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Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif-

ferential equations. We review the effectiveness of this method in terms of various symmetries.

We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries,

nonlocal symmetries, λ-symmetries, adjoint symmetries and telescopic vector fields of a second-

order ordinary differential equation. We also illustrate the algorithm involved in each method by

considering a nonlinear oscillator equation as an example. The connections between (i) symme-

tries and integrating factors and (ii) symmetries and integrals are also discussed and illustrated

through the same example. The interconnections between some of the above symmetries, i.e., (i)

Lie point symmetries and λ-symmetries and (ii) exponential nonlocal symmetries and λ-symmetries

are also discussed. The order reduction procedure is invoked to derive the general solution of the

second-order equation.
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1. Introduction

During the past four decades, great deal of interest has been shown in identifying and

characterizing qualitative and quantitative properties of finite-dimensional integrable

nonlinear dynamical systems [1,2]. Several powerful mathematical methods have been

developed to solve/integrate nonlinear ordinary differential equations (ODEs). Some

widely used methods to solve nonlinear ODEs in the contemporary literature are: (i)

Painlevé singularity structure analysis [3–5], (ii) Lie symmetry analysis [6–11], (iii)

Darboux method [12] and (iv) Jacobi last multiplier method [13–15]. Among these, the Lie

group method advocated by Sophus Lie plays a vital role [6–9,11]. The method is essen-

tially based on the invariance of differential equations under a continuous group of point
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transformations and such transformations usually have the form T = T (t, x, ǫ), X =
X(t, x, ǫ), where (t, x) and (T ,X) are the old and new independent and dependent

variables respectively of the given ODE and ǫ denotes the group parameter. The trans-

formations depend only on the variables t and x and not on the derivatives, that is ẋ.

Transformations of this type are called the point symmetry group of a differential equa-

tion when this group of transformations leave the differential equation invariant [7–10].

The Norwegian mathematician, Sophus Lie, founder of this method, developed an algo-

rithm to determine the symmetry groups associated with a given differential equation in

a systematic way. Once the symmetry group associated with the differential equation is

explored, it can be used to analyse the differential equation in several ways. For example,

the symmetry groups can be used (i) to derive new solutions from old ones [6,9], (ii) to

reduce the order of the given equation [6,7,9], (iii) to discover whether or not a differen-

tial equation can be linearized and to construct an explicit linearization when one exists

[16–18] and (iv) to derive conserved quantities [6].

However, studies have also shown that certain nonlinear ODEs which are integrable by

quadratures do not admit Lie point symmetries [19,20]. To understand the integrability of

these nonlinear ODEs, through Lie symmetry analysis, attempts have been made to extend

Lie’s theory of continuous group of point transformations in several directions. A few

notable extensions which have been developed for this purpose are: (i) contact symmetries

[21–24], (ii) hidden and nonlocal symmetries [25–37], (iii) λ-symmetries [20,38–40], (iv)

adjoint symmetries [9,10,41] and (v) telescopic vector fields [40,42].

In the conventional Lie symmetry analysis, the invariance of differential equations

under one parameter Lie group of continuous transformations is investigated with point

transformations alone. One may also consider the coefficient functions ξ and η (see

eq. (2.2)) in the infinitesimal transformations to be functions of ẋ besides t and x.

Such derivative-included transformations are called contact transformations. In fact, Lie

himself considered this extension [43]. The method of finding contact symmetries for

certain linear oscillators (harmonic and damped harmonic oscillators) were worked out

by Schwarz [21] and Cerveró and Villarroel [44]. The integrability of a class of nonlinear

oscillators through dynamical symmetry approach was carried out by Lakshmanan and

his collaborators (see for example refs. [45,46]).

Investigations have also revealed that nonlinear ODEs do admit nonlocal symmetries.

A symmetry is nonlocal if the infinitesimal transformations depend upon an integral. Ini-

tially some of these nonlocal symmetries were observed as hidden symmetries of ODEs

in the following manner. Suppose an nth-order ODE is order-reduced to (n − 1)th order

with the help of a Lie point symmetry. Now substituting the transformation (which was

used to reduce the nth-order to (n − 1)th order) in other symmetry vector fields of the

nth-order equation, one observes that these symmetry vector fields turn out to be symme-

try vector fields of the order-reduced ODE. In other words, all these vector fields satisfy

the linearized equation of the order-reduced equation. Upon analysing these vector fields

one may observe that some of them retain their point symmetry nature and the rest of

them turn out to be nonlocal vector fields of the reduced ODE. Since these nonlocal sym-

metry vector fields cannot be identified through Lie point symmetry analysis, they are

coined as hidden symmetries. These nonlocal hidden symmetries were first observed by

Olver and later they were largely investigated by Abraham-Shrauner and her collaborators

[25,27,29].
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Subsequently, it has been shown that many of these nonlocal or hidden symmetries can

be connected to λ-symmetries. The concept of λ-symmetries was introduced by Muriel

and Romero [20]. These λ-symmetries can be derived by a well-defined algorithm which

includes Lie point symmetries as a specific subcase and have an associated order reduc-

tion procedure which is similar to the classical Lie method of reduction [38]. Although

λ-symmetries are not Lie point symmetries, the unique prolongation of vector fields to

the space of variables (t, x, ẋ, ẍ, ...) for which the Lie reduction method applies is always

a λ-prolongation, for some functions λ(t, x, ẋ, ẍ, ...). For more details on λ-symmetry

approach, one may refer to the works of Muriel and Romero [38]. The method of find-

ing λ-symmetries for a second-order ODE has been discussed in depth by these authors

and the advantage of finding such symmetries has also been demonstrated by them. The

authors have also developed an algorithm to determine integrating factors and integrals

from λ-symmetries for second-order ODEs [38].

Very recently, Pucci and Sacomandi have generalized λ-symmetries by introducing

telescopic vector fields. Telescopic vector fields are more general vector fields which

encompose Lie point symmetries, contact symmetries and λ-symmetries as their subcases.

For more details about these generalized vector fields we refer to the works of Pucci and

Sacomandi [42].

The connection between symmetries and integrating factors of higher-order ODEs was

investigated by several researchers [47]. The literature is large and in this paper we discuss

only one method, namely adjoint symmetry method which was developed by Bluman and

Anco [9,10]. The main observation of Bluman and Anco was that the integrating factors

are the solutions of adjoint equation of the linearized equation. In case the adjoint equation

coincides with the linearized equation, then the underlying system is self-adjoint and in

this case the symmetries become the integrating factors. A main advantage of this method

is that we can find the integrals straightaway by multiplying the integrating factors and

integrating the resultant ODE [41].

The symmetry methods described above are applicable to any order. Each method has

its own merits and demerits. In this paper, we review the methods of finding symmetries

(starting from Lie point symmetries to telescopic vector fields) of a differential equation

and demonstrate how these symmetries are helpful in determining integrating factors and

integrals of the ODEs and establish their integrability. We demonstrate all these symme-

try methods for a second-order ODE. The extension of each one of these procedures to

higher-order ODEs is effectively an extension. We also illustrate each one of these meth-

ods with the same example. We consider the same example for all the methods so that the

general reader can understand the advantages, disadvantages and complexity involved in

each one of these methods.

The example which we have chosen to illustrate the symmetry methods is the modified

Emden equation (MEE) [48–55]

ẍ + 3xẋ + x3 = 0, · = d

dt
. (1.1)

In contemporary literature, eq. (1.1) is also called second-order Riccati equation/Painlevé–

Ince equation. This equation has received attention from both mathematicians and

physicists for a long time [2,56]. For example, Painlevé had studied this equation with

two arbitrary parameters, ẍ + αxẋ + βx3 = 0, and identified eq. (1.1) as one of its four
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integrable cases [3]. The differential equation (1.1) arises in a variety of mathematical

problems such as univalued functions defined by second-order differential equations [57]

and the Riccati equation [48]. On the other hand, physicists have shown that this equation

arises in different contexts. For example, it arises in the study of equilibrium config-

urations of a spherical gas cloud acting under the mutual attraction of its molecules and

subjected to the laws of thermodynamics [50,51]. Equation (1.1) admits time-independent

nonstandard Lagrangian and Hamiltonian structures [53]. In contemporary literature, this

equation has been considered by several authors in different contexts. For example, Chan-

drasekar, Senthilvelan and Lakshmanan have studied the linearization and investigated

the integrability of this equation through the extended Prelle-Singer procedure [53]. The

Lie point symmetries of this equation were also derived by a few authors in different

contexts. For example, Mahomed and Leach [18] have studied the invariance of this

equation and showed that it admits sl(3, R) algebra and constructed a linearizing trans-

formation from the Lie point symmetries. Pandey et al have identified (1.1) as one of

the nonlinear ODEs that admits maximal Lie point symmetries when they carry out Lie

symmetry analysis for the equation, ẍ + f (x)ẋ + g(x) = 0, where f (x) and g(x)

are functions of x [58]. Nucci and her group have analysed this equation in terms of

Jacobi last multiplier [15]. λ-symmetries and their associated integrating factors for this

equation were investigated by Bhuvaneswari et al [59]. Noether symmetries of this equa-

tion were also studied in ref. [60]. The nonlocal symmetries were also investigated in

refs [27,31].

The plan of the paper is as follows: In §2, we present Lie’s invariance analysis to

determine Lie point symmetries of eq. (1.1). We also discuss a few applications of Lie

point symmetries. In §3, we describe the method of finding variational symmetries of this

equation. In §4, we consider a more generalized transformation and present a method

of finding contact symmetries of the given differential equation. In §5, we discuss

the methods that connect symmetries and integrating factors. We consider two differ-

ent methods, namely, (i) adjoint symmetry method and (ii) λ-symmetry approach. In §6,

we introduce the notion of hidden symmetries and enlist some hidden symmetries of

the MEE which are not obtained through Lie symmetry analysis. In §7, we introduce

nonlocal symmetries and investigate the connection between nonlocal symmetries and λ-

symmetries. In §8, we consider a more general vector field, namely telescopic vector field

and derive these generalized vector fields for the MEE. Finally, we give our conclusions

in §9.

2. Lie point symmetries

Let us consider a second-order ODE

ẍ = φ(t, x, ẋ), (2.1)

where overdot denotes differentiation with respect to t . The invariance of eq. (2.1) under

a one-parameter Lie group of infinitesimal point transformations [58,61],

T = t + ε ξ(t, x), X = x + εη(t, x), ǫ ≪ 1, (2.2)
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where ξ(t, x) and η(t, x) are arbitrary functions of their arguments and ε is a small

parameter, given by

ξ
∂φ

∂t
+ η

∂φ

∂x
+ (ηt + ẋ(ηx − ξt ) − ẋ2ξx)

∂φ

∂ẋ
− (ηt t + (2ηtx − ξt t )ẋ

+(ηxx − 2ξtx)ẋ
2 − ξxx ẋ

3 + (ηx − 2ξt − 3ẋξx)ẍ) = 0. (2.3)

Substituting the known expression φ in (2.3) and equating the coefficients of various pow-

ers of ẋ to zero, one obtains a set of linear partial differential equations for the unknown

functions ξ and η. Solving them consistently we can get the Lie point symmetries (ξ and

η) associated with the given ODE. The associated vector field is given by

V = ξ
∂

∂t
+ η

∂

∂x
.

One may also introduce a characteristic Q = η − ẋξ and rewrite the invariance

condition (2.3) in terms of a single variable Q as [6]

d2Q

dt2
− φẋ

dQ

dt
− φxQ = 0. (2.4)

Solving eq. (2.4) one can get Q. From Q one can recover the functions ξ and η. The

invariants associated with the vector field V can be found by solving the following

characteristic equation [6,9]:

dt

ξ
= dx

η
= dẋ

η(1)
. (2.5)

Here η(1) represents the first prolongation which is given by ηt + ẋ(ηx − ξt ) − ẋ2ξx .

Integrating the characteristic equation (2.5) we obtain two invariants, namely u(t, x) and

v(t, x, ẋ). The derivative of these two invariants,

w = dv

du
= vt + ẋvx + φvẋ

ut + ẋux

, (2.6)

defines a second-order differential invariant. Integrating eq. (2.6) we can get the solution

for eq. (2.1).

2.1 Example: Modified Emden equation

Equation (1.1) is invariant under the infinitesimal transformation (2.2) provided it should

satisfy eq. (2.3). Substituting the expression φ = −3xẋ − x3 in (2.3), we get

η(−3ẋ −3x2) + (ηt + ẋηx − ẋξt − ẋ2ξx)(−3x) − (ηt t + ẋ(2ηtx − ξt t )

+ẋ2(ηxx − 2ξtx) − ξxx ẋ
3 + (ηx − 2ξt − 3ẋξx)(−3xẋ − x3)) = 0. (2.7)
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Equating the coefficients of various powers of ẋ to zero and solving the resultant set of

partial differential equations for ξ and η, we obtain [18,58,59]

ξ = x

(

a2 + a1t − c2 + b1

2
t2 − c1 + d2

2
t3 + d1

4
t4

)

− d1

2
t3 +

(

c1 + 3

2
d2

)

t2 + b1t + b2,

η = − x3

(

a1t + a2 + d1

4
t4 −

(

c1 + d2

2

)

t3 − c2 + b1

2
t2

)

+ x2

(

d1t
3 − 3

(

c1 + d2

2

)

t2 − (c2 + b1)t + a1

)

+ x

(

−3

2
d1t

2 + c1t + c2

)

+ d1t + d2, (2.8)

where ai, bi, ci and di, i = 1, 2, are real arbitrary constants. The associated Lie vector

fields are given by

V1 = ∂

∂t
, V2 = t

(

1 − xt

2

)

∂

∂t
+ x2t

(

−1 + xt

2

)

∂

∂x
,

V3 = x
∂

∂t
− x3 ∂

∂x
, V4 = xt

∂

∂t
+ x2 (1 − xt)

∂

∂x
,

V5 = −xt2

2

∂

∂t
+ x

(

1 − xt + x2t2

2

)

∂

∂x
,

V6 = t2

(

1 − xt

2

)

∂

∂t
+ xt

(

1 − 3

2
xt + x2t2

2

)

∂

∂x
,

V7 = 3

2
t2

(

1 − xt

3

)

∂

∂t
+

(

1 − 3

2
x2t2 + x3t3

2

)

∂

∂x
,

V8 = − t3

2

(

1 − xt

2

)

∂

∂t
+ t

(

1 − 3

2
xt + x2t2 − x3t3

4

)

∂

∂x
. (2.9)

One can explore the algebra associated with the Lie group of infinitesimal transfor-

mations (2.2) by analysing the commutation relations between the vector fields. As the

example under consideration admits maximal Lie point symmetries (eight), the under-

lying Lie algebra turns out to be sl(3, R) which can be unambiguously verified from the

vector fields (2.9) [18]. In the following, we present a few applications of Lie vector fields

(2.9).

2.2 Applications of Lie point symmetries

2.2.1 General solution. The first and foremost application of Lie point symmetries is to

explore the solution of the given equation through order reduction procedure. The order
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reduction procedure is carried out by constructing the invariants associated with the vector

fields [6,9]. In the following, we illustrate the order reduction procedure by choosing the

vector field V3. For the remaining vector fields, one can proceed and obtain the solution

in the same manner.

Substituting the expressions ξ , η and η(1) in the characteristic equation

dt

ξ
= dx

η
= dẋ

η(1)
,

we get

dt

x
= dx

−x3
= dẋ

−(3ẋx2 + ẋ2)
. (2.10)

Integrating the characteristic equation (2.10) we find the invariants u and v are of the form

u = t − 1

x
, v = x(ẋ + x2)

ẋ
. (2.11)

The second-order invariant can be found from the relation w = dv/du (see eq. (2.6)).

Substituting eq. (2.11) and its derivatives in (2.6) and simplifying the resultant equation,

we arrive at

dv

du
= x2

(

1 + 2
x2

ẋ
+ x4

ẋ2

)

= v2. (2.12)

Integrating equation (2.12) we find v = −1/(I1 + u), where I1 is an integration constant.

Substituting the expressions u and v in this solution and rewriting the resultant equation

for ẋ, we end up with

ẋ − x − I1x
2 − tx2

I1 + t
= 0. (2.13)

Integrating eq. (2.13) we obtain the general solution of the MEE in the following form:

x(t) = 2(I1 + t)

I2 + 2I1t + t2
, (2.14)

where I2 is the integration constant. The solution exactly coincides with the one found by

other methods [53,59].

2.2.2 Linearization. One can also identify a linearizing transformation from the Lie

point symmetries if the given equation admits sl(3, R) algebra [18]. The method of find-

ing linearizing transformation for the modified Emden equation was discussed in detail

by Mahomed and Leach [61] and later by others [53,62]. The underlying idea is the fol-

lowing. One has to choose two vector fields appropriately in such a way that they should

constitute a two-dimensional algebra in the real plane [43] and transform them into the

canonical form ∂/∂x̃ and t̃ (∂/∂x̃), where t̃ and x̃ are the new independent and dependent

variables. For the MEE, one can generate this subalgebra by considering the vector fields

V8 and V9 = V7 − 2V6. To transform them into the canonical forms one should introduce

the transformations [15]

t̃ = tx − 1

t (tx − 2)
, x̃ = − x

2t (tx − 2)
, (2.15)
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where t̃ and x̃ are the new independent and dependent variables respectively. In these new

variables, (t̃ , x̃), eq. (1.1) becomes the free particle equation (d2x̃/dt̃2) = 0. From the

solution of the free particle solution one can derive the general solution of the MEE (1.1)

with the help of (2.15). The solution coincides with the one given in eq. (2.14).

2.2.3 Lagrangian from Lie point symmetries. Another interesting application of Lie

point symmetries is that one can explore Lagrangians for the given second-order dif-

ferential equation through the Jacobi last multiplier [15]. The inverse of the determinant

� [14],

� =

∣

∣

∣

∣

∣

∣

1 ẋ ẍ

ξ1 η1 η
(1)

1

ξ2 η2 η
(1)

2

∣

∣

∣

∣

∣

∣

, M = 1

�
, (2.16)

where (ξ1, η1) and (ξ2, η2) are two sets of Lie point symmetries of the second-order ODE

(2.1) and η
(1)

1 and η
(1)

2 are their corresponding first prolongations, which gives the Jacobi

last multiplier for the given equation. The determinant establishes the connection between

the multiplier and Lie point symmetries. The Jacobi last multiplier M is related to the

Lagrangian L through the relation [14]

M = ∂2L

∂ẋ2
. (2.17)

Once the multiplier is known, the Lagrangian L can be derived by integrating the

expression (2.17) two times with respect to ẋ.

To obtain the Jacobi last multiplier M for the MEE, we choose the vector fields V3 and

V1. Evaluating the determinant (2.16) with these two vector fields, we find

� =

∣

∣

∣

∣

∣

∣

1 ẋ −3xẋ − x3

x −x3 −ẋ(ẋ + 3x2)

1 0 0

∣

∣

∣

∣

∣

∣

= −(x2 + ẋ)3, (2.18)

so that

M = − 1

(x2 + ẋ)3
. (2.19)

We can obtain the Lagrangian by integrating the expression (2.19) twice with respect to

ẋ. Doing so, we find

L = − 1

2(ẋ + x2)
+ f1(t, x)ẋ + f2(t, x), (2.20)

where f1 and f2 are two arbitrary functions. The Lagrangian (2.20) leads to the equation

of motion (1.1) with (∂f1/∂t) = (∂f2/∂x). One can also find more Lagrangains for

eq. (2.1) by considering other vector fields given in (2.9).

3. Noether symmetries

In the previous section, we have discussed the invariance of the equation of motion under

the one-parameter Lie group of infinitesimal transformations (2.2). If the given second-

order equation has a variational structure, then one can also determine the symmetries

762 Pramana – J. Phys., Vol. 85, No. 5, November 2015



Symmetries of nonlinear ODEs

which leave the action integral invariant. Such symmetries are called variational sym-

metries. Variational symmetries are important because they provide conservation laws

via Noether’s theorem [63]. In the following, we recall the method of finding variational

symmetries [6,10].

Let us consider a second-order dynamical system described by a Lagrangian L(t, x, ẋ)

and the action integral associated with the Lagrangian be

S =
∫

L(t, x, ẋ)dt. (3.1)

Noether’s theorem states that whenever the action integral is invariant under the one-

parameter group of infinitesimal transformations (2.2), the solution of Euler’s equation

admits the conserved quantity [64,65]

I = (ξ ẋ − η)
∂L

∂ẋ
− ξL + f, (3.2)

where f is a function of t and x. The functions ξ, η and f can be determined from the

equation

E{L} = ξ
∂L

∂t
+ η

∂L

∂x
+ (η̇ − ẋξ̇ )

∂L

∂ẋ
, (3.3)

where overdot denotes differentiation with respect to time and

E{L} = −ξ̇L + ḟ . (3.4)

Equation (3.3) can be derived by differentiating eq. (3.2) and simplifying the expression in

the resultant equation. Solving eq. (3.3) one can obtain explicit expressions for the func-

tions ξ, η and f . Substituting these expressions back in (3.2) one can get the associated

integral of motion.

3.1 Example: Modified Emden equation

In this subsection, we illustrate the method of finding Noether symmetries and their asso-

ciated conserved quantities for the MEE (1.1) which has a nonstandard Lagrangian of the

form (see eq. (2.20))

L = 1

3(ẋ + x2)
, (3.5)

where we have chosen the arbitrary functions f1 and f2 to be zero for simplicity.

Substituting the Lagrangian (3.5) and its derivatives in (3.3), we get

η

(

− 1

3(ẋ + x2)2

)

+ (ηt + ẋηx − ẋ(ξt + ẋξx))

(

− 2x

3(ẋ + x2)2

)

= −(ξt + ẋξx)

(

1

3(ẋ + x2)2

)

+ ft + ẋfx . (3.6)
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Equating the coefficients of various powers of ẋ to zero and solving the resultant

equations, we find

η = 12D − 6(C + 4Dt)x + 3(B + 3t (C + 2Dt))x2

−3

2
(A + t (2B + 3Ct + 4Dt2))x3,

ξ = E − 3t (C + 2Dt) + 3

2
(A + t (2B + 3Ct + 4Dt2))x,

f = At + Bt2 + Ct3 + Dt4, (3.7)

where A,B,C, D and E are real arbitrary constants. The associated vector fields are

X1 = x
∂

∂t
− x3 ∂

∂x
, X2 = xt

∂

∂t
+

(

x2 − tx3
) ∂

∂x
,

X3 =
(

t − 3t2x

2

)

∂

∂t
+

(

2x − 3tx2 + 3t2x3

2

)

∂

∂x
,

X4 =
(

t3x

2
− t2

2

)

∂

∂t
+

(

1 − 2tx + 3t2x2

2
− t3x3

2

)

∂

∂x
,

X5 = ∂

∂t
. (3.8)

The Noether’s symmetries are subsets of Lie point symmetries. In the above, while the

vector fields X1, X2 and X5 exactly match with the Lie vector fields V3, V4 and V1 (see

eq. (2.9)), the remaining two Noether vector fields X3 and X4 can be expressed as linear

combinations of other Lie point symmetries, that is X3 = V2 + 2V5 and X4 = V7 − 2V6.

Substituting each one of the vector fields separately into (3.2) we obtain the associated

integrals of motions. They turned out to be

I1 = t − x

x2 + ẋ
, I2 = (−x + tx2 + t ẋ)2

(x2 + ẋ)2
,

I3 = −9t2x3 + 3t3x4 − 3x(2 + 3t2ẋ) + 2tx2(6 + 3t2ẋ) + 9t ẋ(6+3t2ẋ)

(x2 + ẋ)2
,

I4 = 3(2 − 2tx + t2x2 + t2ẋ)

(x2 + ẋ)
,

I5 = 2ẋ + x2

3(x2 + ẋ)2
,

dIi

dt
= 0, i = 1, 2, 3, 4, 5. (3.9)

One can easily verify that out of the five integrals, two of them are independent and the

remaining three can be expressed in terms of these two integrals, that is I2 = I 2
1 , I3 =

I1I4 and I5 = 1
9
(I4 − 3I 2

1 ). We can construct a general solution of (1.1) with the help of

two independent integrals I1 and I4. The underlying solution coincides with (2.14) after

rescaling.
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4. Contact symmetries

In the previous two cases, Lie point symmetries and Noether symmetries, we have con-

sidered the functions ξ and η to be functions of t and x only. One may relax this condition

by allowing the functions ξ and η to depend on ẋ besides t and x. This generalization was

considered by Sophus Lie himself [43] and later by several researchers [21,22,45,46]. This

velocity-dependent infinitesimal transformations are called contact transformations and

the functions ξ and η are called contact symmetries. The contact symmetries for the

harmonic and damped harmonic oscillators were worked out explicitly by Schwarz [21]

and Cerveró and Villarroel [22]. Several nonlinear second-order ODEs do not admit Lie

point symmetries but they were proved to be integrable by other methods. To demonstrate

the integrability of these nonlinear ODEs in Lie’s sense one should consider velocity-

dependent transformations. In the following, we give a brief account of the theory and

illustrate the underlying ideas by considering MEE as an example.

4.1 Method of Lie

Let a one-parameter group of contact transformation be given by [21]

T = t + εξ(t, x, ẋ), X = x + εη(t, x, ẋ),

Ẋ = ẋ + εη(1)(t, x, ẋ), ǫ ≪ 1. (4.1)

The functions ξ and η determine an infinitesimal contact transformation if it is possible

to write them in the form [44]

ξ(t, x, ẋ) = −∂W

∂ẋ
, η(t, x, ẋ) = W − ẋ

∂W

∂ẋ
,

η(1) = ∂W

∂t
+ ẋ

∂W

∂x
, (4.2)

where the characteristic function W(t, x, ẋ) is an arbitrary function of its arguments. If

W is linear in ẋ, the corresponding contact transformation is an extended point trans-

formation and it holds that W(t, x, ẋ) = η(t, x) − ẋξ(t, x). A second-order differential

equation (2.1) is said to be invariant under the contact transformation (4.1) if

ξ
∂φ

∂t
+ η

∂φ

∂x
+ η(1) ∂φ

∂ẋ
− η(2) = 0

on the manifold ẍ−φ(t, x, ẋ) = 0 in the space of the variables t, x, ẋ and ẍ [21,22]. Here

η(1) and η(2) are the first and second prolongations with η(1) = η̇ − ẋξ̇ and η(2) = η̇(1) −
ẍξ̇ . The invariance condition provides the following linear partial differential equation for

the characteristic function W :

∂W

∂ẋ

∂φ

∂t
+

(

ẋ
∂W

∂ẋ
− W

)

∂φ

∂x
−

(

∂W

∂t
+ ẋ

∂W

∂x

)

∂φ

∂ẋ

+
(

φ2 ∂2W

∂ẋ2
+ 2φ

∂2W

∂t∂ẋ
+ 2φẋ

∂2W

∂x∂ẋ
+ φ

∂W

∂x
+ ∂2W

∂t2

+ 2ẋ
∂2W

∂t∂x
+ ẋ2 ∂2W

∂x2

)

= 0. (4.3)
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Integrating eq. (4.3) one can get the characteristics W . From W one can recover the con-

tact symmetries ξ and η. One can also recover the necessary independent integrals from

the characteristic function (see for example, ref. [21]).

4.2 Example: Modified Emden equation

To determine the contact symmetries of MEE, we have to determine the characteristic

function (4.3), by solving the first-order partial differential equation

− (3ẋ + 3x2)

(

ẋ
∂W

∂ẋ
− W

)

+ 3x

(

∂W

∂t
+ ẋ

∂W

∂x

)

+
(

(3xẋ + x3)2 ∂2W

∂ẋ2

− 2(3xẋ + x3)
∂2W

∂t∂ẋ
− 2(3xẋ + x3)ẋ

∂2W

∂x∂ẋ
− (3xẋ + x3)

∂W

∂x

+ ∂2W

∂t2
+ 2ẋ

∂2W

∂t∂x
+ ẋ2 ∂2W

∂x2

)

= 0. (4.4)

One may find the general solution of the above linear partial differential equation by

employing well-known methods for solving linear partial differential equations. In gen-

eral, W depends upon arbitrary functions and the contact Lie group has an infinite number

of parameters.

For the sake of illustration, in the following, we present two particular solutions of

eq. (4.4):

W1 = x2(1 − tx)

x2 + ẋ
− t2ẋ, W2 = − xẋ√

x2 + 2ẋ
−

x
(

x2 + ẋ
)

√
x2 + 2ẋ

. (4.5)

The infinitesimal vector fields read

�1 = t2 ∂

∂t
+ x2(1 − tx)

ẋ + x2

∂

∂x
, �2 = x√

2ẋ + x2

∂

∂t
− x

(ẋ + x2)√
2ẋ + x2

∂

∂x
. (4.6)

As one can see from (4.6) the infinitesimals ξ and η depend on the velocity terms also. One

can derive the general solution from each one of the contact symmetries by solving the char-

acteristic equation associated with the vector field. We demonstrate this procedure in §4.3.

4.3 Method of Gladwin Pradeep et al

In a recent paper, Gladwin Pradeep et al proposed a new method of finding contact sym-

metries for a class of equations [23]. Their method involves two steps. In the first step,

one has to find a linearizing contact transformation. In the second step, with the help of

contact transformation, one proceeds to construct contact symmetries for the given equa-

tion. Once the contact symmetries are determined, the order reduction procedure can be

employed to derive the general solution of the given differential equation. In the following,

we recall this procedure with the MEE as an example.

Step 1. Linearizing contact transformation

The MEE (1.1) can be linearized to the free-particle equation (d2u/dt2) = 0 by the

contact transformation (for more details, see ref. [23])

x = 2uu̇

1 + u2
, ẋ = 2u̇2(1 − u2)

(1 + u2)2
. (4.7)
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One may also invert transformation (4.7) and obtain

u = x√
2ẋ + x2

, u̇ = (ẋ + x2)√
2ẋ + x2

. (4.8)

Step 2. Contact symmetries

Let us designate the symmetry vector field and its first prolongation of the nonlinear

ODE (1.1) respectively be of the form

� = λ
∂

∂t
+ μ

∂

∂x
,

and

�1 = λ
∂

∂t
+ μ

∂

∂x
+ (μ̇ − ẋλ̇)

∂

∂ẋ
, (4.9)

where λ and μ are the infinitesimals associated with the variables t and x, respectively.

Let the symmetry vector field associated with the linear ODE, (d2u/dt2) = 0, be


 = ξ
∂

∂t
+ η

∂

∂u
,

and its first extension be


1 = ξ
∂

∂t
+ η

∂

∂u
+ (η̇ − u̇ξ̇ )

∂

∂u̇
.

Using the contact transformation (4.8) we can deduce the following differential identities,

i.e.,

∂

∂u
= ∂x

∂u

∂

∂x
+ ∂ẋ

∂u

∂

∂ẋ
and

∂

∂u̇
= ∂x

∂u̇

∂

∂x
+ ∂ẋ

∂u̇

∂

∂ẋ
.

Rewriting the first prolongation 
1 using these relations, we find


1 = ξ
∂

∂t
+

(

η
∂x

∂u
+(η̇ − u̇ξ̇ )

∂x

∂u̇

)

∂

∂x

+
(

η
∂ẋ

∂u
+ (η̇ − u̇ξ̇ )

∂ẋ

∂u̇

)

∂

∂ẋ
. (4.10)

Now comparing the vector fields (4.10) and (4.9), we find

λ = ξ, μ = η
∂x

∂u
+ (η̇ − u̇ξ̇ )

∂x

∂u̇
=

√
2ẋ + x2

ẋ + x2
(ηẋ + η̇x) − ξ̇ x. (4.11)

The functions ξ and η are the symmetries of the free particle equation. They are given by

[6,7]


1 = ∂

∂t
, 
2 = ∂

∂u
, 
3 = t

∂

∂u
, 
4 = u

∂

∂u
, 
5 = u

∂

∂t
,


6 = t
∂

∂t
, 
7 = t2 ∂

∂t
+ tu

∂

∂u
, 
8 = tu

∂

∂t
+ u2 ∂

∂u
. (4.12)
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Substituting the above symmetry generators 
i’s, i = 2, . . . , 8, in eq. (4.11), we can

determine the function μ. Substituting λ = ξ and μ in the vector field

� = ξ
∂

∂t
+ μ

∂

∂x
,

we arrive at the following contact symmetry generators of eq. (1.1):

�1 = ∂

∂t
, �2 =

√
2ẋ + x2

ẋ + x2
ẋ

∂

∂x
, �3 =

√
2ẋ + x2

ẋ + x2
(t ẋ + x)

∂

∂x
,

�4 = x(2ẋ + x2)

(ẋ + x2)

∂

∂x
, �5 = x√

2ẋ + x2

∂

∂t
− x

(ẋ + x2)√
2ẋ + x2

∂

∂x
,

�6 = t
∂

∂t
− x

∂

∂x
, �7 = t2 ∂

∂t
+ x2(1 − tx)

ẋ + x2

∂

∂x
,

�8 = tx
√

(2ẋ + x2)

∂

∂t
+

(

x2
√

(2ẋ + x2)

ẋ + x2
− tx(ẋ + x2)

√

(2ẋ + x2)

)

∂

∂x
. (4.13)

One can unambiguously verify that all the symmetry generators are solutions of the

invariance condition.

4.3.1 General solution. To derive the general solution of the given equation one has to

integrate the Lagrange’s system associated with the contact symmetries given above. We

demonstrate this procedure by considering the vector field �4 given in eq. (4.13). For the

other vector fields one may follow the same procedure.

The characteristic equation associated with the vector field �4 turns out to be

dt

0
= (ẋ + x2)dx

x(2ẋ + x2)
= − (ẋ + x2)dẋ

x4 + x2ẋ − 2ẋ2
. (4.14)

Integrating eq. (4.14) we find the invariants u and v are of the form u = t and v = (ẋ/x)+
x. In terms of these variables one can reduce the order of eq. (1.1). The reduced equation

turns out to be the Riccati equation, (dv/dt) = −v2, whose general solution is given by

v = 1/(I1 + u), where I1 is the integration constant. Substituting the expressions u and

v in the above solution and rearranging the resultant expression for ẋ, we find

ẋ − x

I1 + t
+ x2 = 0. (4.15)

Integrating (4.15) one can obtain the general solution of (1.1). The general solution

coincides with (2.14) after appropriate rescaling.

5. Symmetries and integrating factors

In §2, we have discussed only a few applications of Lie point symmetries. One can also

determine the integrating factors from Lie point symmetries. In fact, Lie himself found

the equivalence between the integrating factors and the Lie point symmetries for the

first-order ODEs. For second-order ODEs the equivalence has been established only
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recently [20]. The reason is that unlike the first-order ODEs (which admit infinite number

of symmetries), several second-order ODEs do not admit Lie point symmetries although

they are integrable by quadratures. Subsequently, attempts have been made to generalize

the classical Lie method to yield nontrivial symmetries and integrating factors. Two such

generalizations which come out in this direction are: (i) adjoint symmetry method [10,41]

developed by Bluman and Anco [9] and (ii) λ-symmetries approach floated by Muriel

and Romero [38,39]. The applicability of both the methods has been demonstrated for the

equations which lack Lie point symmetries. In both the methods one can find symmetries,

integrating factors and integrals associated with the given equation in an algorithmic way.

In the following, we briefly recall these two powerful methods and demonstrate the

underlying ideas by considering MEE as an example.

5.1 Method of Bluman and Anco

In general, an integrating factor is a function, multiplying on the ODE yields a first inte-

gral. If the given ODE is self-adjoint, then its integrating factors are necessarily solutions

of its linearized system (2.4) [10]. Such solutions are the symmetries of the given ODE. If

a given ODE is not self-adjoint, then its integrating factors are necessarily solutions of the

adjoint system of its linearized system. Such solutions are known as adjoint symmetries

of the given ODE [9].

Let us consider second-order ODE (2.1). The linearized ODE for eq. (2.1) is given in

(2.4). The adjoint ODE of the linearized equation is found to be

L∗[x]w = d2w

dt2
+ d

dt
(φẋw) − φxw = 0. (5.1)

The solutions w = 
(t, x, ẋ) of eq. (5.1) holding for any x(t) satisfying eq. (2.1) are the

adjoint symmetries of (2.1) [9].

The adjoint symmetry of eq. (2.1) becomes an integrating factor of (2.1) if and only if


(t, x, ẋ) satisfies the adjoint invariance condition [41]

L∗[x]
(t, x, ẋ) = −
x(ẍ − φ) + d

dt
(
ẋ(ẍ − φ)). (5.2)

Now comparing eqs (5.1) and (5.2), and collecting the powers of ẍ and constant terms,

we find


t ẋ + 
xẋ ẋ + 2
x + 
φẋẋ + 2φẋ
ẋ + φ
ẋẋ = 0, (5.3a)


t t + 2
tx ẋ + 
xx ẋ
2 + 
φt ẋ + 
φxẋ ẋ + φẋ
t + φẋ
x ẋ

− 
φx − 
xφ + φ
t ẋ + φ
xẋ ẋ + 
ẋφt + 
ẋφx ẋ = 0. (5.3b)

The solutions of (5.3b) are called adjoint symmetries. If these solutions also satisfy

eq. (5.3a), then they become integrating factors for the given second-order ODE (2.1).

The main advantage of this method is that if the given equation is of an odd order or

does not have variational structure, one can use this method and obtain the integrals in an

algorithmic way.
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5.1.1 Example: Modified Emden equation. For the MEE, the linearized equation is given

by

d2Q

dt2
+ 3x

dQ

dt
+ (3ẋ + 3x2)Q = 0. (5.4)

The adjoint equation for the above linearized equation turns out to be

d2w

dt2
+ d

dt
(−3xw) + (3ẋ + 3x2)w = 0. (5.5)

Since eqs (5.4) and (5.5) do not coincide, the function Q is not an integrating factor for the

MEE. In this case, the integrating factors can be determined from the adjoint symmetry

condition (5.5). The adjoint symmetry determining equation (5.5) for the present example

reads as


t t + 2
tx ẋ + 
xx ẋ
2 − 3
ẋ − 3x
t − 3x
x ẋ + (3ẋ + 3x2)


+(3xẋ+x3)
x −(3xẋ+x3)
ẋt −(3xẋ+x3)ẋ
xẋ −(3ẋ+3x2)
ẋ ẋ = 0. (5.6)

Two particular solutions of (5.6) are given by


1 = x

(ẋ + x2)
, 
2 = t (−2 + tx)

2(t ẋ − x + tx2)2
. (5.7)

These two adjoint symmetries, 
1 and 
2, also satisfy eq. (5.3a). So they become

integrating factors for eq. (1.1). Multiplying the given equation by each one of these inte-

grating factors and rewriting the resultant expression as a perfect derivative and integrating

them we obtain two integrals I1 and I2 which are of the form

I1 = − (ẋt − x + tx2)

ẋ + x2
, I2 = − (2 + ẋt2 − 2tx + t2x2)

2(ẋt − x + tx2)
. (5.8)

From these integrals, I1 and I2, the general solution can be derived. The resultant

expression coincides with eq. (2.14) after rescaling.

5.2 Method of Muriel and Romero

As mentioned earlier, many second-order nonlinear dynamical systems often lack Lie

point symmetries but are proved to be integrable by other methods. To overcome this

problem, efforts have been made to generalize the classical Lie algorithm and obtain

integrals and general solution of these nonlinear ODEs. One such generalization is

the λ-symmetry approach. This approach was developed by Muriel and Romero [20].

These symmetries are neither Lie point nor Lie–Bäcklund symmetries and are called λ-

symmetries because they are vector fields that depend upon a function λ. If we choose

this arbitrary function as null we obtain the classical Lie point symmetries. The method of

finding λ-symmetries for a second-order ODE has been discussed in depth by Muriel and

Romero [38] and the advantage of finding such symmetries has also been demonstrated

by them. They also have developed an algorithm to determine integrating factors and

integrals from λ-symmetries for the second-order ODEs [38].
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Consider a second-order ODE (2.1). Let

Ṽ = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x

be a λ-symmetry of the given ODE for some function λ = λ(t, x, ẋ). The invariance of

the given ODE under λ-symmetry vector field is given by [20]

ξφt + ηφx + η[λ,(1)]φẋ − η[λ,(2)] = 0, (5.9)

where η[λ,(1)] and η[λ,(2)] are the first and second λ-prolongations. They are given by

η[λ,(1)] = (Dt + λ)η[λ,(0)](t, x) − (Dt + λ)(ξ(t, x))ẋ

= η(1) + λ(η − ẋξ ),

η[λ,(2)] = (Dt + λ)η[λ,(1)](t, ẋ) − (Dt + λ)(ξ(t, x))ẍ

= η(2) + f (λ), (5.10)

where f (λ) is given by

D[λ](η − ξ ẋ) + 2λ(η(1) − ξ ẍ) + λ2(η − ξ ẋ)

and

η(0) = η(t, x).

D the total differential operator is given as

D = ∂

∂t
+ ẋ

∂

∂x
+ φ

∂

∂ẋ
.

In the above prolongation formula if we put λ = 0, we end up at standard Lie prolongation

expressions. Solving the invariance condition (5.9), we can determine the functions ξ , η

and λ for the given equation. We note here that three unknowns ξ , η and λ have to be

determined from the invariance condition (5.9). The procedure is as follows.

Let us suppose that the second-order equation (2.1) has Lie point symmetries. In

that case, the λ-function can be determined in a more simple way without solving the

invariance condition (5.9).

If V is a Lie point symmetry of (2.1) and Q = η − ẋξ is its characteristic, then v =
∂/∂x

is a λ-symmetry of (2.1) for λ = D[Q]/Q. The λ-symmetry satisfies the invariance

condition [38]

φx + λφẋ = D[λ] + λ2. (5.11)

Once the λ-symmetry is determined, we can obtain the first integrals in two different

ways. In the first way, we can calculate the integral directly from the λ-symmetry using

the four-step algorithm given below. In the second way, we can find the integrating factor

μ from λ-symmetry. With the help of integrating factors and λ-symmetries we can obtain

the first integrals by integrating the system of eqs (5.13). In the following section, we

enumerate both the procedures.

Pramana – J. Phys., Vol. 85, No. 5, November 2015 771



M Senthilvelan, V K Chandrasekar and R Mohanasubha

(A) Method of finding the first integral directly from λ-symmetry [38]

The method of finding integral directly from λ-symmetry is as follows:

(i) Find a first integral w(t, x, ẋ) of v[λ,(1)], that is a particular solution of the equa-

tion wx + λwẋ = 0, where subscripts denote partial derivative with respect to that

variable and v[λ,(1)] is the first-order λ-prolongation of the vector field v.

(ii) Evaluate D[w] and express D[w] in terms of (t, w) as D[w] = F(t, w).

(iii) Find a first integral G of ∂t + F(t, w)∂w.

(iv) Evaluate I (t, x, ẋ) = G(t,w(t, x, ẋ)).

(B) Method of finding integrating factors from λ [38]

If V is a Lie point symmetry of (2.1) and Q = η−ẋξ is its characteristic, then v = ∂x is

a λ-symmetry of (2.1) for λ = D[Q]/Q and any solution of the first-order linear system

D[μ] +
(

φẋ − D[Q]
Q

)

μ = 0, μx +
(

D[Q]
Q

μ

)

ẋ

= 0, (5.12)

is an integrating factor of (2.1). Here D represents the total derivative operator and it is

given as

D = ∂

∂t
+ ẋ

∂

∂x
+ φ

∂

∂ẋ
.

Table 1. λ-symmetries for eight vector fields admitted by eq. (1.1).

Vector Q λ-symmetries

V1 −ẋ −
(

3x + x3

ẋ

)

V2
1

2
t (−2 + tx)(ẋ + x2)

2 − ẋt2 − 4tx + t2x2

t (2 − tx)

V3 −x(ẋ + x2)
ẋ

x
− x

V4 x(−ẋt + x − tx2)
ẋ

x
− x

V5
x

2
(2 + ẋt2 − 2tx + t2x2)

ẋ

x
− x

V6
t

2
(−2 + tx)(ẋt − x + tx2)

(

2 − ẋt2 − 4tx + t2x2

t (2 − tx)

)

V7
1

2
(2 − 3t2x2 + t3x3 − 3ẋt2 + ẋt3x) − t (−ẋ2t2 + ẋ(6 − 6tx) + x2(6 − 6tx + t2x2)

2 − 3t2x2 + t3x3 + ẋt2(−3 + tx)

V8
−t

4
(−2 + tx)(2 + ẋt2 − 2tx + t2x2)

2 − ẋt2 − 4tx + t2x2

t (2 − tx)

772 Pramana – J. Phys., Vol. 85, No. 5, November 2015



Symmetries of nonlinear ODEs

Solving the system of equations (5.12) one can get μ. Once the integrating factor μ

is known then a first integral I such that Iẋ = μ can be found by solving the system of

equations

It = μ(λẋ − φ), Ix = −λμ, Iẋ = μ. (5.13)

From the first integrals, we can write the general solution of the given equation.

5.2.1 Example: Modified Emden equation. As the second-order ODE under investigation

admits Lie point symmetries one can derive the λ-symmetries directly from Lie point

symmetries [59] using the relation λ = D[Q]/Q.

To start with, we consider the vector field V3. In this case, we have ξ = x and η = −x3,

the Q function turns out to be Q = η−ξ ẋ = −x(ẋ+x2). Using the relation λ = D[Q]/Q
we can fix λ3 = (ẋ/x) − x. In a similar way one can fix the λ-symmetries for the remain-

ing vector fields. The resultant expressions are given in table 1. One can verify that the

functions ξ , η and λ satisfy the invariance condition (5.9).

As we are dealing with a second-order ODE, two different λ functions are sufficient

to generate two independent first integrals and hence the general solution. In the follow-

ing, we consider the vector fields V3 and V6 and their λ-symmetries and demonstrate the

method of finding their associated integrals.

(i) First integrals directly from λ-symmetry

Substituting λ3 = (ẋ/x) − x in the equation wx + λwẋ = 0, one gets

wx +
(

ẋ

x
− x

)

wẋ = 0.

This first-order PDE admits an integral w(t, x, ẋ) of the form

w(t, x, ẋ) = ẋ

x
+ x (first step).

The total differential of this function can be expressed in terms of w itself, i.e.

D[w] = −w2 = F(t, w) (second step).

Next, one has to find an integral associated with the first-order partial differential equation

∂G

∂t
− w2 ∂G

∂w
= 0.

A particular solution of this first-order partial differential equation can be given as

G = t − 1

w
(third step).

Finally, one has to express G(t,w) in terms of (t, x, ẋ). Doing so, we find that the integral

turns out to be (fourth step)

Î1 = t − x

ẋ + x2
,

dÎ1

dt
= 0. (5.14)

Pramana – J. Phys., Vol. 85, No. 5, November 2015 773



M Senthilvelan, V K Chandrasekar and R Mohanasubha

Next we consider the function λ6. Following the steps given above, we find the integral

associated with λ6 turns out to be

Î2 = ẋt − x + tx2

2 + ẋt2 − 2tx + t2x2
(5.15)

with dÎ2/dt = 0. Using these two integrals, Î1 and Î2, one can construct the general

solution of eq. (1.1). The resultant expression coincides with the earlier expression (see

eq. (2.14)) after rescaling.

(ii) Integrating factors from λ-symmetries

In the following, we discuss the second route of obtaining the integral from λ-symmetry.

We solve the system of eq. (5.12) in the following way. We first consider the second equa-

tion in (5.12) and obtain a solution for μ. We then check whether the obtained expression

satisfies the first equation or not. If it satisfies then we treat it as a compatible solution.

We again consider the Lie point symmetries V3 and V6 and discuss the method of deriv-

ing integrating factors for these functions. To determine the integrating factor associated

with λ3 we first solve the second equation in (5.12), i.e.

μx +
(

ẋ

x
− x

)

μẋ + 1

x
μ = 0.

A particular solution is

μ1 = − x

(ẋ + x2)2
.

This solution also satisfies the first equation in (5.12). To determine the integral we sub-

stitute μ1 and λ3 in (5.13) and obtain the following set of equations for the unknown I :

It = 1, Ix = − (ẋ − x2)

(ẋ + x2)2
, Iẋ = x

(ẋ + x2)2
. (5.16)

The integral which comes out by integrating the system of equations (5.16), i.e.

I1 = t − x

x2 + ẋ
,

coincides exactly with the one found earlier.

Let us now consider the function λ6. Substituting the function λ6 in eq. (5.12) we get

μx +
(

2 − ẋt2 − 4tx + t2x2

t (2 − tx)
μ

)

ẋ

= 0. (5.17)

Equation (5.17) admits a particular solution of the form

μ2 = − 3t (2 − tx)

(2 − 2tx + t2ẋ + t2x2)2
. (5.18)

We find that μ2 also satisfies the first equation given in (5.12) and forms a compatible

solution to the system of eq. (5.12).
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Substituting the expressions λ6 and μ2 in (5.13) and integrating the resultant set of

equations,

It = −3(2tx3 − t2x4 + 2(1 + tx − t2x2)ẋ − t2ẋ2)

(2 − 2tx + t2ẋ + t2x2)2
,

Ix = −3(2 + t2x2 − 4tx − t2ẋ)

(2 − 2tx + t2ẋ + t2x2)2
,

Iẋ = − 3t (2 − tx)

(2 − 2tx + t2ẋ + t2x2)2
, (5.19)

we find 3Ĩ2 = Î2, where Î2 is given in (5.15). With the help of Î1 and Ĩ2, we can derive

the general solution for the MEE.

6. Hidden symmetries

An important application of Lie point symmetry is that it can be used to reduce the order of

the underlying ordinary differential equation. It was observed that the order of the reduced

ODE may admit more or lesser number of symmetries than that of the higher-order equa-

tion. Such symmetries were termed as ‘hidden symmetries’. This type of symmetry was

first observed by Olver and later extensively investigated by Abraham-Shrauner and her

collaborators [25–29,66].

The motivation for finding hidden symmetries of differential equations is the possibility

of transforming a given ODE which has insufficient number of Lie point symmetries to be

solved to another ODE that has enough Lie point symmetries such that it can be solved by

integration. These hidden symmetries cannot be found through the Lie classical method

for point symmetries of differential equations.

A detailed study on the hidden symmetries of differential equations show that there can

be two types of hidden symmetries. For example, if an nth-order ODE is reduced in order

by a symmetry group, then two possibilities may occur. The reduced lower-order ODE

may not retain other symmetry groups of the nth-order ODE. Here the symmetries of the

nth-order equation are lost in the reduced equation. This lost symmetry is called a Type-I

hidden symmetry of the lower-order ODE. Conversely, the lower-order ODE may possess

a symmetry group that is not shared by the nth-order ODE. In this case, the lower-order

ODE has gained one symmetry. This is called as Type-II hidden symmetry of the nth-

order ODE [25–28,66,67].

As we are focussing our attention on second-order ODEs, we again consider the MEE

equation as an example and point out the hidden symmetries associated with this equation.

6.1 Example: Modified Emden equation

Let us consider the MEE (1.1). By introducing the following Riccati transformation

x = ẏ

y
, t = z, (6.1)
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the MEE can be transformed to a linear third-order ODE, that is (d3y/dz3) = 0. The

transformation (6.1) is nothing but the invariants associated with the Lie point sym-

metry y(∂/∂y) of the linear third-order ODE. In other words, the third-order equation

(d3y/dz3) = 0 has been order-reduced to MEE by one of its point symmetry generator

y(∂/∂y). The other Lie point symmetries of the third-order linear ODE, (d3y/dz3) = 0,

are [6,31,66]

χ1 = ∂

∂z
, χ2 = ∂

∂y
, χ3 = z2 ∂

∂y
, χ4 = z

∂

∂z
,

χ5 = z
∂

∂y
, χ6 = y

∂

∂y
, χ7 = z2

2

∂

∂z
+ yz

∂

∂y
. (6.2)

Substituting the transformation (6.1) in the remaining vector fields given in (6.2), they

can be transformed into the following forms:

V̂1 = ∂

∂t
=V1, V̂2 = −xe−

∫

xdt ∂

∂x
, V̂3 =

(

t

x
− t2

2

)

xe−
∫

xdt ∂

∂x
,

V̂4 = t
∂

∂t
− x

∂

∂x
= V2 − V5, V̂5 =

(

1

x
− t

)

xe−
∫

xdt ∂

∂x
,

V̂7 = t2

2

∂

∂t
+ (1 − tx)

∂

∂x
= V7 − V6, (6.3)

where V̂i, i = 1, 2, 3, 4, 5, 7, are the symmetry generators of the MEE (see eqs (2.9)

and (7.22)). While three of the vector fields (V̂1, V̂4 and V̂7) retain their point symmetry

nature, the remaining three vector fields (V̂2, V̂3 and V̂5) turn out to be nonlocal vector

fields. All these vector fields satisfy the invariance condition and turn out to be the vector

fields of the MEE. The local vector fields V̂1(= V1), V̂4(= V2 − V5) and V̂7(= V7 − V6)

match with the earlier ones (see eq. (2.9)) whereas the nonlocal (V̂2, V̂3 and V̂5) vector

fields emerge as new ones.

Now we pick up Type-I and Type-II hidden symmetries from them. As we pointed

out in the beginning of this section, Type-II hidden symmetries of third-order ODEs are

nothing but the symmetries gained by the second-order ODEs. The MEE admits eight Lie

point symmetries (see §2). In the above, we obtained only three Lie point symmetries of

eq. (1.1). The remaining five Lie point symmetries are Type-II hidden symmetries of the

third-order ODE. These five symmetries can be gained from either nonlocal symmetries

or contact symmetries of the third-order ODE.

Type-I hidden symmetries of MEE are the symmetries which may not retain the sym-

metry group of the third-order ODE. In the present case, they turned out to be χ3 and χ5

because these two vector fields cannot be found in (6.3).

7. Nonlocal symmetries

The study of hidden symmetries of ODEs brought out a new result. Besides point and

contact symmetries, the ODEs do admit nonlocal symmetries (the symmetry is nonlocal
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if the coefficient functions ξ and η depend upon an integral). The associated vector field

is of the form

V = ξ

(

t, x,

∫

u(t, x)dt

)

∂

∂t
+ η

(

t, x,

∫

u(t, x)dt

)

∂

∂x
.

Subsequently, attempts have been made to determine nonlocal symmetries of ODEs.

However, due to the presence of nonlocal terms, these nonlocal symmetries cannot be

determined completely in an algorithmic way as in the case of Lie point symmetries. The

determination of nonlocal symmetries for second-order ODEs was initiated by Govinder

and Leach [28]. Their approach was confined to the determination of these nonlocal sym-

metries that reduce to point symmetries under reduction of order by ∂/∂t . Later, several

researchers have studied nonlocal symmetries of nonlinear ODEs [25–30]. Nucci and

Leach [29] have introduced a way to find the nonlocal symmetries. In the following sec-

tion, we present a couple of methods which determine nonlocal symmetries associated

with the given equation. We again consider MEE as an example in both the methods and

derive its nonlocal symmetries. We also discuss the connection between λ-symmetries

and nonlocal symmetries.

7.1 Method of Bluman et al [32]

In this method, one essentially introduces an auxiliary ‘covering’ system with auxiliary

dependent variables. A Lie symmetry of the auxiliary system, acting on the space of inde-

pendent and dependent variables of the given ODE as well as the auxiliary variables,

yields a nonlocal symmetry of the given ODE if it does not project to a point symmetry

acting in its space of the independent and dependent variables. This method was first initi-

ated by Bluman [32] and later extensively investigated by Gandarias and her collaborators

[33–35].

Let the given second-order nonlinear ODE be of the form (2.1). To derive nonlocal

symmetries of this equation, the authors [33–35] introduced an auxiliary nonlocal variable

y with the following auxiliary system:

ẍ − φ(t, x, ẋ) = 0, ẏ = f (t, x, y). (7.1)

Any Lie group of point transformation

V = ξ(t, x, y)
∂

∂t
+ η(t, x, y)

∂

∂x
+ ψ(t, x, y)

∂

∂y
,

admitted by (7.1) yields a nonlocal symmetry of the given ODE (2.1) if the infinitesimals

ξ or η depend explicitly on the new variable y, that is if the following condition is satisfied:

ξ 2
y +η2

y �= 0. As the local symmetries of (7.1) are nonlocal symmetries of (2.1) this method

provides an algorithm to derive a class of nonlocal symmetries for the given equation.

These nonlocal symmetries can be profitably utilized to derive the general solution for

the given equation. Using this procedure, Gandarias and her collaborators [33–35] have

constructed nonlocal symmetries for a class of equations.

In the following section, using the ideas discussed above, we derive nonlocal symme-

tries for the MEE.
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7.1.1 Example: Modified Emden equation. We introduce a nonlocal variable y and rewrite

eq. (1.1) in the form [35]

ẍ + 3xẋ + x3 = 0, ẏ = f (t, x, y), (7.2)

where f (t, x, y) is an arbitrary function to be determined. Any Lie group of point trans-

formation

V = ξ(t, x, y)
∂

∂t
+ η(t, x, y)

∂

∂x
+ ψ(t, x, y)

∂

∂y

admitted by (7.2) yields a nonlocal symmetry of the ODE (1.1), if the infinitesimals ξ and

η satisfy the equation ξ 2
y + η2

y �= 0.

The invariance of the system (7.2) under a one-parameter Lie group of point transfor-

mations leads to the following set of determining equations ξ , η and f :

ξxx = 0, ψx − f ξx = 0, ηxx − fxξy − 2ξtx − 2f ξxy + 6xξx = 0,

ψt + f ψy − f ξt − f 2ξy − ftξ − fxη = 0,

2x3ξt + 2f x3ξy − ηxx
3 + 3ηx2 + 3ηtx + 3f ηyx + ηt t + f 2ηyy

+ 2f ηyt + ftηy = 0,

3xξt − ξt t − f 2ξyy − 2f ξyt + 3f xξy − ftξy + 3x3ξx + fxηy + 2ηtx

+ 2f ηxy + 3η = 0. (7.3)

Solving the overdetermined system (7.3) we obtain the following infinitesimal symme-

try generator for eq. (7.2):

V = c(t)ey

(

x
∂

∂x
+ ∂

∂y

)

, (7.4)

with

f (t, x) = −x − ct

c
, (7.5)

where c(t) is an arbitrary function of t . We note here that (7.4) is not the only solution set

for determining eq. (7.3).

Solving the characteristic equation, we find two functionally independent invariants

which are of the form

z = t, ζ = ẋ

x
+ x. (7.6)

In terms of these two variables, z and ζ , eq. (1.1) reads as ζz + ζ 2 = 0. The general

solution of this first-order ODE can be given readily as ζ = 1/(t + k1) with k1 as an inte-

gration constant. Plugging this expression in the second equation in (7.6) and rewriting

it, we find

ẋ

x
+ x − 1

t + k1

= 0. (7.7)

This first-order ODE can be integrated straightforwardly to yield

x = 2 (t + k1)

t2 + 2k1 t − 2 k2

, (7.8)

where k2 is the second integration constant. Replacing k1 = I1 and −2k2 = I2 in (7.8),

we end up at the expression given in eq. (2.14).
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7.2 Connection between nonlocal symmetries and λ-symmetries

The exponential nonlocal symmetries admitted by (7.2) can also be derived from

λ-symmetries. To illustrate this we recall the following theorem from ref. [40].

Theorem. Let us suppose that for a given second-order equation (2.1) there exists some

function f = f (t, x, ẋ) such that the system (7.1) admits a Lie point symmetry

V = ξ(t, x, y)
∂

∂t
+ η(t, x, y)

∂

∂x
+ ψ(t, x, y)

∂

∂y

satisfying

ξ 2
y + η2

y �= 0.

We assume that z = z(t, x), ζ = ζ(t, x, ẋ) are two functionally independent functions

that verify V (z) = 0, V (1)(ζ )
∣

∣

�
= 0 and are such that eq. (1.1) can be written in terms

of {z, ζ, ζz} as a first-order ODE. Then

(1) The vector field V has to be of the form

V = eCy
(

ξ(t, x)∂t + η(t, x)∂x + ψ(t, x, ẋ)∂y

)

+ C1∂y, (7.9)

where C and C1 are constants.

(2) The pair

v = ξ(t, x)∂t + η(t, x)∂x, λ = Cf (7.10)

defines a λ-symmetry of eq. (1.1) and the set {z, ζ, ζz} is a complete system of

invariants of v[λ,(1)].

With the choice C = 1, C1 = 0 and f = λ, the vector field (7.9) turns out to be

V = ey
(

ξ(t, x)∂t + η(t, x)∂x + ψ(t, x, ẋ)∂y

)

, (7.11)

where ξ and η are the infinitesimal coefficients of v and ψ = ψ(t, x, ẋ) satisfies the

condition V (2)(ẏ−λ)|� = 0. This equation provides a linear first-order partial differential

equation to determine ψ , i.e.,

ψt + ẋψx + ψẋφ + ψλ = Dt (ξ)λ + ξλ2 + v[λ,(1)](λ). (7.12)

Let v = ξ∂t +η∂x be a λ-symmetry of (2.1) for some λ = λ(t, x, ẋ) and ψ = ψ(t, x, ẋ)

be a particular solution of eq. (7.12). Then (7.11) is a nonlocal symmetry of (2.1)

associated with system (7.1) for f = λ(t, x, ẋ) [40].

7.2.1 Example: Modified Emden equation. Using the above, we can demonstrate that

the nonlocal symmetries found by Gandarias et al for the MEE can be extracted from

the λ-symmetries themselves. To show this, let us consider the λ-symmetry ∂/∂x with

λ3 = (ẋ/x) − x (from table 1). Substituting this expression in eq. (7.12) and solving the

resultant partial differential equation we can obtain an explicit expression for ψ(t, x, ẋ).

Let us choose the simplest case ψ(t, x, ẋ) = 0. In this case the left-hand side of eq. (7.12)

disappears and the right-hand side also vanishes automatically because it is nothing but
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the λ-symmetry determining equation in which λ3 is a solution. Substituting λ3 = f in

the second expression given in (7.1) and integrating it, we find

y = log x −
∫

x dt. (7.13)

Now substituting the expressions ξ = 0, η = 1, ψ = 0 and the above expression of y in

(7.11), we obtain a nonlocal symmetry

�4 = xe−
∫

xdt ∂

∂x
. (7.14)

One can unambiguously verify that the vector field (7.14) also satisfies the determining

equation and turns out to be a nonlocal symmetry of the MEE. We mention here that the

nonlocal symmetry (7.14) had already been observed in the order reduction procedure

(see eq. (6.3)).

The other choices of λ and/or ψ(t, x, ẋ) will generate new nonlocal symmetries for

the MEE. For example, the choice ψ = c(t), ξ = 0, η = c(t)x and λ = −x − (ct/c),

provides another nonlocal symmetry (7.4) through the above-mentioned procedure. In

this way, one can also construct nonlocal symmetries from the λ-symmetries.

7.3 Method of Gladwin Pradeep et al

In a recent paper Gladwin Pradeep et al proposed yet another procedure to determine

nonlocal symmetries for the given equation [31]. In the following, we briefly recall the

essential ideas behind this method with reference to the MEE.

The MEE (1.1) can be transformed to the second-order linear ODE (d2u/dt2) = 0

through the nonlocal transformation u = xe
∫

xdt . To explore the nonlocal symmetries

associated with (1.1), the authors used the identity (u̇/u) = (ẋ/x) + x (which can be

directly deduced from the nonlocal transformation u = xe
∫

xdt ) [31]. This nonlocal con-

nection between the free particle equation and MEE allows one to deduce the nonlocal

symmetries of eq. (1.1) in the following manner.

Let ξ and η be the infinitesimal point transformations, i.e.

u′ = u + ǫη(t, u), T = t + ǫξ(t, u),

associated with the linear ODE (d2u/dt2) = 0. The symmetry vector field associated with

this infinitesimal transformations reads as

V = ξ
∂

∂t
+ η

∂

∂u

and its first extension is given by

Pr(1)V = ξ
∂

∂t
+ η

∂

∂u
+ (η̇ − u̇ξ̇ )

∂

∂u̇
.

Then we denote the symmetry vector field and its first prolongation of the MEE (1.1) as

� = δ
∂

∂t
+ μ

∂

∂u
and Pr(1)� = δ

∂

∂t
+ μ

∂

∂x
+ (μ̇ − ẋδ̇)

∂

∂ẋ
,

where δ and μ are the infinitesimals associated with the variables t and x, respectively.
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From the identity (u̇/u) = (ẋ/x) + x, the authors defined a new function, say X

u̇

u
= ẋ

x
+ x = X. (7.15)

In the new variable X, the MEE turns out to be the Riccati equation, i.e.

Ẋ + X2 = 0. (7.16)

The symmetry vector field of this equation can be obtained by using the relation X =
u̇/u and rewriting

V 1 = ξ
∂

∂t
+ η

∂

∂u
+ (η̇ − u̇ξ̇ )

∂

∂u̇

as

V 1 = ξ
∂

∂t
+

(

η̇

u
− ηu̇

u2
− Xξ̇

)

∂

∂X
≡ �. (7.17)

We note that eq. (7.16), being a first-order ODE, admits infinite number of Lie point

symmetries. These Lie point symmetries of eq. (7.16) become contact symmetries of the

linear second-order ODE (d2u/dt2) = 0 through the relation X = u̇/u.

Similarly, one can rewrite

�1 = δ
∂

∂t
+ μ

∂

∂x
+ (μ̇ − ẋδ̇)

∂

∂ẋ
,

using the relation X = (ẋ/x) + x, as

�1 = δ
∂

∂t
+

((

− 1

x2
ẋ + 1

)

μ + (μ̇ − ẋλ̇)
1

x

)

∂

∂X
≡ �. (7.18)

As the symmetry vector fields � and � correspond to the same equation (7.16), their

infinitesimal symmetries must be equal. Therefore, comparing equations (7.17) and (7.18)

one obtains

ξ = δ,
η̇

u
− ηu̇

u2
− xξ̇ =

(

− 1

x2
ẋ + 1

)

μ + μ̇
1

x
. (7.19)

Rewriting the second equation given in (7.19) we can obtain the following first-order ODE

for the unknown function μ, i.e.

1

x
μ̇ +

(

− 1

x2
ẋ + 1

)

μ = d

dt

(η

u

)

− xξ̇ . (7.20)

The free particle equation (d2u/dt2) = 0 admits eight Lie point symmetries which

are given in eq. (4.12). Substituting these symmetries (ξi, ηi), i = 1, 2, . . . , 8, and u =
xe

∫

xdt , in eq. (7.20), we get the following seven first-order ODEs for μ:

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ + (x2 + ẋ)x−2e−
∫

xdt = 0, (7.21a)

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ − (x − tx2 − t ẋ)x−2e−
∫

xdt = 0, (7.21b)
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1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ = 0, (7.21c)

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ + (x2 + ẋ)xe−
∫

xdt = 0, (7.21d)

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ + x = 0, (7.21e)

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ + 2tx − 1 = 0, (7.21f)

1

x
μ̇ +

(

1 − 1

x2
ẋ

)

μ + 2(x2 + ẋ)x2e2
∫

xdt − 1 = 0. (7.21g)

Integrating each one of the above first-order linear ODEs we can obtain the function

μ. Substituting the symmetries δ(=ξ) and μ in � = δ(∂/∂t) + μ(∂/∂x), we get the

following nonlocal symmetries:

�1 = ∂

∂t
, �2 =

(

1

x
− t

)

xe−
∫

xdt ∂

∂x
,

�3 =
(

t

x
− t2

2

)

xe−
∫

xdt ∂

∂x
, �4 = xe−

∫

xdt ∂

∂x
,

�5 = xe
∫

xdt ∂

∂t
−

(∫

x(ẋ + x2)e
∫

(2x)dtdt

)

xe−
∫

xdt ∂

∂x
,

�6 = t
∂

∂t
− xe−

∫

(xfx )dt

(∫

xe
∫

xdtdt

)

∂

∂x
,

�7 = t2 ∂

∂t
+ xe−

∫

xdt

(∫

(1 − 2tx)e−
∫

xdtdt

)

∂

∂x
,

�8 = txe
∫

xdt ∂

∂t
+ xe−

∫

xdt

(∫

(tx3 + (tx − 1)ẋ)e
∫

(2x)dtdt

)

∂

∂x
(7.22)

of eq. (1.1). One may observe that some of the nonlocal vector fields �2,�3 and �4 had

already been found as hidden symmetries. It is a straightforward exercise to check that all

these nonlocal symmetries satisfy the invariance condition

δ
∂φ

∂t
+ μ

∂φ

∂x
+ μ(1) ∂φ

∂ẋ
− μ(2) = 0,

where μ(1) and μ(2) are the first and second prolongations. We mention here that these

nonlocal symmetries can also be related to λ-symmetries through the theorem given in

§7.2.

To derive the general solution of the given nonlinear ODE one has to solve the

Lagrange’s system associated with the nonlocal symmetry. For the vector field �4, the

underlying equation reads (eq. (7.22)) as

dt

0
= dx

x
= dẋ

ẋ − x2
. (7.23)

Integrating eq. (7.23), we find u = t and v = (ẋ/x) + x. Following the procedure

described in §4.3, we can obtain the general solution of (1.1) as in the form of eq. (2.14).
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8. Telescopic vector fields

Telescopic vector fields are more general vector fields than the ones discussed so far. The

Lie point symmetries, contact symmetries and λ-symmetries are all subcases of telescopic

vector fields. A telescopic vector field can be considered as a λ-prolongation where the

two first infinitesimals can depend on the first derivative of the dependent variable [40,42].

Here, we briefly discuss the method of finding telescopic vector fields for a second-order

ODE. We then present the telescopic vector fields for the MEE.

Let us consider the second-order equation (2.1). The vector field

v(2) = ξ
∂

∂t
+ η

∂

∂x
+ ζ (1) ∂

∂ẋ
+ ζ (2) ∂

∂ẍ
(8.1)

is telescopic if and only if [42]

ξ = ξ(t, x, ẋ), η = η(t, x, ẋ), ζ (1) = ζ (1)(t, x, ẋ) (8.2)

with ζ (2) given by

ζ (2) = D[ζ (1)] − φD[ξ ] + ζ (1) + ẋD[ξ ] − D[η]
η − ẋξ

(ζ (1) − φξ). (8.3)

To prove that the telescopic vector fields are the more general vector fields, let us

introduce two functions g1 and g2 in the following forms:

g1(t, x, ẋ)= ζ (1) + ẋξt − ηt + ẋ(ẋξx − ηx)

η − ẋξ
, g2(t, x, ẋ)= ẋξẋ − ηẋ

η − ẋξ
. (8.4)

We can rewrite the prolongations ζ (1) and ζ (2) using the functions g1 and g2 as follows:

ζ (1) = D[η] − ẋD[ξ ] + (g1 + g2φ)(η − ẋξ ), (8.5)

ζ (2) = D[ζ (1)] − φxD[ξ ] + (g1 + g2φ)(ζ (1) − φξ). (8.6)

The relationship between telescopic vector fields and previously considered vector fields

can be given by the following expressions [40,42]:

ζ (1) = η(1) + (g1 + g2φ)(η − ẋξ ), (8.7)

ζ (2) = η(2) + (g1 + g2φ)(ζ (1) − φξ). (8.8)

In the above vector fields, if we choose g1 = g2 = 0 and ξ 2
ẋ + η2

ẋ = 0, we get the Lie

point symmetries. The choice g1 = g2 = 0 and ξ 2
ẋ +η2

ẋ �= 0 gives the contact symmetries.

To get λ-symmetries, we should choose g1 �= 0 and ξ 2
ẋ + η2

ẋ = 0. As a consequence, it

can be considered as the more general vector field.

8.1 Example: Modified Emden equation

To find the telescopic vector fields admitted by the MEE equation, we have to solve the

invariance condition

v(2)(φ) = ξ
∂φ

∂t
+ η

∂φ

∂x
+ ζ (1) ∂φ

∂ẋ
+ ζ (2) ∂φ

∂ẍ
= 0
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with ξ and η functions of (t, x, ẋ) and ζ (1) and ζ (2) are defined through (8.7) and (8.8)

respectively. Substituting eq. (1.1) in the invariance condition, we obtain

− (3ẋ + 3x2)η − 3xζ (1) − ζ (2) = 0 (8.9)

Solving eq. (8.9), we obtain a telescopic vector field which is of the form

γ1 = −
(

x
(

x2 + ẋ
)2

)

∂

∂x
+

(

x2 − ẋ
(

x2 + ẋ
)2

)

∂

∂ẋ
+

(

6xẋ
(

x2 + ẋ
)2

)

∂

∂ẍ
, (8.10)

where the components are

ξ1 = 0, η1 = − x
(

x2 + ẋ
)2

,

ζ
(1)

1 = x2 − ẋ
(

x2 + ẋ
)2

, ζ
(2)

1 = 6xẋ
(

x2 + ẋ
)2

. (8.11)

A second telescopic vector field is found to be

γ2 = −
(

t (2 − tx)
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

)

∂

∂x

+
(

t2
(

ẋ − x2
)

+ 4tx − 2
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

)

∂

∂ẋ

−
(

6(tx − 1)(t ẋ + x)
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

)

∂

∂ẍ
(8.12)

and its components are given by

ξ2 = 0, η2 = − t (2 − tx)
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

,

ζ
(1)

2 =
t2

(

ẋ − x2
)

+ 4tx − 2
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

,

ζ
(2)

2 = − 6(tx − 1)(t ẋ + x)
(

t2
(

x2 + ẋ
)

− 2tx + 2
)2

. (8.13)

The invariants associated with a telescopic symmetry vector field can be derived by

solving the associated characteristic equation. For the vector field γ1, it reads as

dt

0
= dx

−[x/
(

x2 + ẋ
)2]

= dẋ

(x2 − ẋ)/
(

x2 + ẋ
)2

. (8.14)

Using the procedure discussed in §2.2.1, we can integrate the above characteristic equa-

tion to obtain the integral given in eq. (5.14). Repeating the procedure for the second

telescopic vector field (8.12) we end up at the second integral given in eq. (5.15). From

these two integrals we can derive the general solution of (1.1).
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9. Conclusion

In this paper, we have reviewed continuous symmetries of second-order ODEs and elabo-

rated methods for finding them. To begin with, we have considered Lie point symmetries

and presented Lie’s invariance analysis for a second-order ODE. To illustrate the method,

we have considered the modified Emden equation (MEE) as an example. We have also

discussed a few applications of Lie point symmetries. We have demonstrated the con-

nection between symmetries and conservation laws by recalling Noether’s theorem. A

few conserved quantities including energy have been identified for the MEE through this

theorem. We have then considered the velocity-dependent transformations and presented

the method of finding contact symmetries for the second-order ODEs. We have pointed

out the contact symmetries and also recalled hidden symmetries of the MEE. Some of

them are found to be exponential nonlocal symmetries. The connection between symme-

tries and the integrating factors of ODEs was discussed through λ-symmetry approach

and adjoint symmetry method. The method of finding λ-symmetries, adjoint symmetries,

integrating factors and their associated integrals of a second-order ODE are discussed

elaborately and illustrated with MEE as an example. We have also pointed out the con-

nection between exponential nonlocal symmetries and λ-symmetries. Finally, we have

considered a more generalized vector field, namely telescopic vector field and discussed

the method of finding these generalized vector fields. For the MEE we have also brought

out a couple of telescopic vector fields. We have also derived the general solution of

MEE from each one of these symmetries. All the symmetry methods presented here are

extendable to higher-order ODEs. Through this review, we have emphasized the utility of

symmetry analysis in solving ODEs.
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