
PRAMANA c© Indian Academy of Sciences Vol. 85, No. 5

— journal of November 2015

physics pp. 849–860

Group formalism of Lie transformations to time-fractional

partial differential equations

T BAKKYARAJ and R SAHADEVAN∗

Ramanujan Institute for Advanced Study in Mathematics, University of Madras,

Chepauk, Chennai 600 005, India
∗Corresponding author. E-mail: ramajayamsaha@yahoo.co.in

DOI: 10.1007/s12043-015-1103-8; ePublication: 16 October 2015

Abstract. A systematic method is given to derive Lie point symmetries of time-fractional partial

differential equation with Riemann–Liouville fractional derivative and its applicability illustrated

through (i) time-fractional diffusive equation and (ii) time-fractional cylindrical Korteweg–de Vries

equation. Using the Lie point symmetries obtained, we show that each of them has been transformed

into ordinary differential equation of fractional order with a new independent variable. We also

explain how exact or invariant solutions can be derived from the obtained point symmetries.

Keywords. Lie symmetry analysis; Fractional partial differential equation; Riemann–Liouville

fractional derivative; Mittag–Leffler function; Erdélyi–Kober operators.

PACS Nos 02.03.Jr; 02.20.Qs; 45.10.Hj

1. Introduction

Generalization has always been an interesting subject in mathematics. Fractional differen-

tial equations (FDEs) are generalization of differential equations to arbitrary (non-integer)

order. FDEs can also be viewed as alternative models to nonlinear differential equations.

Even though the first step of the theory of FDEs itself was initiated in the first half of the

nineteenth century, the subject really came to life only in the last few decades [1–4]. Re-

cent investigations reveal that new fractional-order models are more appropriate than the

existing integer-order models due to the exact description of nonlinear phenomena [5–7].

FDEs occur in a surprising number of real-world models in different areas of applied

science and engineering. It is known that while formulating the diffusion equation with

one space and time variables

∂u

∂t
−

∂2u

∂x2
= 0,

it was assumed that the mean squared displacement is linear and time-dependent. It is

not necessarily the case always (for example, anomalous diffusion). In such situations the
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mean squared displacement is nonlinear and time-dependent, i.e., 〈x2〉 ∼ tα , α �= 1. Then

the governing equation of anomalous diffusion process can be written as [6]

∂αu

∂tα
−

∂2u

∂x2
= 0. (1)

In literature, the above equation is known as the fractional diffusion equation. If 0 < α <

1, then (1) describes a subdiffusion phenomenon (slow movement of particles) whereas

α > 1 represents a superdiffusion phenomenon (fast movement of particles). Moreover,

if 1 < α < 2, then (1) represents the fractional diffusion-wave equation which is useful

to study the intermediate process between diffusion and wave phenomena. Hence we

observe that FDE provides a tool to study both PDEs of parabolic and hyperbolic type

processes simultaneously.
Let us consider another real-world problem, namely, stress σ(t) and strain ε(t) relation-

ship of the viscoelastic material. If one deals with pure elastic solids, Hooke’s law yields

σ(t) = Eε(t) = E
d0ε

dt0
,

where E is a constant. On the other hand, if one considers pure viscous liquids, Newton’s

law gives

σ(t) = η
dε

dt
,

where η is a constant. However, in reality the viscoelastic materials exhibit a behaviour

somewhere between the pure elastic solid and pure viscous liquid. It is possible to model

the stress–strain relationship for such a viscoelastic material via a FDE [7]

σ(t) = ν
dαε

dtα
, 0 < α < 1, (2)

where ν is a constant.

More FDEs describing real-world problems are illustrated in [1–9]. Thus, FDEs have

the potential to accomplish what integer-order differential equations cannot. In recent

years, different ad-hoc methods applicable to FDEs have been proposed by several re-

search groups. Among them, the Lie group transformation technique provides an effective

tool to analyse FDEs.
Basically, Lie symmetry analysis of differential equations is a continuous transforma-

tion group theory, originally advocated by the Norwegian mathematician, Sophus Lie in

the beginning of the 19th century and was further developed by Ovsiannikov [10] and

others [11–13]. The fundamental idea of Lie symmetry analysis is to find one or several

parameter continuous transformations leaving the equation invariant. The effectiveness of

the Lie point symmetry approach has widely been demonstrated in a variety of nonlinear

differential equations occurring in different areas of applied science [11,14].
The Lie symmetry analysis of differential equations has been extended to FDEs by Gazizov

et al [15] (see also [16–19]). It is appropriate to mention here that most often FDEs with

Riemann–Liouville and Caputo fractional derivatives are considered for discussions in the

literature. In [15], Gazizov et al have considered FDEs with Riemann–Liouville fractional

derivative and derived a prolongation formula for it, enabling one to determine its Lie

point symmetries. The usefulness of this has been illustrated in [15,18]. Recently, we

have considered a time-fractional nonlinear generalized Korteweg–de Vries and Burgers
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equations with Riemann–Liouville fractional derivative and derived its point symmetries

and also reduced it into a nonlinear fractional ordinary differential equation with Erdelyi–

Kober fractional derivative by means of similarity transformation [19].

To the best of our knowledge, only a limited number of FDEs with Riemann–Liouville

derivative has been investigated through Lie symmetry approach. The main objective of

this paper is to present the prolongation formula for time-fractional PDE with Riemann–

Liouville fractional derivative and illustrate its applicability through the following FDEs:

(1) Time-fractional diffusion equation

∂αu

∂tα
= k

∂2u

∂x2
, α ∈ (0, 1), (3)

where k is a constant.

(2) Time-fractional cylindrical KdV equation with Riemann–Liouville fractional derivative

∂αu

∂tα
+

u

2tα
+ 6u

∂u

∂x
+

∂3u

∂x3
= 0, α ∈ (0, 1) (4)

which occurs in different contexts in mathematical physics, for example in physics of

plasmas [20]. We also explain how exact or invariant solutions can be derived from the

obtained point symmetries.

The plan of the paper is as follows. In §2, for clarity of presentation we present

basic definitions and some properties of the fractional operators which are required for

the remaining part of the paper. In §3, to be self-contained, we explain how to derive

the prolongation formula for nonlinear time-fractional partial differential equations with

Riemann–Liouville fractional derivative. In §4, we illustrate the effectiveness of Lie sym-

metry analysis for time-fractional partial differential equations by finding Lie point sym-

metries of time-fractional diffusion and cylindrical Korteweg–de Vries equations. In §5,

we give a brief summary of our results and concluding remarks.

2. Basic definitions

To be self-contained, we briefly provide some basic definitions of fractional calculus below.

(i) Riemann–Liouville fractional integral

It is well known that the Cauchy formula for n-fold integrations is

J nf (t) =
1

(n − 1)!

∫ t

0

(t − s)n−1f (s) ds, n ∈ N.

Replacing the integer n with real number α > 0 and the discrete factorial (n − 1)!

with the continuous gamma function Ŵ(n), the Riemann–Liouville fractional in-

tegral is defined by

J αf (t) =
1

Ŵ(α)

∫ t

a

(t − s)α−1f (s) ds, α > 0

Pramana – J. Phys., Vol. 85, No. 5, November 2015 851



T Bakkyaraj and R Sahadevan

and

J 0f (t) = f (t),

where Ŵ(λ) =
∫ +∞

0
xλ−1e−xdx, λ > 0, is the Euler gamma function.

(ii) Riemann–Liouville fractional derivative
In the literature several definitions of fractional derivative such as the Riemann–

Liouville [1–4], the Grunwald–Letnikov [1–4], the Weyl [2,4], the Caputo [3,4],

and the Riesz [2] have been adopted by different researchers. Among them the

Riemann–Liouville and the Caputo fractional derivatives have been widely used.

The Riemann–Liouville fractional derivative of a continuous function f (t)

is obtained by splitting its fractional derivative operator into an integer-order

derivative and a fractional integral operator. The Riemann–Liouville fractional

differential operator of order α > 0, denoted by Dα
a+ , is defined by [2–4]

Dα
a+f (t) = DnJ n−α

a f (t), n = [α] + 1,

=
1

Ŵ(n − α)

dn

dtn

∫ t

a

(t − s)n−α−1f (s)ds, t > a

and

D0
a+f (t) = f (t),

where [α] is the integral part of α.

(iii) Riemann–Liouville partial fractional derivative

∂αu

∂tα
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂nu

∂tn
, α = n ∈ N;

1

Ŵ(n − α)

∂n

∂tn

∫ t

a

u(τ, x)

(t − τ)α+1−n
dτ, n − 1 < α < n, n ∈ N.

(5)

Note that the above-mentioned operators satisfy the following properties for the

suitable functions f (t) and g(t):

J α(f (t) + g(t)) = J αf (t) + J αg(t),

J αJ βf (t) = J α+βf (t),

Dα(f (t) + g(t)) = Dαf (t) + Dαg(t),

J α(Dαf (t)) = f (t) −

n−1
∑

r=0

f (r)(0)

r!
t r , n − 1 < α ≤ n,

Dα(J αf (t)) = f (t),

J αtλ =
Ŵ(λ + 1)

Ŵ(λ + α + 1)
tλ+α, α > 0, λ > −1,

Dαtλ =
Ŵ(λ + 1)

Ŵ(λ − α + 1)
tλ−α, α > 0, λ > −1.
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It is appropriate to mention here that the fractional-order operators are nonlocal, i.e., the

value of the fractional derivative at a point in the domain depends on values of the function

throughout the domain. Hence fractional-order models incorporate nonlocal and system

memory effects respectively through its fractional-order space and time derivatives [5].

Thus the study of fractional nonlinear differential equations is important and challenging.

3. Prolongation formula for nonlinear time-fractional partial differential equation

with Riemann–Liouville derivative

Consider a scalar time-fractional PDE having the form

∂αu(x, t)

∂tα
= F(x, t, u, ux, uxx, uxxx, . . . ), α > 0, (6)

where subscripts denote partial derivatives. Let us assume that the above time-fractional

PDE (6), is invariant under a one-parameter (ǫ) continuous point transformations

t̄ = t + ǫτ(x, t, u) + O(ǫ2),

x̄ = x + ǫξ(x, t, u) + O(ǫ2),

ū = u + ǫη(x, t, u) + O(ǫ2),

∂nū

∂ t̄n
=

∂nu

∂tn
+ ǫη

(n)
t + O(ǫ2),

∂αū

∂ t̄α
=

∂αu

∂tα
+ ǫη

(α)
t + O(ǫ2),

∂ū

∂x̄
=

∂u

∂x
+ ǫη(1)

x + O(ǫ2),

∂2ū

∂x̄2
=

∂2u

∂x2
+ ǫη(2)

x + O(ǫ2),

∂3ū

∂x̄3
=

∂3u

∂x3
+ ǫη(3)

x + O(ǫ2),

... (7)

provided any solution u(x, t) satisfies (6). It is known that the nth (n ∈ N) extended

infinitesimal η
(n)
t satisfies [10,12]

η
(n)
t = Dn

t (η − ξux − τut ) + ξDn
t ux + τDn+1

t u, (8)

where Dt is the total derivative operator given by

Dt =
∂

∂t
+ ut

∂

∂u
+ ut t

∂

∂ut

+ uxt

∂

∂ux

+ · · · .

The nth (n ∈ N ) extended infinitesimal η(n)
x satisfies a similar expression. As the lower

limit t = a of the integral in the definition of Riemann–Liouville fractional partial

derivative (5) is fixed, it should be invariant with respect to the transformations (7). Such

invariance condition arrives at

τ(x, t, u)|t=a = 0. (9)
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Theorem 3.1. The αth (α ∈ R+) extended infinitesimal related to Riemann–Liouville

fractional partial derivative reads

η
(α)
t = aD

α
t (η − ξux − τut ) + ξ aD

α
t ux + τ aD

α+1
t u. (10)

Here the operator aD
α
t denotes the total fractional derivative operator with respect to t .

Proof. We recall the generalized Leibnitz rule given by

aD
α
x (f (x)g(x)) =

∞
∑

n=0

(

α

n

)

aD
α−n
x f (x) g(n)(x), α > 0, (11)

where
(

α

n

)

=
Ŵ(1 + α)

Ŵ(α − n + 1)Ŵ(n + 1)
.

Using the Leibnitz rule (11), we write

a∂
α
t̄ ū =

∂αū(x̄, t̄ )

∂ t̄α
=

∞
∑

n=0

(

α

n

)

(t̄ − a)n−α

Ŵ(n − α + 1)

∂nū(x̄, t̄ )

∂ t̄n
. (12)

From (7) and applying (12), we have

η
(α)
t =

d

dǫ

[

∂αū(x̄, t̄ )

∂ t̄α

]

ǫ=0

=

∞
∑

n=0

(

α

n

)

(t − a)n−αη
(n)
t + (n − α)(t − a)n−α−1τDn

t u

Ŵ(n − α + 1)
. (13)

Substituting (8) in (13), we get

η
(α)
t =

∞
∑

n=0

(

α

n

)

(t − a)n−α[Dn
t (η − ξux − τut ) + ξDn

t ux + τDn
t ut ]

Ŵ(n − α + 1)

+
∞
∑

n=0

(

α

n

)

(n − α)(t − a)n−α−1τDn
t u

Ŵ(n − α + 1)
. (14)

Using the Leibnitz rule (11) in (14) we have

η
(α)
t = aD

α
t (η − ξux − τut ) + ξ aD

α
t ux +

∞
∑

n=0

(

α

n

)

(t − a)n−α

Ŵ(n − α + 1)
τDn+1

t u

+
∞
∑

n=0

(

α

n

)

(n − α)(t − a)n−α−1τDn
t u

Ŵ(n − α + 1)
.

(15)

Replace n by n − 1 in the third term and substitute n = 0 in the last term of eq. (15)

η
(α)
t = aD

α
t (η − ξux − τut ) + ξ aD

α
t ux +

∞
∑

n=1

(

α

n − 1

)

(t − a)n−α−1τDn
t u

Ŵ(n − α)

−
α(t − a)−α−1τu

Ŵ(1 − α)
+

∞
∑

n=1

(

α

n

)

(t − a)n−α−1τDn
t u

Ŵ(n − α)
. (16)
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Using the relation
(

α

n−1

)

+
(

α

n

)

=
(

α+1

n

)

, we obtain

η
(α)
t = aD

α
t (η − ξux − τut ) + ξ aD

α
t ux +

∞
∑

n=0

(

α + 1

n

)

(t − a)n−α−1

Ŵ(n − α)
τDn

t u,

= aD
α
t (η − ξux − τut ) + ξ aD

α
t ux + τ aD

α+1
t u,

= aD
α
t (η) − aD

α
t (ξux) − aD

α
t (τut ) + ξ aD

α
t ux + τ aD

α+1
t u (17)

which is the required prolongation formula. Note that when α → n ∈ N , we recovered

the classical prolongation formula (8). �

We wish to mention that (17) can be further simplified which will be helpful for the

computation of infinitesimals. It is known that [2,4]

aD
α
x (y(1)) = aD

α+1
x y −

(x − a)−α−1y(a)

Ŵ(−α)
. (18)

Making use of (9), that is, τ(a) = 0 along with (18), the third term in the RHS of (17)

can be rewritten as

aD
α
t (τut ) = aD

α
t (Dt (τu) − uDtτ) = aD

α+1
t (τu) − aD

α
t (uDtτ). (19)

Substituting (19) in (17) we obtain

η
(α)
t = aD

α
t (η) − aD

α
t (ξux) + aD

α
t (uDtτ) − aD

α+1
t (τu)

+ ξ aD
α
t ux + τ aD

α+1
t u. (20)

Applying the generalized Leibnitz rule (11) in (20) and using the relation
(

α+1

n+1

)

=
(

α

n

)

α+1
n+1

,

we obtain

η
(α)
t = aD

α
t (η) +

∞
∑

n=0

(

α

n

)

n − α

n + 1
Dn+1

t τ

× aD
α−n
t u −

∞
∑

n=1

(

α

n

)

Dn
t ξ aD

α−n
t ux . (21)

4. Time-fractional partial differential equations

In this section, we illustrate the effectiveness of Lie symmetry analysis by finding Lie

point symmetries through time-fractional diffusion and cylindrical Korteweg–de Vries

equations. For clarity, we consider them separately.

4.1 Time-fractional diffusion equation

The symmetry analysis of the diffusion equation (α = 1) is well known (see [11,12]). In

[21], Wyss considered the time-fractional diffusion equation and constructed its closed

form solution in terms of Fox functions. Buckwar and Luchko [16], Luchko and Gorenflo

[22] constructed the scale invariant solution of the fractional diffusion equation in terms

of Wright functions (see also [18,23]). Let us assume that the time-fractional diffusion
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equation, (3), is invariant under a one-parameter continuous point transformations (7),

and so the invariant equation reads as

[η
(α)
t − kη(2)

x ]
∣

∣

(3)
= 0 (22)

which is not solvable, in general, for ξ(x, t, u), τ (x, t, u) and η(x, t, u). In order to solve

(22), we assume that the infinitesimal be of the form

η = p(x, t)u + q(x, t), (23)

where p(x, t) and q(x, t) are unknown functions to be determined. After a systematic

calculation we obtain the following determining equations:

ξu = ξt = τu = τx = 0,

∂n
t p +

n − α

n + 1
τ (n+1)(t) = 0, n ∈ N,

2px − ξ ′′(x) = 0,

2ξ ′(x) − ατ ′(t) = 0,

0∂
α
t q − kpxxu − kqxx = 0. (24)

Solving the system (24) consistently and imposing the condition τ(0) = 0 from (9), we

obtain the explicit form of infinitesimals

ξ = a0x + a1, τ =
2a0t

α
, p = b0, 0∂

α
t q = kqxx,

where a0, a1 and b0 are arbitrary constants. Hence the infinitesimal operator becomes

X = (a0x + a1)
∂

∂x
+

2a0t

α

∂

∂t
+ (b0u + q(x, t))

∂

∂u
.

We then obtain the following infinitesimal generators:

X1 =
∂

∂x
, X2 = x

∂

∂x
+

2t

α

∂

∂t
, X3 = u

∂

∂u
, X∞ = q(x, t)

∂

∂x
,

where q is a solution of the given equation

∂αq

∂tα
= k

∂2q

∂x2
.

We now explain how invariant or exact solution can be constructed. Let u(x, t) = θ (x, t)

be an invariant solution associated with the generator X1 + γX3, i.e.,
[

∂

∂x
+ γ u

∂

∂u

]

θ = 0.

Then the associated characteristic equation reads as

dt

0
=

dx

1
=

du

γu

from which we obtain u(x, t) = eγ xφ(t) where φ(t) satisfies the equation

dαφ

dtα
= kγ 2φ(t).
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The above linear fractional equation can be solved and its solution can be expressed in

terms of Mittag–Leffler function. Thus we obtain a solution of time-fractional diffusive

equation (3) as

u(x, t) = eγ x tα−1Eα,α(kγ 2tα),

where Eα,β(·) is the two-parameter Mittag–Leffler function given by

Eα,β(z) =

∞
∑

k=0

zk

Ŵ(αk + β)
, α > 0, β > 0.

4.2 Time-fractional cylindrical Korteweg–de Vries equation

Let us assume that the time-fractional cylindrical KdV equation (4), is invariant under a

one-parameter transformation (7), and so the invariant equation reads as
[

η
(α)
t +

η

2tα
−

αuτ

2tα+1
+ 6(uη(1)

x + ηux) + η(3)
x

]

∣

∣

∣

∣

(4)

= 0 (25)

which is not solvable, in general, for ξ(x, t, u), τ (x, t, u) and η(x, t, u). On the other

hand, if

η = p(x, t)u + q(x, t), (26)

where p(x, t) and q(x, t) are unknown functions to be determined. Then, after a system-

atic calculation we find that the infinitesimals ξ(x, t, u) is independent of t and u while

τ(x, t, u) is independent of x and u. Then we obtain the following determining equations:

∂n
t p +

n − α

n + 1
τ (n+1)(t) = 0, n ∈ N,

px − ξ ′′(x) = 0,

3ξ ′(x) − ατ ′(t) = 0,

2uατ ′(t) − 2uξ ′(x) + 2up + 2q + pxx = 0,

0∂α
t q +

αuτ ′(t)

2tα
+

q

2tα
−

αuτ

2tα+1
+ 6u2px + 6uqx + pxxxu + qxxx = 0. (27)

Solving the system (27) consistently and imposing the condition τ(0) = 0 from (9), we

obtain the explicit form of infinitesimals

ξ = a0x + a1, τ =
3a0t

α
, p = −2a0, q = 0,

where a0 and a1 are arbitrary constants. Hence the infinitesimal operator becomes

X = (a0x + a1)
∂

∂x
+

3a0t

α

∂

∂t
− 2a0u

∂

∂u

and so the underlying symmetry algebra of time-fractional cylindrical Korteweg–de Vries

equation is two-dimensional with basis (X1 = ∂/∂x,X2 = x(∂/∂x) + (3t/α)(∂/∂t) −

2u(∂/∂u)). The similarity variable and similarity transformation corresponding to the

infinitesimal generator X2 can be obtained by solving the associated characteristic

equation given by

dx

x
=

αdt

3t
=

du

−2u
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which respectively take the following form

z = xt−α/3, u = t−2α/3f (z). (28)

Theorem 4.1. The similarity transformation u(x, t) = t−2α/3f (z) along with the similar-

ity variable z = xt−α/3 reduces the time-fractional cylindrical KdV equation (4) to the

nonlinear fractional ordinary differential equation of the form

(

P
1−α− 2α

3
,α

3/α f
)

(z) +
f

2
+ 6f

df

dz
+

d3f

dz3
= 0 (29)

with Erdélyi–Kober fractional differential operator [24]

(

P
τ,α
δ g

)

(z) :=

m−1
∏

j=0

(

τ + j −
1

δ
z

d

dz

)

(

K
τ+α,m−α
δ g

)

(z),

z > 0, δ > 0, α > 0,

m =

{

[α] + 1, α �∈ N,

α, α ∈ N,
(30)

where

(

K
τ,α
δ g

)

(z) :=

⎧

⎨

⎩

1

Ŵ(α)

∫ ∞

1
(v − 1)α−1v−(τ+α)g(zv1/δ) dv, α > 0,

g(z), α = 0.

(31)

is the Erdélyi–Kober fractional integral operator.

Proof. Let 0 < α < 1. Then the Riemann–Liouville fractional derivative for the similarity

transformation (28) becomes

∂αu

∂tα
=

∂

∂t

[

1

Ŵ(1 − α)

∫ t

0

(t − s)1−α−1s−2α/3f (xs−α/3)ds

]

.

Let v = t/s. Then the above equation can be written as

∂αu

∂tα
=

∂

∂t

[

t1−α−(2α/3) 1

Ŵ(1− α)

×

∫ ∞

1

(v−1)1−α−1v−(1−α−(2α/3)+1)f(zvα/3)dv

]

.

Following the definition of the Erdélyi–Kober fractional integral operator given in (31),

we have

∂αu

∂tα
=

∂

∂t

[

t1−α−(2α/3)
(

K
1−(2α/3),1−α

3/α f
)

(z)
]

. (32)

In order to simplify the RHS of eq. (32), we consider the relation (z = xt−α/3, φ

∈ C1(0,∞))

t
∂

∂t
φ(z) = tx

(

−
α

3

)

t−(α/3)−1φ′(z) = −
α

3
z

d

dz
φ(z)
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and so, we get

∂

∂t

[

t1−α−(2α/3)
(

K
1−(2α/3),1−α

3/α f
)

(z)
]

= t−α−(2α/3)

(

1 −
2α

3
− α −

α

3
z

d

dz

)

(

K
1−(2α/3),1−α

3/α f
)

(z).

Now using the definition of the Erdélyi–Kober fractional differential operator given in

(30), the above equation can be written as

∂

∂t

[

t1−α−(2α/3)
(

K
1−(2α/3),1−α

3/α f
)

(z)
]

= t−α−(2α/3)
(

P
1−(2α/3)−α,α

3/α f
)

(z).

Thus we obtain an expression for the time-fractional derivative

∂αu

∂tα
= t−α−(2α/3)

(

P
1−(2α/3)−α,α

3/α f
)

(z). (33)

Continuing further we find that the time-fractional cylindrical KdV equation (4) reduces

to the nonlinear fractional ODE of the form

(

P
1−(2α/3)−α,α

3/α f
)

(z) +
f

2
+ 6f

df

dz
+

d3f

dz3
= 0, (34)

�

which is not solvable, in general. The above reduced equation combines both local and

nonlocal behaviours of f which prevents it from being easily solved and analysed ana-

lytically. In order to obtain some information about the behaviour of f , we need to

approximate the Erdélyi–Kober fractional differential operator and solve it numerically.

5. Summary and concluding remarks

In this paper, a systematic Lie symmetry approach was used to derive Lie point symme-

tries of time-fractional partial differential equations and its applicability was illustrated

through the time-fractional diffusion and cylindrical Korteweg–de Vries equations with

Riemann–Liouville fractional derivative and its Lie point symmetries were derived. Using

the obtained point symmetries, we constructed an invariant solution for time-fractional

diffusion equation. We observed that for cylindrical Korteweg–de Vries equation the

underlying symmetry algebra is two-dimensional. The reduction of dimension in the

symmetry algebra is due to the fact that the time-fractional equation is not invariant under

time translation symmetry. Using Lie point symmetries, we have shown that the time-

fractional cylindrical Korteweg–de Vries equation can be transformed into a nonlinear

ODE of fractional order with a new independent variable.
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