
rating a noise-sensitive nonlinear process in which extremely broadband radiations are
produced from a narrow-band input. They modelled the formation of these rogue waves
using the generalized nonlinear Schrödinger equation and demonstrated that they arise
infrequently from initially smooth pulses owing to power transfer seeded by a small noise
perturbation [9]. Bludov et al predicted the existence of rogue waves in Bose–Einstein
condensates either loaded into a parabolic trap or embedded in an optical lattice. In the latter
case, rogue waves can be observed in condensates with positive scattering length and they
are immensely enhanced by the lattice. Local atomic density may increase up to ten times.
They provided the initial conditions necessary for the experimental observation of the
phenomenon. Numerical simulations illustrated the process of rogue wave creation [16].

Recently, the structure of the rogue waves and its behaviour have attracted the attention
of a large number of researchers [19–24]. For describing the natural nonlinear phe-
nomenon, the nonlinear Schrödinger equation is a fundamental model which is widely
applied in nonlinear science and is also widely used in studying the existence of rogue
waves and their structures [16,17,19–33].
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Some researchers have investigated eq. (2), derived its breather solutions, such as the
Akhmediev breather soliton [21], the Ma breather soliton [22] and the Peregrine breather
soliton [4]. These solutions are suggested as models for a class of freak wave events [23].
In order to obtain these breather solitons, different methods were applied by researchers
in [4,29,30,32,33].

In this work, we apply the exp-function method to NLSE [34,35], and obtain a solution
containing the three parameters. Through this unified formula in which different values
of the parameters, one can obtain the above-mentioned series of breather solitons (rogue
waves). Then, by using the similarity transformation [36–38], VCNLSE can be trans-
formed into NLSE, thereby obtaining rogue wave solutions of VCNLSE. These rich and
explicit rogue wave structures will help us to understand the diversity of rogue wave
dynamics for VCNLSE.

2. Exp-function method to construct a series of rogue waves for NLSE

By using the transformation

u(x, t) = re(ir2βt)

(
1 + A(x, t) + iB(x, t)

F (x, t)

)
, (3)

eq. (2) can be transformed into the following trilinear equation:

2βr2A(x, t)F (x, t)2 + 2αA(x, t)Fx(x, t)2 + βr2A(x, t)3

− 2αAx(x, t)Fx(x, t)F (x, t) + αAxx(x, t)F (x, t)2

−αA(x, t)Fxx(x, t)F (x, t) + B(x, t)F (x, t)Ft (x, t)

+ 3βr2A(x, t)2F(x, t) + βr2B(x, t)2F(x, t) − Bt(x, t)F (x, t)2

+βr2A(x, t)B(x, t)2 + i(βr2A(x, t)2B(x, t)−A(x, t)F (x, t)Ft (x, t)

−αB(x, t)Fxx(x, t)F (x, t) + βr2B(x, t)3

+αBx(x, t)F (x, t)2 + At(x, t)F (x, t)2 + 2αB(x, t)Fx(x, t)2

+ 2βr2A(x, t)B(x, t)F (x, t) − 2αBx(x, t)Fx(x, t)F (x, t)) = 0, (4)

where r is the real constant, A(x, t), B(x, t) and F(x, t) are real functions. Separating
the real and imaginary parts, we have

2βr2A(x, t)F (x, t)2 + 2αA(x, t)Fx(x, t)2 + βr2A(x, t)3

− 2αAx(x, t)Fx(x, t)F (x, t) + αAxx(x, t)F (x, t)2

−αA(x, t)Fxx(x, t)F (x, t) + B(x, t)F (x, t)Ft (x, t)

+ 3βr2A(x, t)2F(x, t) + βr2B(x, t)2F(x, t) − Bt(x, t)F (x, t)2

+βr2A(x, t)B(x, t)2 = 0,

βr2A(x, t)2B(x, t) − A(x, t)F (x, t)Ft (x, t) − αB(x, t)Fxx(x, t)F (x, t)

+βr2B(x, t)3 + αBx(x, t)F (x, t)2 + At(x, t)F (x, t)2

+ 2αB(x, t)Fx(x, t)2 + 2βr2A(x, t)B(x, t)F (x, t)

− 2αBx(x, t)Fx(x, t)F (x, t) = 0. (5)
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Suppose A(x, t), B(x, t) and F(x, t) are the following exponential functions:

A(x, t) = a1ep(V x+Kt) + a2e−p(V x+Kt) + a3eq(Wx+Lt) + a4e−q(Wx+Lt),

B(x, t) = b1ep(V x+Kt) + b2e−p(V x+Kt) + b3eq(Wx+Lt) + b4e−q(Wx+Lt),

F (x, t) = c1ep(V x+Kt) + c2e−p(V x+Kt) + c3eq(Wx+Lt) + c4e−q(Wx+Lt), (6)

where ai, bi, ci(i = 1,. . . , 4), p, q,W, V,K and L are constants to be determined. Subs-
tituting eq. (6) into eq. (5) yields two algebraic equations with respect to emp(V x+Kt)enq(Wx+Lt)

(m, n = −3,. . . , 3). Equating all coefficients of emp(V x+Kt)enq(Wx+Lt)(m, n = −3,. . . , 3)

to zero yields a set of algebraic equations for ai, bi, ci(i = 1,. . . , 4), p, q,W, V,K and
L. Solving them using Maple, one can obtain the following results:

a1 = 0, a2 = 0, a3 = b2
4√

4c2
2 − b2

4

, a4 = 1√
4c2

2 − b2
4

b2
4,

b1 = 0, b2 = 0, b3 = −b4, c1 = c2, c3 = − 2c2
2√

4c2
2 − b2

4

,

c4 = − 2c2
2√

4c2
2 − b2

4

, W = 0, L = −βr2b4

2c2
2q

√
4c2

2 − b2
4,

K = 0, V = rb4

2pc2

√
−2

β

α
, (7)

where c2 and b4 are arbitrary constants.
Substituting eqs (7) and (6) into eq. (3), solutions of eq. (2) can be expressed as

u(x, t)=re(ir2βt)

⎛
⎜⎜⎝1+

b2
4 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)
+ib4

√
4c2

2 − b2
4 sinh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)

c2

√
4c2

2 − b2
4 cosh

(
r
√

−2 β

α
b4

2c2
x

)
− 2c2

2 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)
⎞
⎟⎟⎠ .

(8)

Equation (8) is a unified formula which can produce a series of rogue wave solutions.
Obviously, when b4 = 0, eq. (8) becomes a plane-wave solution of eq. (2) (NLSE+ and
NLSE−) which can be denoted as

u(x, t) = re(ir2βt). (9)

Case 1. Rogue wave solutions of the self-focussing NLSE (α > 0, β > 0) are described
as follows:

(a) The Akhmediev breather soliton [21]. If 4c2
2 − b2

4 > 0, then eq. (8) takes the
following form (figure 1a):

u(x, t)=re(ir2βt)

⎛
⎜⎜⎝1+

b2
4 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)
+ib4

√
4c2

2 − b2
4 sinh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)

c2

√
4c2

2 − b2
4 cos

(
r
√

2 β

α
b4

2c2
x

)
− 2c2

2 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

t

)
⎞
⎟⎟⎠ .

(10)
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Figure 1. (a) The Akhmediev breather soliton with α = 1
2 , β = 2, r = 2, b4 =

2, c2 = 2 (eq. (10)) and (b) the Ma breather soliton with α = 1
2 , β = 2, r = 2, b =

2, c2 = 2 (eq. (11)).

(b) The Ma breather soliton [22]. Setting b4 = ib, eq. (8) can be given as (figure 1b)

u(x, t) = re(ir2βt)

⎛
⎜⎜⎝1 −

b2 cos

(
βr2b

√
4c2

2+b2

2c2
2

t

)
+ ib

√
4c2

2 + b2 sin

(
βr2b

√
4c2

2+b2

2c2
2

t

)

c2

√
4c2

2 + b2 cosh

(
rb

√
2 β

α

2c2
x

)
− 2c2

2 cos

(
βr2b

√
4c2

2+b2

2c2
2

t

)
⎞
⎟⎟⎠ .

(11)

(c) The Peregrine breather soliton [4]. Setting c2 > 0 and b4 → 0, eq. (8) takes the
Peregrine breather form which is given as (figure 2a)

u(x, t) = re(ir2βt)

(
1 − 4α(1 + i2r2βt)

α + 2βr2x2 + 4αβ2r4t2

)
. (12)

We have verified that eqs (10)–(12) are solutions of NLSE+, where c2 and b are arbitrary
constants. Analysis of the behaviour of these solutions can be found in [4,22,24,25].

Figure 2. (a) The Peregrine breather soliton with α = 1
2 , β = 2, r = 2 (eq. (12)) and

(b) the bisoliton with α = 1
2 , β = −2, r = 2, b4 = 2, c2 = 2 (eq. (8)).
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Case 2. Similarly, the de-focussing NLSE (α > 0, β < 0) has the following solutions:

(a) The bi-soliton solution. When 4c2
2 −b2

4 > 0, eq. (8) behaves as a bi-soliton solution
for NLSE− (figure 2b).

(b) The periodic solution. Setting b4 = ib, eq. (8) takes following form:

u(x, t) = re(ir2βt)

⎛
⎜⎜⎝1 −

b2 cos

(
βr2b

√
4c2

2+b2

2c2
2

t

)
+ ib

√
4c2

2 + b2 sin

(
βr2b

√
4c2

2+b2

2c2
2

t

)

c2

√
4c2

2 + b2 cos

(
rb

√
−2 β

α

2c2
x

)
− 2c2

2 cos

(
βr2b

√
4c2

2+b2

2c2
2

t

)
⎞
⎟⎟⎠ .

(13)

Equation (13) was verified to be the periodic solution of NLSE− and meanwhile, eq. (12)
is also found to be solution of NLSE−.

3. Rogue wave solutions of VCNLSE

First, we use a transformation to convert the variable coefficient nonlinear Schrödinger
equation into the standard nonlinear Schrödinger equation. Assume

u(x, t) = Q(X(x, t), T (t))P (x, t)eiw(x,t), (14)

to transform VCNLSE into NLSE, i.e.,

iQT + αQXX + β|Q|2Q = 0. (15)

To achieve this transformation, substitute eq. (14) into eq. (1). We find that only if �(t) =
1
2 [κ ′(t)χ(t) − κ(t)χ ′(t)]/κ(t)χ(t), eq. (1) can be converted into eq. (15). Then, we have

P(x, t) =
√

C1βκ(t)χ(t)

χ(t)
, w(x, t) = C0x − C2

0

∫
κ(t)dt + C2,

T (t) = C1

∫
κ(t)dt + C2,

X(x, t) = −√
C1αx + 2C0

√
C1α

∫
κ(t)dt + C2, (16)

where C0, C1 and C2 are arbitrary constants. Therefore, when �(t) = 1
2 [κ ′(t)χ(t)−

κ(t)χ ′(t)]/κ(t)χ(t), κ(t) > 0, χ(t) > 0 and α > 0, β > 0, rogue wave solutions of
eq. (1) can be expressed as

u(x, t) = r

√
C1βκ(t)χ(t)

χ(t)
e(ir2βT (t))

×

⎛
⎜⎜⎝1+

b2
4 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

T (t)

)
+ib4

√
4c2

2 − b2
4 sinh

(
βr2b4

√
4c2

2−b2
4

2c2
2

T (t)

)

c2

√
4c2

2 − b2
4 cos

(
r
√

2 β

α
b4

2c2
X(x, t)

)
− 2c2

2 cosh

(
βr2b4

√
4c2

2−b2
4

2c2
2

T (t)

)
⎞
⎟⎟⎠ eiw(x,t),

(17)

1068 Pramana – J. Phys., Vol. 85, No. 6, December 2015



Rogue wave solutions of the nonlinear Schrödinger equation

u(x, t) = r

√
C1βκ(t)χ(t)

χ(t)
e(ir2βT (t))

×

⎛
⎜⎜⎝1 −

b2 cos

(
βr2b

√
4c2

2+b2

2c2
2

T (t)

)
+ ib

√
4c2

2 + b2 sin

(
βr2b

√
4c2

2+b2

2c2
2

T (t)

)

c2

√
4c2

2 + b2 cosh

(
rb

√
2 β

α

2c2
X(x, t)

)
− 2c2

2 cos

(
βr2b

√
4c2

2+b2

2c2
2

T (t)

)
⎞
⎟⎟⎠ eiw(x,t)

(18)

and

u(x, t) = r

√
C1βκ(t)χ(t)

χ(t)
e(ir2βT (t))

×
(

1 − 4α(1 + i2r2βT (t))

α + 2βr2X(x, t)2 + 4αβ2r4T (t)2

)
eiw(x,t), (19)

where X(x, t), T (t) and w(x, t) are given by eq. (16). When α = 1
2 , β = 2, κ(t) =

(1 + cos(t)2)2, χ(t) = 1 + cos(t)2, C0 = 2, C1 = 4, C2 = 1, r = 2, b = 2, b4 = 2 and
c2 = 2 their images are displayed by figure 3.

When α = 1
2 , β = 2, κ(t) = (1 + sin(t)2)2, χ(t) = 1 + sin(t)2, C0 = 2, C1 = 4, C2 =

1, r = 2, b = 2, b4 = 2 and c2 = 2, their images are displayed by figure 4.
Secondly, similar to the previous case, if κ(t) > 0 and χ(t) < 0, we can apply solutions

of NLSE− (solutions (8) and (13)) to eq. (1)
Third, when α = 1

2 and β = 1, higher-order rational solution of eq. (2) are given by
Akhmediev [21,24]. Based on [21,24], the higher-order rational solution of eq. (15) are
obtained as follows:

Q(X, T ) =
√

1

β

(
1 − G + iH

D

)
eiT , β > 0,

G= 4X4 + 12αX2 + 72α2T 2 + 48αT 2X2 + 80α2T 4 − 3α2

16α2
,

H = T (4X4 + 8α2T 2 + 16αT 2X2 + 16α2T 4 − 15α2 − 12αX2)

8α2
,

D = 8X6 + α (12 + 48T 2)X4 + 6α2(4T 2 − 3)2X2 + α3(9 + 64T 6 + 432T 4 + 396T 2)

192α3
.

(20)

Figure 3. (a) The Akhmediev breather soliton, (b) the Ma breather soliton and (c) the
Peregrine breather soliton.
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Figure 4. (a, b) The Akhmediev breather soliton, (c, d) the Ma breather soliton and
(e, f) the Peregrine breather soliton.

Therefore, substituting eq. (20) into eq. (14), the obtained higher-order rational solu-
tion of eq. (1) can be written as

u(x, t) = Q(X, T )P (x, t)eiw(x,t), (21)

Figure 5. The higher-order rational rogue waves (solution (21)).
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where X = X(x, t), T = T (t), P (x, t) and w(x, t) are provided by eq. (16) and Q(X, T )

is given by eq. (20). When α = 1
2 , β = 2, r = 2, κ(t) = (1 + sin(t)2)2, χ(t) = 1 +

sin(t)2, C0 = 2, C1 = 4 and C2 = 1, their images are displayed by figure 5.

4. Conclusion

In this paper, a unified formula solution of the standard (1+1)-dimensional NLSE, which
yields a series of breather solitons (rogue waves) was obtained based on exp-function
method. At the same time, by using appropriate transformation, one can transform
VCNLSE into NLSE, thereby obtaining rogue wave solutions of VCNLSE which contain
the Akhmediev breather soliton, the Ma breather soliton and the Peregrine breather soli-
ton. The figures show that surface waves in the propagation process randomly generate
high amplitude breather waves. The amplitude of each of these solutions depends prima-
rily on the initial conditions and κ(t), χ(t). The two free functions κ(t), χ(t) and several
arbitrary parameters were involved in generating a large number of wave structures.
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