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Abstract. It is well known that solitons in integrable systems recover their original profiles after

their mutual collisions. This is not true in the case of optical fibre arrays, governed by a set

of integrable coupled nonlinear Schrödinger (CNLS) equations. We consider the Manakov- and

mixed-type ‘two-component’ CNLS systems. The most important characteristics of these systems

are: (1) The polarizations of the two-component solitons are changed through their mutual collisions

(Manakov system) and (2) the energy (intensity) switching occurs through the head-on collision

(mixed system). By placing the above solitons on the primary star graph (PSG), we see that soliton

collisions give rise to interesting phase changes in PSG: (a) The transition in PSG from its depolar-

ized state to polarized one; (b) a state with selectively amplified bond is generated on PSG from its

homogeneous state. These results will be applicable to network protocols using optical fibre arrays.

Keywords. Soliton network; coupled nonlinear Schrödinger system; bright soliton; soliton collision.
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1. Introduction

Solitons possess remarkable stability and intriguing collision properties. Their interest-

ing dynamics enables them to have profound applications in various fields of science

and technology. In optical fibres, soliton signals with 100 giga-bits/s (with each pulse-

width =10 ps) can be transmitted over 10,000 km without discernible errors. Soliton

dynamics in optical fibre arrays is governed by the multimode (component) coupled non-

linear Schrödinger (CNLS) equations [1,2]. Multicomponent CNLS equations describe

several fascinating dynamics which is not possible using their single-component counter-

part [1]. For the past few decades, the dynamics of various CNLS-type systems have been
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explored and the importance of soliton collision dynamics is investigated in the context

of optical switches, solitons collision-based computing, construction of optical gates, etc.

[3–5].

In two-component CNLS type systems, the state-changing character of solitonic colli-

sions led to the idea of the soliton-net (see Jakubouski et al [6] and others [7,8]). However,

this idea was concerned with a single optical fibre and not with a spatial network of opti-

cal fibres. In fact, the soliton-net proposed by Jakubouski et al [6] was constructed in the

fictitious two-dimensional plane spanned by the distance along the fibre and the retarded

time. Thus, the soliton-net is not a real network developed in the real space.

As for the relationship between solitons and networks, the network provides a nice

playground, where one can see interesting soliton propagations and nonlinear dynamics

through the network [9–12], namely through an assembly of continuum line segments

connected at vertices. Although there exist important analytical studies on the semi-

infinite and finite chains [13–16], we find little exact analytical treatment of soliton

propagation through networks within a framework of nonlinear Schrödinger equation

(NLSE) [17,18]. The subject is difficult due to the presence of vertices where the

underlying chain should bifurcate or multifurcate, in general.

Recently, with a suitable boundary condition at each vertex, Sobirov et al [19] and

Nakamura et al [20] developed an exact analytical treatment of soliton propagation

through networks within a framework of NLSE. Under an appropriate relationship among

values of nonlinearity at individual bonds, they found nonlinear dynamics of solitons

with no reflection at the vertex. They also showed that an infinite number of constants

of motion are available for NLSE on networks, namely the mapping of Zakharov–Shabat

(ZS)’s scheme [21] to networks was achieved.

As long as one stays in a single-component NLSE, no state-changing character of

solitonic collisions is expected and therefore multiple soliton dynamics leads to a triv-

ial transport through networks, i.e., splitting (fragmentation) of solitons, exchange of

solitonic positions among bonds, etc. If one moves to optical solitons in the integrable

two-mode (component) CNLS equations and manage the shape-changing solitons, much

more generic phenomena can be expected in networks.

Let us consider the soliton dynamics in the optical fibre arrays, governed by a set of

integrable two-component coupled nonlinear Schrödinger (CNLS) equations of Manakov

type:

i
∂ψ (j)

∂z
+

∂2ψ (j)

∂t2
+ 2μ(|ψ (a)|2 + σ |ψ (b)|2)ψ (j) = 0, j = a, b. (1)

Here ψ (a) and ψ (b) are the two complex modes of the beam, z and t represent respectively

the normalized distance along the fibre and transverse coordinate and μ indicates the non-

linearity coefficient. The systems with σ = 1 and −1 are called Manakov and mixed ones,

respectively. The most important discovery of these systems is the existence of two- and

multisoliton solutions in general, where the solitons change their state after the head-on

collision. That is, the polarization of two-component soliton changes by their mutual col-

lisions in the Manakov system [3,4] and the amplification of the intensity of soliton occurs

through the head-on collision in the mixed system [5]. The important difference between

the Manakov and mixed CNLS systems is the nature of nonlinearity which contributes to

the dynamics of the resulting solitons. Particularly, the nature of energy switching for a
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given soliton in both components is opposite in the case of Manakov system, whereas, it

is of the same kind in mixed CNLS system. In view of the conservation, the total energy

among the two components is conserved in the former, while the difference between the

two components is conserved in the latter.

In this paper, we consider the dynamics of two solitons of integrable two-component

CNLS equations of both Manakov and mixed types, which are placed on the primary

star graph (PSG) in figure 1. We shall show how the nature of PSG will change through

two-soliton collisions.

The remaining part of this paper is as follows. In §2, using the PSG we shall analyse the

energy and momentum conservation rules, showing how they lead to a connection formed

at a vertex. We shall address the boundary condition to guarantee the connection formula,

finding the sum rule for the strength of nonlinearity at each bonds. We shall reveal the

general solution of CNLS equations on PSG expressed in terms of the bond-independent

solution of CNLS on one-dimensional chain. In §3, after summarizing the two-soliton

solution obtained by Hirota’s bilinearization method [22] for both Manakov and mixed

CNLS equations, we shall explore the dynamics of solitons in simple networks, i.e., PSG.

In §4, the conclusion is given.

2. Primary star graph: Conservation rules, connection formula and sum rules

We consider a primary star graph (PSG) in figure 1 with single vertex at O and three

semi-infinite bonds b1, b2 and b3. The retarded time t (see below) at each bond is defined

in the region −∞ < t1 < 0, 0 < t2 < ∞ and 0 < t3 < ∞. Here t1, t2 and t3 may be

regarded as pseudospace variables. Let us define each bond described by the following

two-component CNLS equations:

i
∂ψ

(a)
k

∂z
+

∂2ψ
(a)
k

∂t2
k

+ 2μk(|ψ (a)
k |2 + σ |ψ (b)

k |2)ψ (a)
k = 0, (2a)

i
∂ψ

(b)
k

∂z
+

∂2ψ
(b)
k

∂t2
k

+ 2μk(|ψ (a)
k |2 + σ |ψ (b)

k |2)ψ (b)
k = 0, (2b)

where ψ
(j)

k , j = a, b, k = 1, 2, 3, is the envelope in the j th component, k represents the

bond index, μk indicates the strength of nonlinearity at bond k and the partial derivatives

of ψ
(j)

k are with respect to the normalized distance (z) and retarded time (tk). This CNLS

system is the extension of the Manakov-type (σ = 1) and mixed-type (σ = −1) CNLS

b1

b2

b3

O

(a) (b)

Figure 1. Primary star graph (PSG) with three semi-infinite bonds connected by a

vertex: symbolic PSG (a) and realistic one constructed from optical fibre arrays (b).
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systems on the ideal 1D chain to PSG. In the following, first we explore the conditions

and connecting formulae which guarantee the integrability of the Manakov system.

2.1 Conservation of energy

In the 2-CNLS system (2) with σ = 1, the total energy along the three bonds is

E =
3

∑

k=1

Ek =
3

∑

k=1

∫

k

(|ψ (a)
k |2 + |ψ (b)

k |2)dtk

=
∫ 0

−∞
(|ψ (a)

1 |2 + |ψ (b)

1 |2)dt1 +
∑

k=2,3

∫ ∞

0

(|ψ (a)
k |2 + |ψ (b)

k |2)dtk. (3)

The requirement for the energy to be conservative is

dE

dz
=

∫ 0

−∞

(

∂|ψ (a)

1 |2

∂z
+

∂|ψ (b)

1 |2

∂z

)

dt1

+
∑

k=2,3

∫ ∞

0

(

∂|ψ (a)
k |2

∂z
+

∂|ψ (b)
k |2

∂z

)

dtk = 0. (4)

We can write the continuity equations from (2) as

∂|ψ (a)
k |2

∂z
= −2

∂

∂tk
Im

(

ψ
(a)∗
k

∂ψ
(a)
k

∂tk

)

≡ −
∂

∂tk
J

(a)
k (z, tk), (5a)

∂|ψ (b)
k |2

∂z
= −2

∂

∂tk
Im

(

ψ
(b)∗
k

∂ψ
(b)
k

∂tk

)

≡ −
∂

∂tk
J

(b)
k (z, tk), (5b)

where k = 1, 2, 3, Im represents the imaginary part and J
(j)

k with j = a and b is the

current density for each component. Using eq. (5) in eq. (4) and assuming J
(j)

1 (z,−∞) =
J

(j)

2 (z,∞) = J
(j)

3 (z,∞) = 0, we obtain the condition (rule) for energy conservation

∑

j=a, b

Im

(

ψ
(j)∗
1

∂ψ
(j)

1

∂t1

)
∣

∣

∣

∣

∣

t1=0

=
∑

j=a, b

Im

(

ψ
(j)∗
2

∂ψ
(j)

2

∂t2

)
∣

∣

∣

∣

∣

t2=0

+
∑

j=a, b

Im

(

ψ
(j)∗
3

∂ψ
(j)

3

∂t3

)∣

∣

∣

∣

∣

t3=0

. (6)

This rule is nothing but the conservation of current density at the vertex:

∑

j=a, b

J
(j)

1 (z, 0) =
∑

j=a, b

J
(j)

2 (z, 0) +
∑

j=a, b

J
(j)

3 (z, 0). (7)
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2.2 Conservation of momentum

Here we examine the momentum conservation of 2-CNLS system (2) with σ = 1 in our

PSG. The expression for momentum can be written as

P =
3

∑

k=1

∫

k

i

[

ψ
(a)∗
k

∂ψ
(a)
k

∂tk
− ψ

(a)
k

∂ψ
(a)∗
k

∂tk
+ ψ

(b)∗
k

∂ψ
(b)
k

∂tk
− ψ

(b)
k

∂ψ
(b)∗
k

∂tk

]

dtk,

= −2

3
∑

k=1

∫

k

Im

[

ψ
(a)∗
k

∂ψ
(a)
k

∂tk
+ ψ

(b)∗
k

∂ψ
(b)
k

∂tk

]

dtk. (8)

Differentiating this equation with respect to z, we get

dP

dz
= −2

3
∑

k=1

∫

k

Im

[

∂ψ
(a)∗
k

∂z

∂ψ
(a)
k

∂tk
+ ψ

(a)∗
k

∂2ψ
(a)
k

∂z∂tk

+
∂ψ

(b)∗
k

∂z

∂ψ
(b)
k

∂tk
+ ψ

(b)∗
k

∂2ψ
(b)
k

∂z∂tk

]

dtk. (9)

We substitute the expressions for ∂ψ
(j)

k /∂z from eq. (2) in the above equation

dP

dz
= −2

3
∑

k=1

∫

k

Im

(

∂3ψ
(a)
k

∂t3
k

ψ
(a)∗
k −

∂ψ
(a)
k

∂tk

∂2ψ
(a)∗
k

∂t2
k

+
∂3ψ

(b)
k

∂t3
k

ψ
(b)∗
k −

∂ψ
(b)
k

∂tk

∂2ψ
(b)∗
k

∂t2
k

)

dtk

i.e.,

dP

dz
= −2i Im

(

∂2ψ
(a)

1

∂t2
1

ψ
(a)∗
1 +

∂2ψ
(b)

1

∂t2
1

ψ
(b)∗
1

)0

t1=−∞

−2i Im
∑

k=2,3

(

∂2ψ
(a)
k

∂t2
k

ψ
(a)∗
k +

∂2ψ
(b)
k

∂t2
k

ψ
(b)∗
k

)∞

tk=0

= −2i Im

(

∂2ψ
(a)

1

∂t2
1

ψ
(a)∗
1 +

∂2ψ
(b)

1

∂t2
1

ψ
(b)∗
1

)

t1=0

+2i Im
∑

k=2,3

(

∂2ψ
(a)
k

∂t2
k

ψ
(a)∗
k +

∂2ψ
(b)
k

∂t2
k

ψ
(b)∗
k

)

tk=0

. (10)

Thus the conservation of momentum ((dP/dz) = 0) results in the following condition at

the vertex:

Im

(

∂2ψ
(a)

1

∂t2
1

ψ
(a)∗
1 +

∂2ψ
(b)

1

∂t2
1

ψ
(b)∗
1

)

t1=0

= Im
∑

k=2,3

(

∂2ψ
(a)
k

∂t2
k

ψ
(a)∗
k

+
∂2ψ

(b)
k

∂t2
k

ψ
(b)∗
k

)

tk=0

. (11)
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2.3 Sum rule for the strength of nonlinearity

The bilinear connection formulae in eqs (6) and (11) can be satisfied by the following

linear relations at vertex O:

α1

(

ψ
(a)

1

ψ
(b)

1

)

t1=−0

= α2

(

ψ
(a)

2

ψ
(b)

2

)

t2=+0

= α3

(

ψ
(a)

3

ψ
(b)

3

)

t3=+0

,

1

α1

(

∂nψ
(a)

1 /∂tn1
∂nψ

(b)

1 /∂tn1

)

t1=−0

=
∑

k=2,3

1

αk

(

∂nψ
(a)
k /∂tnk

∂nψ
(b)
k /∂tnk

)

tk=+0

, n = 1, 2, (12a)

or

α1

(

∂nψ
(a)

1 /∂tn1
∂nψ

(b)

1 /∂tn1

)

t1=−0

= α2

(

∂nψ
(a)

2 /∂tn2
∂nψ

(b)

2 /∂tn2

)

t2=+0

= α3

(

∂nψ
(a)

3 /∂tn3
∂nψ

(b)

3 /∂tn3

)

t3=+0

, n = 1, 2,

1

α1

(

ψ
(a)

1

ψ
(b)

1

)

t1=−0

=
∑

k=2,3

1

αk

(

ψ
(a)
k

ψ
(b)
k

)

tk=+0

. (12b)

In eq. (12), αk with k = 1, 2, 3, are arbitrary real parameters, and n = 1, 2, is the degree

of differential. The analogous issue is available in the system described by the mixed-type

2-CNLS equations (2) with σ = −1.
One can obtain various choices of αk which satisfy eq. (12a) or eq. (12b). There is the

most interesting case in which an infinite number of constants of motion can be found and

hence the Manakov and the mixed CNLS systems on PSG become completely integrable.

In this case, following the idea of refs [19,20], we obtain

αk

(

ψ
(a)
k (tk, z)

ψ
(b)
k (tk, z)

)

tk=0

=
(

g(a)(0, z)

g(b)(0, z)

)

, (13a)

αk

(

∂nψ
(a)
k /∂tnk

∂nψ
(b)
k /∂tnk

)

tk=0

=
(

∂ng(a)(t, z)/∂tn

∂ng(b)(t, z)/∂tn

)

t=0

, n = 1, 2, (13b)

together with the constraint on αk:

1

α2
1

=
1

α2
2

+
1

α2
3

. (14)

In the above equations, g(a,b)(t, z) are the bond-independent universal functions, i.e., the

general solution of the integrable Manakov (σ = 1) and mixed CNLS (σ = −1) systems

with unit nonlinearity (μ = 1) in the ideal one-dimensional chain. To be explicit, the

governing equations for bond-independent nonlinearity can be written as

i
∂g(a)

∂z
+

∂2g(a)

∂t2
+ 2(|g(a)|2 + σ |g(b)|2)g(a) = 0,

(15a)
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i
∂g(b)

∂z
+

∂2g(b)

∂t2
+ 2(|g(a)|2 + σ |g(b)|2)g(b) = 0. (15b)

Hence the solution of the above equations can be used to obtain the solution for the CNLS

system with bond-dependent nonlinearity (2) and is written as
(

ψ
(a)
k (tk, z)

ψ
(b)
k (tk, z)

)

=
1

√
μk

(

g(a)(tk, z)

g(b)(tk, z)

)

. (16)

Equations (13a) and (13b) can be satisfied by choosing αk as

αk =
√

μk, k = 1, 2, 3. (17)

To satisfy eq. (14), μk must satisfy the sum rule:

1

μ1

=
1

μ2

+
1

μ3

. (18)

In closing this section, it should be noted that in eq. (16), g(a,b) are universal functions

defined in the ideal 1D chain with bond-independent nonlinearity (μ = 1) and that ψ
(a,b)

1

is defined in the region −∞ < t1 < 0, while ψ
(a,b)

2,3 are defined in the region 0 < t2,3 <

+∞. The amplitude of ψ
(a,b)
k shows a jump at the vertex, owing to the rule in eq. (16).

However, ψ
(a,b)
k s show no singular behaviour like a reflection there, as g(a,b) itself has no

singularity at t = 0.

3. Dynamics of solitons in networks

Soliton solution of the integrable CNLS systems (2) can be obtained by using various

analytical methods. Hirota’s bilinearization method [22] is one of the prominent analytical

tools which found advantage over other methods due to its algebraic nature.

3.1 Bright one- and two-soliton solutions on primary star graph (PSG)

The exact form of single bright soliton solution of eq. (2) on PSG available from the

bond-independent (μ = 1) solution g(a,b) is given as

ψ
(j)

k =
A(j)κ1R√

μk

sech(η1R + R/2) eiη1I , j = a, b; k = 1, 2, 3, (19)

where

A(j) =
β

(j)

1

(|β(a)

1 |2 + σ |β(b)

1 |2)1/2
, eR =

|β(a)

1 |2 + σ |β(b)

1 |2

(κ1 + κ∗
1 )2

,

η1 = κ1(tk + iκ1z) ≡ η1R + iη1I and κ1 ≡ κ1R + iκ1I .

This one-soliton solution is characterized by three arbitrary complex parameters β
(a)

1 , β
(b)

1

and κ1. The amplitudes of the soliton at the bond k = 1, 2, 3 in components a and b are

Ā
(a)

1 (k) ≡
A(a)κ1R√

μk

,

Ā
(b)

1 (k) ≡
A(b)κ1R√

μk

. (20)
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The soliton velocity in both components is 2κ1I . It is important to note that here in the

2-CNLS system (2), the soliton amplitude is independent of its velocity.
Explicit form of bright two-soliton solution [3–5] on PSG is also available from the

bond-independent (μ = 1) one and can be written as

ψ
(j)

k =
1

√
μk

Q(j)

W
,

Q(j) = β
(j)

1 eη1 + β
(j)

2 eη2 + eη1+η∗
1+η2+δ1j + eη1+η2+η∗

2+δ2j ,

W = 1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0

+ eη2+η∗
2+R2 + eη1+η∗

1+η2+η∗
2+R3 , j = a, b; k = 1, 2, 3, (21)

where, by using individual soliton indices (l, m = 1, 2) of the two-soliton solution, we

have defined

ηl = κl(tk + iκlz), eδ0 =
κ12

κ1 + κ∗
2

,

eR1 =
κ11

κ1 + κ∗
1

, eR2 =
κ22

κ2 + κ∗
2

,

eδ1j =
(κ1 − κ2)(β

(j)

1 κ21 − β
(j)

2 κ11)

(κ1 + κ∗
1 )(κ∗

1 + κ2)
,

eδ2j =
(κ2 − κ1)(β

(j)

2 κ12 − β
(j)

1 κ22)

(κ2 + κ∗
2 )(κ1 + κ∗

2 )
,

eR3 =
|κ1 − κ2|2(κ11κ22 − κ12κ21)

(κ1 + κ∗
1 )(κ2 + κ∗

2 )|κ1 + κ∗
2 |2

,

κlm =
β

(a)
l β(a)∗

m + σβ
(b)
l β(b)∗

m
(

κl + κ∗
m

) . (22)

The dynamics of the soliton collision can be explored clearly by carrying out asymp-

totic analysis. In general, the velocity of solitons is considered to be arbitrary and opposite

to admit head-on collision. By using eq. (20), the amplitude of solitons at the bond k+
after collision can be related to that at the bond k′− before collision as

Ā
(j)

l+ (k+) =
√

μk′−

μk+
T

(j)

l Ā
(j)

l− (k′−), l = 1, 2; j = a, b;

k′−, k+ = 1, 2, 3, (23)

where Ā
(j)

l− (k′−) and Ā
(j)

l+ (k+) represent the amplitude of the lth soliton in the j th compo-

nent at the bond k′− and k+ before and after interaction, respectively.
√

(μk′−/μk+)T
(j)

l

stands for the transition amplitude, where T
(j)

l are the bond-independent (μ= 1) transition

amplitudes defined as

T
(j)

1 =
(

(κ1 − κ2)(κ2 + κ∗
1 )

(κ∗
1 − κ∗

2 )(κ1 + κ∗
2 )

)1/2 (

1 − 
2√
1 − 
1
2

)

,

T
(j)

2 = −
(

(κ2 + κ∗
1 )(κ∗

1 − κ∗
2 )

(κ1 − κ2)(κ1 + κ∗
2 )

)1/2 (
√

1 − 
1
2

1 − 
1

)

, j = a, b. (24)
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Figure 2. Type-I inelastic collision of bright solitons in Manakov system (σ = 1) for

k1 = 1 − i, k2 = 1.5 + i, β
(a)
1 = 0.8 − 2i, β

(a)
2 = 1, β

(b)
1 = 1 − i and β

(b)
2 = 1 + i.

Here


1 =
κ21

κ11

β
(j)

1

β
(j)

2

, 
2 =
κ12

κ22

β
(j)

2

β
(j)

1

,

κlm =
β

(a)
l β(a)∗

m + σβ
(b)
l β(b)∗

m

(κl + κ∗
m)

, l, m = 1, 2.

It is evident from the above equations that the solitons undergo inelastic collision in

general. Only for special choice of parameters (β
(a)

1 /β
(a)

2 = β
(b)

1 /β
(b)

2 ) the solitons exhibit

elastic collision without any change in their amplitudes, namely |T (j)

l |2 = 1 for all j and

l, but suffer a phase-shift.

Before studying the state change in networks through soliton collisions, we shall come

back to the case of the ideal 1D chain and demonstrate the inelastic (energy sharing)

collision of two bright solitons in figures 2 and 3 corresponding in Manakov- and mixed

CNLS-type systems, respectively.

The figures clearly depict the nature of energy switching of solitons. In the Manakov

system, the amplitude of soliton S1 increases after collision with soliton S2 in the ψ (a)

component, while the reverse scenario takes place in the ψ (b) component. That is, polar-

ization of individual soliton changes through the head-on collision, where the polarization

Figure 3. Type-II inelastic collision of bright solitons in mixed CNLS system (σ =
−1) for k1 = 1.5− i, k2 = 1.1+ i, β

(a)
1 = 2.5, β

(a)
2 = 1.3, β

(b)
1 = 0.5 and β

(b)
2 = 0.7.
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Figure 4. Inelastic collision of bright solitons in Manakov network – Case I.

quantifies the relative intensity. On the other hand, in the mixed CNLS system, the ampli-

tude of soliton S1 (S2) decreases (increases) in both components after collision with S2

(S1), a remarkable property arising due to the negative nonlinearity coefficient (σ = −1).

Now we shall demonstrate how this soliton collision processes can be advantageously

used in PSG.

3.2 State change in networks through soliton collisions

We shall now place a two-soliton solution on PSG in various ways and see how this

solution will evolve after the collision. Figures 4, 5 and 6 show the initial (left) and final

(right) configurations of the two-soliton solution in the Manakov-type system on PSG.

Both solitons are located initially on the bond b1 and on the bonds b2, b3, respectively,

in figures 4 and 6. In figure 5, initially one soliton is located on bond b1 and the other

one on bonds b2, b3. Also each of the two solitons is assumed to be almost depolarized

initially. We find: (1) despite the variety of initial configurations, the final configura-

tion is identical, which reminds us of an attractor in dissipative systems and (2) despite

the depolarized nature of the initial configuration, the final configuration shows a clear

polarization on each bond. That is, we see the phase change of PSG from depolarized to

polarized phase thanks to soliton collisions along PSG.

Figure 5. Inelastic collision of bright solitons in Manakov network – Case II.
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Figure 6. Inelastic collision of bright solitons in Manakov network – Case III.

Figures 7, 8 and 9 show the initial (left) and final (right) configurations of the two-

soliton solution in the mixed-type system on PSG. Both the solitons are located initially

on the bond b1 and on the bonds b2 and b3, respectively, in figures 7 and 9. In figure 8,

initially one soliton is located on bond b1 and the other one on the bonds b2, b3. Also each

soliton, which is almost depolarized, has identical intensity initially. We find: (1) A state

with a selectively amplified bond is generated in PSG from its homogeneous state. In fact,

after collision among solitons, there appears a big soliton with enhanced intensity on the

bond b1 and tiny ones with decreased intensity on the other bonds, while initially solitons

on each bond has equal intensity and democratic. (2) Various kinds of initial democratic

states finally lead to the uniquely amplified state where only the bond b1 is intensified,

which again reminds us of an attractor in dissipative systems.
Thus, two-soliton dynamics on PSG composed of optical fibre arrays shows the phase

change in PSG, and can play a role of protocol of networks. This phenomenon is caused

by the inelastic collision among solitons proper to the integrable Manakov and mixed

CNLS equations.
The remaining subject in this section is the quantitative characterization of figures 4–9.

Let us concentrate on figure 4. We denote the initial configuration as (1, 1, 0, 0, 0, 0)

corresponding to the presence of solitons 1 and 2 (from left to right) on bond 1,

and their absence on bonds 2 and 3. Then the final configuration can be denoted as

@(0, 1, 1, 0, 1, 0). Now we shall assign d to the depolarized soliton and p(a) (p(b))

Figure 7. Inelastic collision of bright solitons in mixed CNLS-type network – Case I.
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Figure 8. Inelastic collision of bright solitons in mixed CNLS-type network – Case II.

Figure 9. Inelastic collision of bright solitons in mixed CNLS-type network –

Case III.

to the polarized soliton with predominant occupancy of ψ (a) (ψ (b)) component. Then

the phase change in figure 4 is more precisely characterized by: (d, d, 0, 0, 0, 0) →
(0, p(b), p(a), 0, p(a), 0). The final phase is identical in figures 4–6, as mentioned

already. The transition amplitudes for solitons 1 and 2 are given by
√

(μ1/μ2,3)T
(j)

1

and
√

(μ1/μ1)T
(j)

2 ≡ T
(j)

2 , respectively in figure 4. Here we recognize that the tran-

sition probability of soliton 1 from bond 1 to bonds 2 and 3 satisfies the unitarity:

|
√

(μ1/μ2)T
(j)

1 |2 + |
√

(μ1/μ3)T
(j)

1 |2 = |T (j)

1 |2 thanks to the sum rule at the vertex of

PSG in eq. (18).

On the other hand, let us move to figures 7–9, where we shall assign ‘s’, ‘m’ and ‘l’

to small, middle and large solitons, respectively. Then the phase change in figure 7 is

characterized by (m,m, 0, 0, 0, 0) → (0, l, s, 0, s, 0). The final phase is again identical

in figures 7–9. A systematic quantitative characterization of figures 4–9 is lengthy and

will be carried out elsewhere [23].

4. Conclusion

Solitons in the integrable Manakov and mixed coupled NLS equations play vital roles in

the network. By placing the above solitons on the network like a primary star graph (PSG),

1020 Pramana – J. Phys., Vol. 85, No. 5, November 2015



Protocol of networks using energy sharing collisions of bright solitons

we see that soliton collisions give rise to the dramatic phase changes in the network: (1)

The transition in PSG occurs from its depolarized to polarized state (Manakov case). (2)

A state with selectively amplified bond is generated on PSG from its homogeneous state

(mixed case). The final state is quite unique, despite a variety of initial configurations

of solitons on PSG, which is reminiscent of an attractor in the dissipative systems. If

the external semi-infinite bonds attached to the network will be taken as transmitters or

receivers of messages, the present phase change can be used as protocols of network

communication by means of soliton collisions.
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