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1. Introduction

Solitons are fascinating nonlinear entities with huge potential for technological applica-

tions due to their remarkable collision properties. Following the pioneering numerical

work of Zabusky and Kruskal [1] on soliton collisions, there has been a number of

research papers on soliton interaction and it still remains a frontier topic of research. It is

well known that solitons are solitary waves that asymptotically preserve their amplitude

and speed during their collisions with other solitary waves except for a phase-shift [2].

Multicomponent solitons (MSs) are intriguing nonlinear objects in which a given soli-

ton is split among several components. These solitons are also known as vector solitons

or multicolour solitons. From a mathematical perspective, these MSs arise as solutions of

certain multicomponent integrable nonlinear partial differential equations. In integrable

systems, such MSs have the same central position and travel with the same velocity. These

MSs appear in a wide range of physical systems that include nonlinear optics [3,4], plasma

physics [4], water waves [5], biophysics [6] and Bose–Einstein condensates [7]. Here, our

focus will be on particular MSs arising in the context of nonlinear optics.

In the context of nonlinear optics, the MSs arise as solutions of integrable multiple cou-

pled nonlinear Schrödinger-type equations which describe the dynamics of simultaneous

propagation of multiple waveguide modes in Kerr-like media [3]. Such multicomponent
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systems show interesting propagation and collision dynamics as a result of various non-

linear effects. When two or more optical modes copropagate inside a fibre, they can

interact with each other through the fibre nonlinearity. In general, such interactions are

governed by coupled nonlinear Schrödinger (CNLS) family of equations. Based on the

presence and absence of coherent (phase-dependent) nonlinearities, these CNLS equa-

tions can be classified into two classes, namely coherently coupled nonlinear Schrödinger

(CCNLS) equations and incoherently coupled nonlinear Schrödinger (ICNLS) equations.

A physically interesting set of ICNLS equations arising in nonlinear optics is

iqj,z + qj,tt + 2
(

|q1|2 + σ |q2|2
)

qj = 0, j = 1, 2, (1)

in which the nonlinear couplings are due to self-phase modulation (SPM) and cross-phase

modulation (XPM) and depend only on the local intensities of the copropagating fields,

but insensitive to their phases [3]. For σ = 1, eq. (1) reduces to the integrable Man-

akov system with qj , j = 1, 2, being the envelope of the j th mode, z and t represent

the normalized distance along the fibre and the retarded time, respectively and describes

an intense electromagnetic pulse propagation in birefringent fibre [8]. For σ = −1, sys-

tem (1) becomes the mixed-ICNLS system. Lazarides and Tsironis [9] have obtained this

mixed ICNLS system as governing equations for electromagnetic pulse propagation in

isotropic and homogeneous nonlinear left-handed materials, by taking the effective per-

mittivity and effective permeability to be intensity dependent and following a reductive

perturbational approach. Here q1 and q2 are the electric and magnetic field components

of the electromagnetic pulse, respectively, the subscripts z and t denote partial deriva-

tives with respect to normalized distance and retarded time respectively. Mixed-ICNLS

system (1) can also be obtained as the modified Hubbard model (Lindner–Fedyanin sys-

tem) in the long-wavelength approximation by taking the electron–phonon interaction into

account [10]. These Manakov and mixed-ICNLS systems find important applications in

optical communication and in artificial metamaterials. They have been intensively stud-

ied in literature [2,8–19]. Also, the integrable multicomponent generalization of ICNLS

system (1) can be written as

iqj,z + qj,tt + 2

⎛

⎝

m
∑

j=1

σj |qj |2
⎞

⎠qj = 0, j = 1, 2, 3, ..., m, (2)

where σj = ±1 represent the nature of nonlinear coupling, which is of either focussing

(defocussing) type for σj = 1 (σj = −1) or mixed type (σj = 1 for j = 1, 2, ..., p and

σj = −1 for j = p + 1, p + 2, ..., m). The above system admits bright soliton solu-

tions for the Manakov (focussing) case and it supports both bright and bright-dark soliton

solutions for the mixed case [11–18]. Particularly, the bright multisoliton solutions of the

multicomponent generalization of Manakov system have been obtained by Kanna et al

using the Hirota bilinearization method and a detailed investigation on the soliton colli-

sions, such as energy sharing collision and elastic-type interactions, have been explored

[14–17]. In this paper, we shall review the results of the two-component systems only.

In general cases, like picosecond pulse propagation in non-ideal low birefringent mul-

timode fibres or beam propagation in weakly anisotropic Kerr-type nonlinear media, the

coherent effects due to the interaction of copropagating fields should also be considered

[3,20]. The propagation of coherently coupled orthogonally polarized waveguide modes
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in Kerr-type nonlinear medium is governed by the following two-component coherently

coupled nonlinear Schrödinger (CCNLS)-type equations [3,20,21]:

iq1,z + δq1,t t − μq1 + (|q1|2 + σ |q2|2)q1 + λq2
2q∗

1 = 0, (3a)

iq2,z + δq2,t t + μq2 + (σ |q1|2 + |q2|2)q2 + λq2
1q∗

2 = 0, (3b)

where q1 and q2 are slowly varying complex amplitudes in each polarization mode, z and

t are the propagation direction and transverse direction, respectively, μ is the degree of

birefringence and δ is the group velocity dispersion.

In the above equations, the nonlinearities arise from the SPM (|qk|2qj , j = k = 1, 2),

XPM (|qk|2qj , j, k = 1, 2, k �= j ) and four-wave mixing process (FWM: q2
k q

∗
j , j, k =

1, 2, k �= j ), among which the first two are phase-independent while the third one is

phase-dependent (coherent) nonlinearity. Also, eq. (3) is non-integrable. However, for

specific choices of system parameters (δ, μ, σ and λ) it becomes integrable and exists in

different physical situations [21]. The corresponding integrable CCNLS system is

iq1,z + q1,t t + γ (|q1|2 + 2|q2|2)q1 − γ q2
2q∗

1 = 0, (4a)

iq2,z + q2,t t + γ (2|q1|2 + |q2|2)q2 − γ q2
1q∗

2 = 0. (4b)

Hereonwards we refer to the above system as 2-CCNLS system. The above system gov-

erns the dynamics of pulse propagation in nonlinear gyrotropic media [22] as well as

in an isotropic nonlinear Kerr medium for particular choices of third-order susceptibili-

ties. System (4) is shown to be integrable by Painlevé analysis and soliton solutions were

obtained as the linear superposition of two nonlinear Schrödinger (NLS) solitons [21].

An integrable multicomponent generalization of the above 2-CCNLS system (4) is,

iqj,z + qj,tt + γ

⎛

⎝|qj |2 + 2

2
∑

l=1,l �=j

|ql|2
⎞

⎠qj

− γ

2
∑

l=1,l �=j

q2
l q

∗
j = 0, j = 1, 2, 3, ..., m. (5)

In ref. [24], Kanna et al have also investigated bright soliton dynamics in another type

of 2-CCNLS system similar to the two-component version of (4). This 2-CCNLS system

shows novel energy switching collision of bright solitons which will be discussed later.

Additionally, there exists another integrable 2-CCNLS system with nonlinearities having

opposite signs in the two components, for which the soliton solutions and bound states are

constructed in ref. [25]. As the solitons in this system undergo standard elastic collision,

we do not discuss this system in this review.

The soliton solutions of multicomponent Manakov and mixed-ICNLS systems (2) were

obtained using the Hirota’s bilinearization method [26] by transforming the nonlinear

equations (2) into the bilinear form and by recursively solving the resulting set of equa-

tions in a standard way. On the other hand, for m-CCNLS system (5), we have to apply

non-standard bilinearization procedure. A standard bilinearization procedure will result

in a greater number of bilinear equations than the number of bilinearizing variables, which

results in soliton solutions with less number of arbitrary parameters. In order to get more
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general soliton solutions, we introduce an auxiliary function during the bilinearization

of the m-CCNLS system which gives equal number of bilinear equations and variables

[23–27]. To be more clear with the presentation, we now give the bilinear equations for

the m-CCNLS system (5)

(iDz + D2
t )(g

(j) · f ) = γ sg(j)∗, j = 1, 2, ..., m, (6a)

D2
t (f · f ) = 2γ

m
∑

j=1

|g(j)|2, (6b)

s · f =
m

∑

j=1

(g(j))2, (6c)

obtained by using the rational transformation qj = (g(j)/f ), j = 1, 2, ..., m, with the

introduction of an auxiliary function s. Here g(j) (f ) is complex (real) function of z, t ,

Dz and Dt represent the Hirota’s differential operators [26] and ∗ indicates the complex

conjugation. The exact forms of g(j), f and s, which result in the soliton solutions of

(5), are obtained by suitably expressing them as power series and recursively solving

the resulting set of equations at various powers of expansion parameter from the bilinear

equations (6). One can refer to [23] for more details regarding the soliton solutions of (5).
The m-CCNLS system exhibits a variety of interesting solitons due to the existence of

additional coherent nonlinearities resulting from four-wave mixing process. Based on the

presence and absence of coherent nonlinearities (respectively for s �= 0 and s = 0 in (6)),

the obtained one-soliton solution (given in Appendix A) can be classified into two types,

namely (i) coherently coupled solitons and (ii) incoherently coupled solitons, using the

soliton parameters (α
(j)
u , u = 1, 2, j = 1, 2, 3, ..., m). Particularly, in ref. [23], it has been

shown that for the choice
∑m

j=1(α
(j)
u )2 = 0, u = 1, 2, the auxiliary function s becomes

zero and the corresponding one-soliton solution is said to be incoherently coupled soliton

(ICS). But for the choice
∑m

j=1(α
(j)
u )2 �= 0, u = 1, 2, s becomes non-zero and the

resulting one-soliton solution is said to be coherently coupled soliton (CCS). In general,

ICS exhibits standard sech-type (single-hump) soliton profile whereas the CCSs can have

novel double-hump and flat-top profiles in addition to the single-hump (non-sech type)

structures. A detailed analysis of these ICS and CCS is given in ref. [23].
The main objective of the present paper is to give a clear picture of various energy

sharing collisions of bright solitons in the three integrable nonlinear systems, namely the

Manakov, the mixed-ICNLS and the m-CCNLS systems. For this purpose, we use the

soliton solutions obtained earlier and demonstrate the collisions graphically. We present

the collision scenario of solitons in the Manakov and the mixed-CCNLS systems in §2

and §3, respectively. Bright soliton collision in the m-CCNLS system is given in §4 and

the final section is allotted for conclusion.

2. Soliton collisions in the ICNLS (Manakov) system: Type-I energy sharing

collision

To begin, we consider the collision of solitons in the celebrated Manakov system (eq. (1)

with σ = 1). Manakov himself has explicitly obtained one- and two-soliton solutions using

the inverse scattering transform method. He has shown that in a two-soliton collision

884 Pramana – J. Phys., Vol. 85, No. 5, November 2015



Novel energy sharing collisions of multicomponent solitons

process, soliton polarization does not change only when their initial polarizations are

parallel or orthogonal. Later, Radhakrishnan et al have shown that the solitons in the

Manakov system (1) exhibit certain novel inelastic (energy sharing) collisions [11] in

contrast to single-component NLS system. Kanna et al have obtained multisoliton solu-

tions for the multicomponent Manakov system (2) using the Hirota’s method [15]. Thus,

the system has been well studied in [8,11,13–16] and the existence of N -soliton (for arbi-

trary N ) solution and also its proof has been obtained. In this section, we restrict our

review to the interaction of two solitons in the Manakov system.

2.1 Two-soliton solution and its collision dynamics

The two-soliton solution of Manakov system obtained by Radhakrishnan et al [11] can be

compactly written in terms of Gram determinant [17] as

qj = g(j)

f
, j = 1, 2, (7a)

where

g(j) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0 eη1

A21 A22 0 1 eη2

−1 0 B11 B12 0

0 −1 B21 B22 0

0 0 −α
(j)

1 −α
(j)

2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, f =

∣

∣

∣

∣

∣

∣

∣

∣

A11 A12 1 0

A21 A22 0 1

−1 0 B11 B12

0 −1 B21 B22

∣

∣

∣

∣

∣

∣

∣

∣

, (7b)

in which

Aij = eηi+η∗
j

ki + k∗
j

and

Bij = κji =

(

α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)

(kj + k∗
i )

, i, j = 1, 2.

The above most general bright two-soliton solution is characterized by six arbitrary com-

plex parameters k1, k2, α
(j)

1 and α
(j)

2 , j = 1, 2 and it corresponds to the collision of two

bright solitons.
Now, we discuss the collision dynamics of two bright solitons in the Manakov system.

One finds that enhancement and suppression of soliton intensities in different components

occur as a consequence of energy exchange between the two colliding solitons as well as

the two components. This exchange phenomenon also satisfies the energy conservation

of both the solitons before and after collision and also the conservation of energy in indi-

vidual components which has been discussed in detail in refs [11,13–15]. For illustrative

purpose, we show the energy sharing collision characterized by intensity redistribution,

amplitude-dependent phase-shift and change in relative separation distances in the Man-

akov system in figure 1. The parameters chosen are: k1 = 1 + i, k2 = 1.5 − 0.8i, α
(1)
1 =

2.5, α
(2)
1 = 0.2, α

(1)
2 = 1.5 and α

(2)
2 = −0.6. The two solitons S1 and S2 are well

separated before and after collision in both the components q1 and q2. In the q1 compo-

nent the intensity of soliton S1 gets suppressed while that of soliton S2 is enhanced after

interaction and the reverse scenario takes place in the q2 component.
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Figure 1. Type-I energy sharing collision of Manakov solitons in 2-ICNLS system.

2.2 Asymptotic analysis of two-soliton solution of the Manakov system

The understanding of this fascinating collision process can be facilitated by making an

asymptotic analysis of the two-soliton solution of the Manakov case [15]. We perform

the analysis for the choice k1R, k2R > 0 and k1I > k2I . For any other choice the analysis

is similar. The study shows that due to collision, the amplitudes of the colliding solitons S1

and S2 change from (A1−
1 k1R, A1−

2 k1R) and (A2−
1 k2R, A2−

2 k2R) to (A1+
1 k1R, A1+

2 k1R) and

(A2+
1 k2R, A2+

2 k2R), respectively. Here the superscripts in A
j

i denote the solitons (number

(1, 2)), the subscripts represent the components (number (1, 2)) and ± signs stand for

z → ±∞. One can find that

Al+
j = T l

j A
l−
j , j, l = 1, 2, (8a)

where
(

A1−
1

A1−
2

)

=
(

α
(1)

1

α
(2)
1

)

e−R1/2

(k1 + k∗
1)

, (8b)

(

A2−
1

A2−
2

)

=
(

eδ11

eδ12

)

e−(R1+R3)/2

(k2 + k∗
2)

, (8c)

and the transition amplitudes are given by

T 1
j =

(

(k2 + k∗
1)(k1 − k2)

(k1 + k∗
2)(k

∗
1 − k∗

2)

)1/2 [

1 − λ2√
1 − λ1λ2

]

, j = 1, 2, (8d)

T 2
j = −

(

(k2 + k∗
1)(k

∗
1 − k∗

2)

(k1 − k2)(k1 + k∗
2)

)1/2 [
√

1 − λ1λ2

1 − λ1

]

, j = 1, 2. (8e)

In the above expressions

eRj = κjj

kj + k∗
j

, eR3 = |k1 − k2|2
(k1 + k∗

1)(k2 + k∗
2)|k1 + k∗

2 |2

∣

∣

∣

∣

κ11 κ12
κ21 κ22

∣

∣

∣

∣

,

eδ1j = (k1 − k2)

(k1 + k∗
j )(k2 + k∗

j )

∣

∣

∣

∣

α
(j)

1 α
(j)

2
κ21 κ22

∣

∣

∣

∣

, λ1 = κ21

κ11

α
(j)

1

α
(j)

2

and λ2 = κ12

κ22

α
(j)

2

α
(j)

1

,

in which

κji =

(

α
(1)
j α

(1)∗
i + α

(2)
j α

(2)∗
i

)

(kj + k∗
i )

, i, j = 1, 2.
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In general, |T l
j |2 �= 1 and hence intensity (energy) redistribution occurs among the

two colliding solitons as well as among the components. However, during the interaction

process the total energy of each soliton is conserved, that is |Al±
1 |2 + |Al±

2 |2 = 1, l =
1, 2. Another noticeable observation in this interaction process is that the intensity of

each mode is separately conserved, that is
∫ ∞
−∞ |qj |2dt = constant, j = 1, 2. Also,

the colliding solitons S1 and S2 undergo amplitude-dependent phase-shifts 	1 and 	2,

respectively, given by

	1 = −	2 = 1

2
ln

[ |k1 − k2|2(κ11κ22 − κ12κ21)

|k1 + k∗
2 |2κ11κ22

]

. (9)

Ultimately, these phase-shifts make the relative separation distance between the solitons

t±12 (position of S2 (at z → ±∞) minus position of S1 (at z → ±∞) also to vary during

collision, depending upon the amplitudes. The change in the relative separation distance

is found to be


t12 = t−12 − t+12 = (k1R + k2R)

k1Rk2R

	1.

We call such a collision scenario as type-I energy sharing collision (ESC). Such energy

sharing collision occurs for (α
(1)
1 /α

(1)
2 ) �= (α

(2)
1 /α

(2)
2 ), which is quite general. But when

we choose (α
(1)

1 /α
(1)

2 ) = (α
(2)

1 /α
(2)

2 ), the two solitons exhibit elastic collision only. This

interesting collision behaviour has also been experimentally verified in birefringent fibres

[28] and in photorefractive media [29]. The most important application of the energy shar-

ing collision property is a theoretical possibility for constructing logic gates for optical

computers.

3. Soliton collisions in the mixed-ICNLS system: Type-II energy sharing collision

Next, we consider the mixed 2-ICNLS system (1) with σ = −1. This system (1) admits

three types of soliton solutions, namely bright–bright, bright–dark and dark–dark. It was

found that the bright solitons exhibit a special type of energy sharing collision whereas

the dark solitons always undergo elastic collision [16,18]. The Gram determinant form

of the bright N -soliton solution (for arbitrary N ) has been obtained by Kanna et al [16].

In this section, we revisit the collision dynamics of two bright solitons in detail. For

this purpose, we consider the bright two-soliton solution of the mixed 2-CNLS equations

which is given by eq. (7) with the redefinition of Bij as

Bij = κji =
(α

(1)
j α

(1)∗
i − α

(2)
j α

(2)∗
i )

(

kj + k∗
i

) , i, l = 1, 2. (10)

Note that the form of the above two-soliton solution remains the same as that of the

Manakov case except for the crucial difference in the expressions for κji .

It was found that the mixed 2-CNLS equations admit energy sharing collision of bright

solitons in a quite different manner from the collision scenario of the Manakov system

[16]. It has been shown that in mixed CNLS equations, during a two-soliton collision

process, there is a possibility of either enhancement or suppression of intensity in a given

soliton in all the components [16]. Here also the collision process is characterized as in
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the focussing case. The most important consequence of this energy sharing collision is

the possibility of soliton amplification in all the components. Figure 2 shows that after

collision the first soliton S1 in the component q1 gets enhanced in its amplitude while

the soliton S2 is suppressed. Interestingly, the same kind of changes are observed in the

second component q2 as well. As the two-soliton solution of mixed ICNLS equation is

the same as that of the Manakov system except for κji , the asymptotic expressions are

also same as given by (8) with κil as given in eq. (10). The analysis reveals the fact

that the colliding solitons change their amplitudes in each component according to the

conservation equation

|Aj−
1 |2 − |Aj−

2 |2 = |Aj+
1 |2 − |Aj+

2 |2 = 1, j = 1, 2, (11)

where Al±
j are given by eq. (8) with modified κjis. This condition allows the given

soliton to experience the same effect in each component during collision, which may

find potential application in the noiseless amplification of a pulse. It can be easily

observed from the conservation relation (11) that each component of a given soliton expe-

riences the same kind of energy switching during collision process. The other soliton

(say S2) experiences an opposite kind of energy switching due to the conservation law
∫ ∞
−∞ |qj |2dt = constant, j = 1, 2.

For the standard elastic collision property ascribed to the scalar solitons to occur here

we need the magnitudes of the transition intensities to be unity which is possible for the

specific choice (α
(1)
1 /α

(1)
2 ) = (α

(2)
1 /α

(2)
2 ). The other quantities characterizing this collision

process, along with this energy redistribution, are the amplitude-dependent phase-shifts

and change in relative separation distances. The corresponding expressions take the same

form as that of the Manakov model with the redefinition of κji as in (11). We refer to this

collision process in which a given soliton experiences the same kind of energy switching

in both components as type-II energy sharing collision.

Thus, the type-II energy sharing collision scenario is entirely different from the one

observed in the Manakov system where one soliton gets suppressed in one component

and is enhanced in the other component with commensurate changes in the other soliton.

The collision scenario shown in figure 2 can also be viewed as an amplification process

in which the soliton S1 represents a signal or data carrier, while the soliton S2 represents

an energy reservoir or pump. The main advantage of this amplification process is that it

does not require any external amplification medium and therefore the amplification of S1

does not introduce any noise [16].

Figure 2. Type-II energy sharing collision of bright solitons in mixed 2-ICNLS sys-

tem for k1 = 1.5 + i, k2 = 1 − i, α
(1)
1 = 1 + i, α

(2)
1 = 0.8 + 0.2i, α

(1)
2 = 1 − i and

α
(2)
2 = 0.5.
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4. Soliton collisions in the m-CCNLS equations: Type-III and type-IV energy

sharing collisions

The bright solitons of the m-CCNLS system (5) display interesting collision proper-

ties. Unlike in the other multicomponent nonlinear systems, namely Manakov system

and mixed-ICNLS system, the m-CCNLS system shows novel energy switching mecha-

nism for a given soliton while the other soliton reappears elastically after collision. The

exact two-soliton solution describing different types of collision scenario in m-CCNLS

system is given in Appendix B. Importantly, based on the one-soliton solution, we can

classify the two-soliton collisions of the m-CCNLS system into three cases: (i) colli-

sion between a CCS and an ICS (
∑m

j=1(α
(j)

1 )2 �= 0 and
∑m

j=1(α
(j)

2 )2 = 0), (ii) collision

between two CCSs (
∑m

j=1(α
(j)
u )2 �= 0, u = 1, 2) and (iii) collision between two ICSs

(
∑m

j=1(α
(j)
u )2 = 0, u = 1, 2).

In order to understand these collision dynamics more clearly, we have performed an

asymptotic analysis of the two-soliton solution given in the Appendix with k1R, k2R > 0

and k1I > k2I . In the following, we discuss various combinations of soliton collisions of

the m-CCNS system (5) for m ≥ 2. Here and in the following sections, the two colliding

solitons are represented as S1 and S2.

(i) Collision between a CCS and ICS: Type-III energy sharing collision

Let us consider the collision of two bright solitons, in which S1 is of CCS type while S2 is

an ICS. From the detailed asymptotic analysis, which we skipped here, the amplitude of

the given CCS S1 and ICS S2 before collision (Au−
j ) can be related to that of after collision

(Au+
j ), by the transition amplitudes (T

(u)
j ) as

Au+
j = T

(u)
j Au−

j , u = 1, 2, j = 1, 2, 3, ..., m, (12a)

where

T
(1)
j =

(

(k∗
1 + k2)(k1 − k2)

∣

∣(α
(j)

1 κ22 − α
(j)

2 κ12) + α
(j)∗
2 �

∣

∣

2

(k1 + k∗
2)(k

∗
1 − k∗

2) κ2
22 |α(j)

1 |2

)1/2

, (12b)

T
(2)
j = (k∗

1 + k2)(k
∗
1 − k∗

2)

(k1 − k2)(k1 + k∗
2)

, j = 1, 2, 3, ..., m, (12c)

in which

� =
γ

∑m
j=1(α

(j)

1 α
(j)

2 )

(k1 − k2)

and

κuv = γ

(ku + k∗
v )

m
∑

j=1

(α(j)
u α(j)∗

v ), u, v = 1, 2.

The above-mentioned transition amplitudes (T
(u)
j ) determine the collision nature of a

given soliton Su, u = 1, 2, in a particular component qj , j = 1, 2, 3, ..., m.

Pramana – J. Phys., Vol. 85, No. 5, November 2015 889



T Kanna, K Sakkaravarthi and M Vijayajayanthi

From eq. (12), one can understand that the solitons undergo elastic collision when their

transition intensities become unimodular, which results in the solitons with same inten-

sities before and after collision. Especially, the ICS S2 exhibits elastic collision always

as |T (2)
j |2 = 1 without any restriction on the soliton parameters. However, the CCS S1

undergoes energy switching collision for general choice of soliton parameters. Only for a

specific choice when
∑m

j=1(α
(j)

1 )2 = 0, one can expect an elastic collision, but this is not

possible as this choice restricts S1 to be an ICS. Here we observe that in a given component

one soliton retains its intensity while the other undergoes change in its intensity after

collision, which shows the non-conservation of energy in that component. In order to

conserve the total energy of the system, the corresponding soliton undergoes opposite

type of intensity switching in another component. Apart from the change or invariance in

the intensity/amplitude, the colliding solitons CCS S1 and ICS S2 experience phase-shifts

	1 = 1

k1R

ln

(

(k1 − k2)(k
∗
1 − k∗

2)

(k1 + k∗
2)(k

∗
1 + k2)

)

and

	2 = −
(

2k1R

k2R

)

	1,

respectively after collision. This will result in a change in the relative separation distance

between the solitons before collision (t−12 = ((θ11 − ǫ11)/2k2R)) − (ǫ11/4k1R): position

of soliton S2 minus position of soliton S1 before collision) and after collision (t+12 =
(R2/2k2R) − (θ11 − R2)/4k1R): position of soliton S2 minus position of soliton S1 after

collision) and this can be written as


t12 = t−12 − t+12 =
(

1 + 2k1R

k2R

)

	1.

Except the transition amplitudes T
(u)
j , both the phase-shift and the relative separation dis-

tance are independent of α
(j)
u parameters. Note that the reverse type of energy switching

scenario is also possible for CCS S2 in the two components which can be obtained for

a proper choice of α
(j)
u . We refer to this energy sharing collision with energy switching

occurring in CCS only with opposite nature in the two components q1 and q2 as type-III

energy sharing collision.

To be more clear, we explicitly demonstrate the CCS–ICS collision in 2-CCNLS and

3-CCNLS systems, which can be generalized to m-CCNLS system, with m > 3. In

figure 3, we have shown the energy switching collision of CCS S1 with ICS S2 for k1 =
2.3+i, k2 = 2.5−i, γ = 2, α

(1)
1 = 0.75i, α

(2)
1 = 1.9, α

(1)
2 = 1+i and α

(2)
2 = 1−i. Here

CCS S1 changes its profile from a double-hump (single-hump) to a single-hump (double-

hump) structure with enhancement (suppression) of intensity in the q1 (q2) component,

but the ICS S2 exhibits elastic collision in both components.

It should be noted that the present CCNLS system (5) conserves total energy but the

energy in the individual component is not conserved. In order to understand this, we

obtain the form of energy conservation from (4), simply for 2-CCNLS case as

i
d

dz

∫ ∞

−∞
|q1|2 dt = γ

∫ ∞

−∞
(q∗2

1 q2
2 − q2

1q∗2
2 ) dt
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Figure 3. Type-III energy sharing collision of CCS with ICS in 2-CCNLS system.

and

i
d

dz

∫ ∞

−∞
|q2|2 dt = γ

∫ ∞

−∞
(q2

1q∗2
2 − q∗2

1 q2
2 ) dt.

This shows that the energy in individual component is not conserved ( d
dz

∫ ∞
−∞ |qj |2 dt �=

0, j = 1, 2) but the total energy is conserved ( d
dz

∫ ∞
−∞(|q1|2 + |q2|2)dt = 0). As a

consequence, the ICS induces significant energy switching in the CCS with an amplitude-

dependent phase-shift and reappears elastically after interaction.

The 3-CCNLS system admits more possible ways of energy switching for CCS. One

possible way is depicted in figure 4 for k1 = 1.5+ i, k2 = 2− i, γ = 2, α
(1)

1 = 1, α
(2)

1 =
1.5, α

(3)
1 = 2, α

(1)
2 = 2 + i, α

(2)
2 = 2 − i and α

(3)
2 =

√
6 i. It is evident from figure 4

that the CCS S1 changes its profile from single-hump to double-hump with suppression

in its intensity in the q1 and q3 components. However, in the q2 component, CCS S1 just

increases its intensity without change in the nature of the profile. Similar to 2-CCNLS

system, in 3-CCNLS system too, the ICS S2 remains the same before and after collision in

all the three components. In fact, one can have various combinations of energy switching

collision of CCS with ICS for different choices of soliton parameters.

(ii) Collision of two CCSs

Here the two CCSs can be obtained for the choice
∑m

j=1(α
(j)
u )2 �= 0, u = 1, 2. Then the

relations between the amplitudes of solitons before and after collision are obtained by an

asymptotic analysis of two-soliton solution (B.1) as

A1+
j = (k1 − k2)(k

∗
1 + k2)

(k∗
1 − k∗

2)(k1 + k∗
2)

A1−
j

and

A2+
j = (k∗

1 − k∗
2)(k

∗
1 + k2)

(k1 − k2)(k1 + k∗
2)

A2−
j , j = 1, 2, 3, ..., m.

Figure 4. Type-III energy sharing collision of CCS with ICS in 3-CCNLS system.
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Figure 5. Elastic collision of coherently coupled solitons in 2-CCNLS system.

From these expressions, we can easily find that the CCSs always undergo elastic colli-

sion with different profile structures as the corresponding relations for intensities become

|Au+
j |2 = |Au−

j |2, u = 1, 2, j = 1, 2, 3, ..., m. But these solitons, CCS S1 and CCS S2,

exhibit phase-shifts after collision

	1 = 1

k1R

ln

(

(k1 − k2)(k
∗
1 − k∗

2)

(k1 + k∗
2)(k

∗
1 + k2)

)

and

	2 = −
(

k1R

k2R

)

	1,

respectively with a change in the relative separation distance (
t12 = (1 + (k1R/k2R))	1)

between the two CCSs.

For illustrative purpose, we have shown the collision between two CCSs in the 2-

CCNLS and 3-CCNLS systems, respectively in figures 5 and 6 for k1 = 1.5 + i, k2 =
2 − i, γ = 2, α

(1)
1 = 1.7i, α

(2)
1 = 1, α

(1)
2 = 2i, α

(2)
2 = 1.2 and k1 = 1.5 + i, k2 =

2 − i, γ = 2, α
(1)
1 = 0.25, α

(2)
1 = −0.71, α

(3)
1 = 1.2i, α

(1)
2 = 1, α

(2)
2 = 1.4i,

α
(3)
2 = 0.75i. In figure 5, two CCSs having single-hump (double-hump) profiles in q1 (q2)

component undergo elastic collision. In figure 6, the collision takes place between two

double-hump CCSs in q1, a single-hump and double-hump CCSs in q2 and two single-

hump CCSs in q3 components. Other combinations of soliton profiles for the elastic

collision of CCSs can also be achieved by tuning the α
(j)
u parameters.

(iii) Collision of two ICSs: Type-IV energy sharing collision

Based on the choice for the ICS in the one-soliton solution, here we obtain two ICSs for

the choice
∑m

j=1(α
(j)
u )2 = 0, u = 1, 2. When two such ICSs collide with each other we

get exciting energy sharing collision in the m-CCNLS system (5). From the asymptotic

Figure 6. Elastic collision of two coherently coupled solitons in 3-CCNLS system.

892 Pramana – J. Phys., Vol. 85, No. 5, November 2015



Novel energy sharing collisions of multicomponent solitons

analysis of (B.1), the relation between the amplitudes of ICSs before and after collision is

obtained as

Au+
j = T

(u)
j Au−

j , u = 1, 2, j = 1, 2, 3, ..., m. (13a)

Transition amplitude T
(u)
j of soliton Su, u = 1, 2, appearing in the above equation can be

written as

T
(1)
j =

(

1 − λ̂1 + α
(j)∗
2 �

α
(j)
1 κ22

)

√

1 − λ̂1 λ̂2 + |�|2
κ11κ22

×
(

(k1 − k2)(k
∗
1 + k2)

(k∗
1 − k∗

2)(k1 + k∗
2)

)1/2

, j = 1, 2, 3, ..., m, (13b)

T
(2)
j = −

√

1 − λ̂1 λ̂2 + |�|2
κ11κ22

(

1 − λ̂2 + α
(j)∗
1 �

α
(j)
2 κ11

)

×
(

(k∗
1 − k∗

2)(k∗
1 + k2)

(k1 − k2)(k1 + k∗
2)

)1/2

, j = 1, 2, 3, ..., m, (13c)

where

� = γ

(k1 − k2)

m
∑

l=1

(α
(l)
1 α

(l)
2 ),

κuv = γ

(ku + k∗
v )

m
∑

j=1

(α(j)
u α(j)∗

v ), u, v = 1, 2,

λ̂1 = α
(j)

2 κ12

α
(j)

1 κ22

and λ̂2 = α
(j)

1 κ21

α
(j)

2 κ11

.

In general, the ICSs undergo energy sharing collision which involves a change in their

amplitudes after collision (|Tj
(u)|2 �= 1, u = 1, 2, j = 1, 2, 3, ..., m). However, for

special choice of α
(1)
1 parameters (α

(1)
1 /α

(1)
2 = α

(2)
1 /α

(2)
2 = α

(3)
1 /α

(3)
2 = · · · = α

(m)
1 /α

(m)
2 ),

we can also get elastic collisions as this choice will lead to |T (1)
j |2 = |T (2)

j |2 = 1, j =
1, 2, 3, ..., m. Also, the colliding ICSs Su, u = 1, 2, exhibit phase-shift

	1 = 1

2k1R

ln

[ |k1 − k2|2
|k1 + k∗

2 |2
(

1 − λ̂1 λ̂2 + |�|2
κ11κ22

)]

and

	2 = −k1R

k2R

	1,

respectively which lead to a change in the relative separation distance between the two

ICSs, 
t12 = (1 + (k1R/k2R))	1.
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Figure 7. Novel type-IV energy sharing collision of two ICSs in 3-CCNLS system.

To facilitate the understanding of ICS–ICS collision, first we discuss their collision in

the 2-CCNLS system. Here we find that the ICSs always undergo elastic collision. It can

be verified that for the 2-CCNLS system the transition amplitudes (intensities) given by

eq. (13) are always unimodular. However, in the 3-CCNLS system, the ICSs show energy

sharing collision in which the energy is not conserved in each qj component but the total

energy among all the components is conserved. We have shown such energy sharing col-

lision of two ICSs in figure 7 for k1 = 1.5 + i, k2 = 2 − i, γ = 2, α
(1)
1 =

√
2, α

(2)
1 =√

2, α
(3)
1 = 2i, α

(1)
2 =

√
8 i, α

(2)
2 =

√
6 and α

(3)
2 =

√
2. It is interesting to note that only

CCS undergoes intensity change during its collision with ICS (i.e. CCS–ICS collision)

and ICS remains unaltered. But in collision between two ICSs, the intensity gets altered

in both solitons. In figure 7, the two colliding solitons always undergo an enhancement in

their intensities in q1 and q2 components while they experience suppression in the q3 com-

ponent. This type of collision between two ICSs takes place only in the m-CCNLS system

with m ≥ 3 and one cannot expect such energy sharing collision in the 2-CCNLS system,

which always exhibits elastic collision. We refer to this collision scenario in which the

solitons undergo the same kind of switching in a given component with commensurate

changes in the other components as type-IV energy sharing collision. In addition to this

type-IV energy sharing collision, the elastic collision of two ICSs can also result for the

choice

α
(1)
1

α
(1)
2

= α
(2)
1

α
(2)
2

= α
(3)
1

α
(3)
2

.

5. Conclusion

We have investigated various types of soliton collisions in multicomponent nonlinear

Schrödinger-type systems with different nonlinearities. We have revealed type-I and

type-II energy sharing collisions in the two-component Manakov and mixed-ICNLS sys-

tems, respectively, where the solitons undergo opposite and same type of energy sharing

nature among the two components. Such energy sharing collisions can also be observed

in their multicomponent counterparts with m ≥ 3. Then we have discussed the interesting

energy switching collision scenario in coherently coupled nonlinear Schrödinger system

which admits various soliton profiles like single-hump, double-hump and flat-top struc-

tures. This energy switching collision does not conserve the energy in a given component,

instead the total energy of all the components is conserved. Particularly, we have demon-

strated that during its collision with the ICS, the CCS undergoes energy switching leaving
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the ICS unaltered. We have referred this collision as type-III energy sharing collision.

Also, another interesting energy sharing collision has been identified in the m-CCNLS

system with m ≥ 3. Additionally, elastic collision processes of different bright soli-

tons are observed for special choices of soliton parameters. The reported four types of

energy sharing collisions of bright solitons will find applications in the context of soliton

collision-based optical computing, optical switching devices, etc.
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Appendix A. Bright one-soliton solution of the m-CCNLS system (5)

The bright one-soliton solution of the m-CCNLS eq. (5) obtained by using the non-

standard approach of Hirota’s bilinearization method [23] can be written as

qj = α
(j)

1 eη1 + e2η1+η∗
1+δ

(j)

11

1 + eη1+η∗
1+R1 + e2η1+2η∗

1+ǫ11
, j = 1, 2, 3, ..., m, (A.1)

where

eδ
(j)

11 = γα
(j)∗
1 Ŵ1

2(k1 + k∗
1)

2
, eR1 = κ11

(k1 + k∗
1)

, eǫ11 = γ 2|Ŵ1|2
4(k1 + k∗

1)
4
,

in which

Ŵ1 =
m

∑

j=1

(α
(j)

1 )2 and κ11 =
γ

∑m
j=1 |α(j)

1 |2

(k1 + k∗
1)

.

Here the auxiliary function s is obtained as s =
∑m

j=1(α
(j)

1 )2e2η1 .

Appendix B. Bright two-soliton solution of the m-CCNLS system (5)

The bright two-soliton solution of system (5) can be written as [23]

qj = g(j)

f
, j = 1, 2, 3, ..., m, (B.1)
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where
g(j) =

∑

(α(j)
u eηu) +

∑

(e2ηu+η∗
v+δ

(j)
uv ) +

∑

(eη1+η2+η∗
u+δ

(j)
u )

+
∑

(e2ηu+2η∗
v+η3−u+μ

(j)
uv ) + eη1+η∗

1+η2+η∗
2

×
(

∑

eηu+μ
(j)
u +

∑

eη1+η2+η∗
u+φ

(j)
u

)

, j = 1, 2, 3, ..., m,

f = 1 +
∑

(eηu+η∗
u+Ru) + eη1+η∗

2+δ0 + eη2+η∗
1+δ∗

0

+
∑

(e2ηu+2η∗
v+ǫuv ) + eη∗

1+η∗
2

∑

(e2ηu+τu) + eη1+η2

∑

(e2η∗
u+τ ∗

u )

+ eη1+η∗
1+η2+η∗

2

(

eR3 +
∑

eηu+η∗
v+θuv + eη1+η∗

1+η2+η∗
2+R4

)

,

and the auxiliary function s takes the form

s =
∑

(Ŵue2ηu) + Ŵ3eη1+η2 +
∑

(eηu+2η3−u+η∗
v+λuv )

+ e2η1+2η2

(

∑

e2η∗
u+λu + eη∗

1+η∗
2+λ3

)

.

Here ηu = ku(t + ikuz), u = 1, 2, the summation is taken over u and v for u, v = 1, 2,

and the expressions for various other quantities are given below.

eRu = κuu

(ku + k∗
u)

, eδ0 = κ12

(k1 + k∗
2)

, eδ∗
0 = κ21

(k2 + k∗
1)

, eδ
(j)
uv = γα

(j)∗
v Ŵu

2(ku + k∗
v )2

,

eδ
(j)
u =

γα
(j)∗
u Ŵ3 + (k1 − k2)(α

(j)

1 κ2u − α
(j)

2 κ1u)

(k1 + k∗
u)(k2 + k∗

u)
,

eǫuv = γ 2ŴuŴ
∗
v

4(ku + k∗
v )4

, eτu =
γ 2Ŵ∗

3Ŵu

2(ku + k∗
1)2(ku + k∗

2)2
,

eλuv = (k1 − k2)
2κuvŴ3−u

(ku + k∗
v )(k3−u + k∗

v )2
, eμ

(j)
uv =

γ 2(k1 − k2)
2α

(j)

3−uŴuŴ
∗
v

4(ku + k∗
v )4(k3−u + k∗

v )2
,

eθuv = γ 2|k1 − k2|4

4D̃(ku + k∗
v )2

ŴuŴ
∗
vκ3−u 3−v, eλu = γ 2(k1 − k2)

4Ŵ1Ŵ2Ŵ
∗
u

4(k1 + k∗
u)4(k2 + k∗

u)4
,

eλ3 = γ 2(k1 − k2)
4

2D̃
Ŵ1Ŵ2Ŵ

∗
3 , eφ

(j)
u =

γ 3(k1 − k2)
4(k∗

1 − k∗
2)2

8D̃(k1 + k∗
u)2(k2 + k∗

u)2
α

(j)∗
3−uŴ1Ŵ2Ŵ

∗
u,

eR3 = |k1 − k2|2(κ11κ22 − κ12κ21) + γ 2|Ŵ3|2
(k1 + k∗

1)|k1 + k∗
2 |2(k2 + k∗

2)
, eR4 = γ 4|k1 − k2|8

16D̃2
Ŵ1Ŵ2Ŵ

∗
1Ŵ∗

2 ,

eμ
(j)
u = (k1 − k2)

2γ

2D̃
Ŵu(k3−u + k∗

1)(k3−u + k∗
2)[γα

(j)

3−uŴ
∗
3

+(k∗
1 − k∗

2)(α
(j)∗
1 κ3−u2 − α

(j)∗
2 κ3−u1)],

where

D̃ = (k1 + k∗
1)

2(k∗
1 + k2)

2(k1 + k∗
2)

2(k2 + k∗
2)

2,

κuv = γ

(ku + k∗
v )

m
∑

j=1

(α(j)
u α(j)∗

v ),

Ŵ1 =
m

∑

j=1

(α
(j)

1 )2, Ŵ2 =
m

∑

j=1

(α
(j)

2 )2, Ŵ3 =
m

∑

j=1

(α
(j)

1 α
(j)

2 )

and u, v = 1, 2, j = 1, 2, 3, ..., m.
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