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Abstract. The macroscopic–microscopic method is extended to calculate the deformation energy

and penetrability for binary nuclear configurations typical for fission processes. The deformed two-

centre shell model is used to obtain single-particle energy levels for the transition region of two

partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using

the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained

using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally,

the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations

are performed for the decay of 282,292120 nuclei.
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1. Introduction

Fission is a binary phenomenon, and therefore it is necessary to treat it within a two-centre

model. When the total deformation energy is calculated along the distance between cen-

tres for fission configurations, some valleys appear for different mass asymmetries. These

valleys can be obtained as a result of multidimensional minimization of action integral

within the space of deformation. To take into account as many deformation parameters as

possible, one has to calculate all the terms in the total deformation energy with an appro-

priate binary model which can describe the stages of the fission process. Such a model

has been pioneered and improved by the Frankfurt school in the group of Greiner and

collaborators [1,2]. The importance of deformed valleys in the potential energy surfaces

(PES) is that they provide the most favoured fission channels for the decay of superheavy

nuclei. For the dynamics study, one has to introduce the influence of mass tensor. We

use the results from pairing calculations for the occupation probabilities. In this way,

the mass tensor components contain binary character of the process, because the pairing
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parameters are calculated with the two-centre shell model levels. Finally, the penetrabili-

ties and half-lives are calculated within the WKB approximation.

2. The binary macroscopic–microscopic method

The fission-like configurations are used for the total deformation energy calculations. A

typical shape is displayed in figure 1, where b1, a1 and b2, a2 are the small and large

semiaxes of the daughter and the emitted fragment respectively, zs is the position of the

separation plane and R is the distance between centres. All these geometrical parameters

form the space of deformation, and furtheron one shall work with χd = b1/a1, χe =
b2/a2, b2 and R as degrees of freedom.

The microscopic part starts with the binary Hamiltonian written for a single-particle

system as

H = −
h̄2

2m0

∇2 + V (ρ, z) + V�s + V�2 , (1)

where the potentials are deformation-dependent and m0 is the nucleon (proton and neu-

tron) mass. The same equation is valid for protons and neutrons. The deformed two-centre

oscillator potential for the two fission fragment regions reads as
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Figure 1. Fission-like configuration for the two ellipsoidal daughter and emitted

nuclei. The free geometrical parameters (the semiaxes of the two ellipsoids and the

distance between centres) are marked.
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Angular momentum-dependent potentials, V�s and V�2 are constructed to comply to

the V (ρ, z)-dependence and hermiticity of the operators, so that

Vso =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
{

h̄

m0ω0T

κT (ρ, z), (∇V (r) × p)s

}

, vT -region

−
{

h̄

m0ω0P

κP (ρ, z), (∇V (r) × p)s

}

, vP -region

and a similar potential for the V�2 term. The matrix diagonalization of H generates the

level scheme of the fission configuration, for spheroidally deformed nuclei, at any given

distance R between centres and intermediary independent b2, χd and χe. The level scheme

sequence from the compound nucleus (CN) up to complete separation is the input data

for the Strutinsky method [3], and calculations are performed separately for protons and

neutrons. The shell correction energy is obtained as the difference between the simple

sum of level energies and the smoothed part of the same scheme:

Esh =
∑

i

Ei − Ũ , (3)

where the summation is performed for all occupied levels. The main part of the calcu-

lation consists of obtaining the smoothed term Ũ . A smoothed-level distribution density

g̃(ǫ) is defined by averaging the actual distribution over a finite interval γ (here equal to

1.2 in h̄ω units). If the level energies in units of h̄ω are denoted by ǫi , one can write the

integral which replaces the discrete sum and obtains the smoothed distribution

g̃(ǫ) =
1

γ

∫ ∞

−∞
ζ

(

ǫ − ǫ′

γ

)

g(ǫ′)dǫ′

=
1

γ

∞
∑

i=1

ζ

(

ǫ − ǫi

γ

)

. (4)

This work utilizes a smoothing function ζ of the form

ζ(x) =
1

√
π

exp(−x2)fm(x), (5)

where x = (ǫ − ǫ′)/γ and the smoothing function f is taken as a polynomial sum:

fm(x) =
m

∑

k=0

a2kH2k(x), (6)

where Hn(x) are the Hermite polynomials, and the maximum degree m (here 3) is taken

such as dŨ/dγ = constant (the plateau condition). The maximum level is chosen such

that |xi | ≥ 3. Beyond this limit, the contribution of more remote levels is negligible. Once

the density of smooth levels g̃(ǫ) is obtained by this smearing procedure, the smoothed

part of the energy is given by

ũ = Ũ/h̄ω =
∫ λ̃

−∞
g̃(ǫ)ǫdǫ, (7)
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where the Fermi level λ̃ for smoothed distribution is obtained from the conservation of

the total number of nucleons:

Ne =
∫ λ̃

−∞
g̃(ǫ)dǫ. (8)

By substituting this expression for g̃(ǫ) one obtains

Ne =
2

√
π

∞
∑

1

∫ xiF

−∞
fm(x2

i ) exp(x2
i )dxi, (9)

where xiF = (λ̃ − ǫi)/γ . The summation is in fact reduced to the levels around the Fermi

limit. The latter equation yields the Fermi level for smoothed distribution λ̃, and is solved

numerically. We consider a set of doubly degenerate energy levels {ǫi} expressed in units

of h̄ω0
0. Calculations for neutrons and protons are similar and hence for the moment we

shall consider only protons. In the absence of a pairing field, the first Z/2 levels are

occupied, from a total number of nt levels available. Only for a few levels below (n) and

above (n′), the Fermi energy contributes to the pairing correlations. Usually, n′ = n. If g̃s

is the density of states at the Fermi energy obtained from the shell correction calculation

g̃s = dZ/dǫ, expressed as the number of levels per h̄ω0
0 spacing, the level density is half

of this quantity: g̃n = g̃s/2.

We can choose as computing parameter, the cut-off energy (in units of h̄ω0
0), � ≃ 1 ≫

�̃. Let us take the integer part of the following expression:

�g̃s/2 = n = n′. (10)

When we obtain n > Z/2 from the calculation we consider n = Z/2 and similarly if

n′ > nt − Z/2 we consider n′ = nt − Z/2.

The gap parameter � = |G|
∑

k ukvk and the Fermi energy with pairing correlations

λ (both in units of h̄ω0
0) are obtained as solutions of a nonlinear system of two BCS

equations

n′ − n =
kf

∑

k=ki

ǫk − λ
√

(ǫk − λ)2 + �2
, (11)

2

G
=

kf
∑

k=ki

1
√

(ǫk − λ)2 + �2
, (12)

where ki = Z/2 − n + 1; kf = Z/2 + n′.
The pairing interaction G is calculated from a continuous distribution of levels

2

G
=

∫ λ̃+�

λ̃−�

g̃(ǫ)dǫ
√

(ǫ − λ̃)2 + �̃2

, (13)

where λ̃ is the Fermi energy deduced from the shell correction calculations and �̃ is the

gap parameter obtained from a fit to experimental data, usually taken as �̃ = 12/
√

Ah̄ω0
0.
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Both �p and �n decrease with increasing asymmetry (N −Z)/A. From the above integral

we get

2

G
≃ 2g̃(λ̃) ln

(

2�

�̃

)

. (14)

Real positive solutions of BCS equations are allowed if

G

2

∑

k

1

|ǫk − λ|
> 1 (15)

i.e., for a pairing force (G-parameter) large enough at a given distribution of levels.

As a consequence of pairing correlation, the levels situated below the Fermi energy are

only partially filled, while those above the Fermi energy are partially empty; a probability

is given for each level to be occupied by a quasiparticle

v2
k =

1

2

[

1 −
ǫk − λ

√

(ǫk − λ)2 + �2

]

(16)

or a hole

u2
k = 1 − v2

k . (17)

Only the levels in the near vicinity of the Fermi energy (in a range of the order of �

around it) are influenced by the pairing correlations. For this reason, it is only sufficient

for the cut-off parameter value to exceed a given limit � ≫ �̃, the value in itself having

no significance. The shell and pairing corrections calculated for the splitting of 292120

in the Sn fission channel are displayed in figure 2 along the reduced distance between

centres. One observes large fluctuations of proton and neutron shell corrections opposite

to the pairing corrections; maxima for shell corrections correspond to minima for pairing

corrections and vice-versa.
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Figure 2. Shell and pairing corrections for neutrons and protons, and their sum for

the symmetric splitting of 236Pu.
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The macroscopic part is obtained using the Yukawa-plus-exponential method, specific

to binary processes. The Coulomb term EC [4] and the nuclear surface term EY [5] are

computed as

EC =
2π

3

(

ρ2
ed
FCd

+ ρ2
ee
FCe

+ 2ρed
ρee

FCde

)

(18)

and

EY =
1

4πr2
0

[csd
FEYd

+ cse
FEYe

+ 2(csd
cse

)1/2FEYde
], (19)

where ρei is the charge density and csi the surface coefficient. FCi
and FEYi

are shape-

dependent integrals. The peculiarity resides in the last term of both formulae, FCde
and

FEYde
, which account for the interaction between non-overlapped parts of the overlapping

configuration. Details of these terms are given in [6].

The total deformation-dependent macroscopic energy is calculated as the sum of the

Coulomb and surface terms:

Emacro = (EC − E
(0)

C ) + (EY − E
(0)
Y ), (20)

where E
(0)

C and E
(0)
Y are the values for the corresponding spherical CN. Finally, the defor-

mation energy is computed as the sum of the macroscopic part, the shell correction and

pairing energies:

Edef = Emacro + Esh + P. (21)

3. Dynamics

To obtain the penetrabilities for different reaction channels, the action integral must be

computed. Besides the usual deformation energy, nuclear inertia tensor which accounts

for the reaction of nucleus to deformation along a given degree of freedom, needs to be

computed. This uses the cranking approach to obtain mass tensor components within

the four-dimensional space of (be, χd, χe, R). According to the cranking model, after

including the BCS pairing correlations [7], the inertia tensor is given by [8]

Bij = 2h̄2
∑

νμ

〈ν|∂H/∂βi |μ〉〈μ|∂H/∂βj |ν〉
(Eν + Eμ)3

(uνvμ + uμvν)
2 + Pij , (22)

where H is the two-centre single-particle Hamiltonian which allows the determination of

energy levels and the wave functions |ν〉, uν , vν are the BCS occupation probabilities, Eν

is the quasiparticle energy and Pij gives the contribution of occupation number variation

when the deformation is changed (terms include variation of the gap parameter, �, and

the Fermi energy, λ, ∂� / ∂βi and ∂λ / ∂βi).

The penetrability P for a given fusion path is calculated as

P = exp(−Kov), (23)

where Kov is the overlapping action integral. The barriers are supposed to be tunnelled at

the level of ground-state energy of the CN. This is the minimum value of kinetic energy
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Table 1. The fission channels with the lowest half-lives

from 282120.

Reaction log P log T

140Nd+142Nd −5.0 3.51
120Cd+162Hf −5.35 3.92
112Pd+170Wf −5.9 4.22

Table 2. The fission channels with the lowest half-lives

from 292120.

Reaction log P log T

146Nd+146Nd −8.27 5.78
120Sn+172Yb −6.98 4.8
116Cd+176Hf −7.41 5.1

in this study where fission reactions are intended to take place at the lowest energy. Kov

is calculated numerically as

Kov(b2, κd, κe;R) =
2

h̄

∫

(fis)

[2B(R)b2,κd,κe
Edef(R)b2,κd,κe

]1/2dR. (24)

As Kov is calculated for every set (b2, κd, κe) at every point R, the penetrability appears

as multidimensional. The final value of P for every channel reaction is the result of the

minimization of action integral Kov over the whole range of (b2, κd, κe, R). The multi-

dimensional minimization of the action integral is performed over the grid in the space of

I (b2, κd, κe;R), where I is the integrand.

4. Results and discussion

The method described here is used in the decay of 282,292120 nuclei. For every superheavy

system, the entire possible range of mass asymmetry has been considered. The daughter–

emitted fragment pairs start from the symmetry ηA = 0 (Ad ≃ Ae) up to the maximum

asymmetry value. Once static barriers are obtained from the minima on the potential

energy surface, the mass asymmetry is completed by finding the charge asymmetry, by

repeating the calculations for all possible (Zd, Ze) for the same (Ad, Ae). Finally the

mass tensor and penetrability are calculated for all (Ad, Zd) − (Ae, Ze) reaction channels

by preserving R as the main free variable. The numerical results for the most favoured

fission channels (lowest half-life) are presented in tables 1 and 2.

5. Conclusions

A binary configuration model was used within a large number of degrees of freedom

to calculate the barriers and penetrabilties towards the calculation of fission lifetimes in
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282,292120 superheavy isotopes. Dynamical multidimensional minimization of the action

integral yielded the penetrabilities and half-lives by the WKB method. The barriers are

larger and higher, and penetrabilities are lower as the system becomes neutron-rich.

Highest values of log P for every superheavy isotope are obtained for spherically emitted

and/or daughter nucleus.
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