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Dynamical features of nuclear fission

SANTANU PAL1,2

1CS-6/1, Golf Green, Kolkata 700 095, India
2Formerly with Variable Energy Cyclotron Centre, Kolkata 700 064, India

E-mail: santanupal1950@gmail.com

DOI: 10.1007/s12043-015-1040-6; ePublication: 24 July 2015

Abstract. It is now established that the transition-state theory of nuclear fission due to Bohr and

Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissi-

pative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck

equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher).

Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly

concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We dis-

cuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity

data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-

dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission

fragments.
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width.
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1. Introduction

Experimental evidence accumulated over the last three decades indicates that the

transition-state model of nuclear fission due to Bohr and Wheeler [1] is inadequate to

describe the multiplicities of evaporated pre-scission light particles and photons [2–4] in

heavy-ion-induced fusion–fission reactions. The standard statistical model of compound

nuclear decay using the Bohr–Wheeler fission width is usually found to underpredict the

pre-scission multiplicities beyond a certain threshold energy [5]. We first briefly re-visit

the transition-state model to examine its underlying assumptions which may not be valid

for fission at high excitation energies.
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2. The transition-state model of fission

Let us consider an ensemble of nuclei in equilibrium. The fission rate according to

the transition state model, often referred to as the statistical model of nuclear fission, is

determined by the number of nuclei crossing the saddle configuration (‘transition state’)

from the inside of the potential pocket. This outgoing flux depends on the density of states

at the saddle configuration. The fission width then can be obtained as [1]

ŴBW =
1

2πρ(E∗)

∫ E∗−VB

0

dǫρ∗(E∗ − VB − ǫ), (1)

where E∗ is the excitation energy and the other quantities are defined as shown in figure 1.

When E∗ ≫ VB, the above expression for fission width can be approximated as

ŴBW =
T

2π
exp(−VB/T ), (2)

where the temperature T is related to E∗ through the Fermi gas model. In 1973, Strutinsky

[6] introduced a phase-space factor corresponding to the collective degrees of freedom

in the ground-state region and consequently, the above approximate form of the Bohr–

Wheeler fission width becomes

ŴBW =
�ωg

2π
exp(−VB/T ), (3)

where ωg is the frequency of a harmonic oscillator potential which represents the nuclear

potential near the ground state.

One important assumption in the transition-state model is that of equilibration at each

instant during the fission process. This assumption is expected to be valid when the

flux across the fission barrier is very small or in other words, the fission barrier is much

larger than the temperature. However, for systems with lower fission barriers and/or high

excitation energies, there may not be sufficient nuclei near the fission barrier after the

Figure 1. A schematic representation of the Bohr–Wheeler theory of fission.
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initial crossings are made [7]. In order to maintain a steady flux across the barrier, it thus

becomes essential to consider a dynamical model of fission.

3. A dissipative dynamical model of nuclear fission

In nuclear fission, a nucleus evolves from a relatively compact mononuclear shape to a

dinuclear configuration. This shape evolution is caused by the interaction between the

nuclear collective coordinates (which specify the nuclear shape and are a few in number)

with the rest of the nuclear intrinsic degrees of freedom. The interaction between the col-

lective and the intrinsic degrees of freedom gives rise to a dissipative force in the equation

of collective motion averaged over an ensemble of nuclei [8,9]. Further, the interaction

term for individual nuclei in the ensemble depends upon a large number of intrinsic coor-

dinates and hence can be represented by a fluctuating force in the collective motion. The

fission dynamics thus is very similar to that of a massive Brownian particle floating in an

equilibrated heat bath placed in a potential field. The heat bath here represents the motion

associated with the intrinsic degrees of freedom of the nucleus and the potential energy is

the deformation energy of the nucleus. The fission dynamics is thus both dissipative and

diffusive (due to the fluctuating force) in nature and the equation of motion, known as the

Langevin equation, is given in one dimension as

dp

dt
= −

dV

dq
− η

dq

dt
+ R(t),

dq

dt
=

p

m
, (4)

where (q, p) are, respectively the collective fission coordinate and the conjugate momen-

tum, V is the collective potential, m is the collective inertia and η is the dissipation

coefficient. The fluctuating force is represented by R(t) which can be suitably modelled

using the fluctuation–dissipation theorem [10,11].

It should be noted that the Langevin equation is different from ordinary differential

equations as it contains a stochastic term R(t). To calculate the physical quantities such

as the mean values or the distributions of observables from such a stochastic equation, one

has to deal with a sufficiently large ensemble of trajectories for a true realization of the

stochastic force. The physical description of the Brownian motion is therefore contained

in a large number of stochastic trajectories rather than in a single trajectory, as would be

the case for the solution of a deterministic equation of motion.

An alternative but equivalent description of stochastic dynamics can be obtained by

considering the total ensemble of Langevin trajectories. The time evolution of the

ensemble can be viewed as a diffusion process in a collective phase-space [7]. The corre-

sponding diffusion equation, the Fokker–Planck equation, in one dimension and in steady

state is given as

p
∂ρ

∂q
−

dV

dq

∂ρ

∂p
= η

∂(pρ)

∂p
+ ηT

∂2ρ

∂p2
, (5)

where ρ is the distribution function of the ensemble. Kramers [7] solved the one-

dimensional Fokker–Planck equation to obtain the stationary current of the Brownian
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particles over a potential barrier and the fission width is subsequenly obtained

as

ŴK =
�ωg

2π
exp (−VB/T )

⎧

⎨

⎩

√

1 +

(

β

2ωs

)2

−
β

2ωs

⎫

⎬

⎭

, (6)

where β = η/m and ωs denotes the frequency of an inverted harmonic oscillator potential

which approximates the nuclear potential in the saddle region. The above width, often

referred to as the Kramers’ fission width, can be used as the fission width in the decay of

an excited compound nucleus.

The validity of the Kramers’ fission width can be tested by comparing it with the fission

width obtained from numerical simulation of the Langevin equation. One such compar-

ison is shown in figure 2 [12]. It is observed that the Kramers’ width and the stationary

width from the Langevin dynamical calculation are in close agreement when VB > T ,

which is the domain of validity of the Kramers’ expression.

The main advantage of the Kramers’ width is that it can be easily implemented in a

statistical model code of compound nuclear decay. Thus, one can study the effects of dis-

sipation in nuclear fission using a statistical model code instead of solving the Langevin or

Fokker–Planck equations. The strength of the dissipation coefficient β is usually treated

as an adjustable parameter in order to fit the experimental data. The results of one such

study is discussed in the following section.

Figure 2. Time-dependent fission widths (——) from Langevin equation for different

values of spin (ℓ) of 224Th at a temperature of 2 MeV. (- - - -) The corresponding values

of Kramers’ width.
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4. Statistical model analysis of 19F+
194,196,198Pt reactions

Dissipation in nuclear dynamics in the mean-field regime accounts for the coupling of the

collective motion with the intrinsic nucleon degrees of freedom. The energy spectra of

intrinsic motion has a well-defined shell structure which is known to persist in an excited

nucleus [13–16]. It is therefore of considerable interest to investigate the effect of shell

structure on the strength of nuclear dissipation. Guided by the above considerations,

an experiment was performed to explore the effect of shell closure on nuclear dissipation

through the pre-scission neutron multiplicity (Mpre) measurement [17,18]. Three different

isotopes of Fr were populated through fusion of the 19F projectile with the 194,196,198Pt

target nuclei. Out of the compound nuclei, 213Fr contains neutron shell closure (N = 126)

and the other two are away from shell closure. The compound nuclei were formed in the

excitation energy range of 46.6–91.8 MeV.

Statistical model analysis of the above experimental data was performed by considering

the evaporation of neutrons, protons, α-particles and the statistical giant dipole γ -rays

as the compound nuclear decay channels, in addition to fission [17,18]. The intensity

of different decay modes depends critically on the density of levels of the parent and

the daughter nuclei. The level density in turn is a sensitive function of the level-density

parameter (a) which was taken from the work of Ignatyuk et al [19], who proposed a form

which includes the shell effects at low excitation energies and goes over to its asymptotic

form at high excitation energies and is given as follows:

a(E∗) = ā

(

1 +
f (E∗)

E∗
δW

)

(7)

with

f (E∗) = 1 − exp(−E∗/Ed), (8)

where ā is the asymptotic level density and Ed is a parameter which decides the rate at

which the shell effects disappear with increase in the excitation energy (E∗). A value

of 18.5 MeV was used for Ed which was obtained from the analysis of s-wave neu-

tron resonances [20]. The shell correction term δW is given as the difference between

the experimental and liquid-drop model (LDM) masses (δW = Mexp − MLDM). The

asymptotic level density ā was taken from [20].

In the Kramers’ fission width eq. (6), shell effect is taken into account by modifying

the fission barrier as [19]

VB(T ) = VLDM − δW exp(−E∗/Ed), (9)

where VLDM is the fission barrier from the finite-range rotating liquid drop model

(FRLDM) potential [21].

Taking into account the shell effects in the level densities and the fission barriers, the

pre-scission neutron multiplicity, Mpre, at each excitation energy was fitted with the sta-

tistical model calculation using β as a free parameter and figure 3a shows the results [17].

The corresponding values of β are given in figure 3b. In this plot, the shaded area for

each nucleus accounts for the uncertainty in the fitted β values owing to the error in the

experimental Mpre values.

It is observed that β values for 215Fr and 217Fr are remarkably close within the lim-

its of uncertainty over the entire excitation energy range. The shell structures of the
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(b)

(a)

Figure 3. (a) Experimental pre-scission neutron multiplicity (symbols) for different

systems with statistical model fits (lines) when shell effects are included in the calcu-

lation. (b) Best-fit values (lines) of β. Hatched areas represent the uncertainty in β

associated with the experimental error in Mpre.

above two isotopes of Fr are also very similar, each having a partially occupied 1g9/2

neutron shell after the shell gap at neutron number 126. On the other hand, the dis-

sipation strength required for 213Fr is clearly smaller than those for 215Fr and 217Fr at

lower excitation energies though all the three become close at higher excitation ener-

gies. With a major shell closure with 126 neutrons, the shell structure of 213Fr is very

distinct from those of 215,217Fr. Recalling that the shell structure can influence level den-

sity, fission barrier as well as the strength of dissipation, the above observation regarding

smaller dissipation for 213Fr can solely be attributed to its shell structure, because shell

effects in the level density and the fission barrier are already included in the calculation.

We thus arrive at the following conclusion regarding shell effect on dissipation. While

the reduced dissipation strength varies marginally among nuclei which are away from

shell closure, it is suppressed for shell closure nuclei at low excitations. This feature

can also be expected from the microscopic theories of one-body dissipation [8,22], where

the incoherent particle–hole excitation by a time-dependent mean field causes dissipa-

tion. Particle–hole excitation being easier for non-closed shell nuclei than for closed shell

nuclei, the former is expected to be more dissipative than the latter. The present results

provide a phenomenological evidence for this expectation.

We also observe a strong (initial) excitation energy dependence of β in figure 3b.

Though the excitation energy dependence of nuclear dissipation is not yet clearly under-

stood, it is usually attributed to several factors which include neglect of higher-order terms

in microscopic derivations of dissipation [23], shape dependence of dissipation [4], inad-

equacies in fission modelling [24] and need for a better treatment of the inertia [16]. We,

however, feel that inclusion of the above effects in nuclear dissipation will not alter the
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relative strengths of dissipation of different nuclei at each excitation energy and the shell

closure effects will persist.

Statistical model calculations were next performed without considering shell effects

[17] and figure 4 shows the best-fit Mpre and the corresponding β values. It is curious

to observe that Mpre cannot be fitted at all at low excitation energies for all the three Fr

isotopes. It is further observed that the best-fit β values for different isotopes are quite

different in contrast to those obtained with shell effects as given in figure 3. To seek an

explanation for this behaviour, the nature of the neutron width with and without the shell

correction was examined [17]. As the neutron width is essentially determined by the ratio

of the level densities of the daughter and the parent nuclei, inclusion of shell correction

increases or decreases the neutron width depending upon the relative magnitudes of the

shell correction in the daughter and the parent nuclei.

As a consequence of the systematic variation of shell correction for the Fr isotopes

across the shell closure at N = 126 (inset of figure 5), it was observed [17] that Ŵn and

Ŵn/Ŵf get modified as illustrated in figure 5. Increase of Ŵn/Ŵf ratio for 214−217Fr results

in the enhancement of neutron multiplicity for 217Fr when shell effects are not included

in the calculation. The enhancement is so pronounced at lower excitation energies that

even the largest fission width with β=0 cannot reproduce the experimental multiplicity in

figure 4. This enhancement also reduces the best-fit β values in comparison to those in

figure 3 at higher excitation energies for 217Fr. On the other hand, decrease of the Ŵn/Ŵf

ratio for 212Fr and lighter isotopes causes suppression of neutron multiplicity for 213Fr,

which in turn demands a stronger fission hindrance in order to fit the experimental data.

Therefore, the fitted β values are much larger than the values obtained with shell effect.

For 215Fr, the Ŵn/Ŵf ratio increases for some and decreases for other Fr compound nuclei

which are encountered during the successive neutron emissions. The β values for 215Fr

(a)(a)

(b)

Figure 4. Same as figure 3 except that the statistical model calculations were

performed by excluding the shell effects.
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(a)

(b)

Figure 5. (a) Comparison of neutron widths with and without shell effects for differ-

ent isotopes of Fr. (b) Similar comparison for the neutron-to-fission width ratio. The

widths are calculated for compound nuclei with spin 40�. Inset shows the variation of

shell correction with mass number for Fr isotopes.

therefore, lie in between those of 213Fr and 217Fr. Thus, the large variation of β among

the three nuclei can be attributed to the neglect of shell effects. This, in turn, establishes

the importance of the inclusion of shell effects in statistical model calculations to obtain

a consistent picture of nuclear dissipation.

The role of neutron binding energy in neutron multiplicity was examined in [18] by

performing statistical model calculations using LDM nuclear masses to obtain the neutron

binding energies and FRLDM for the fission barrier. Shell corrections were not applied

either to the neutron binding energies or to the fission barrier. The pre-scission neutron

multiplicity at each excitation energy was fitted by adjusting the strength of the reduced

dissipation coefficient β. Figure 6 shows the best-fit β values for different isotopes of Fr.

It is observed that the dissipation coefficients for 217Fr and 215Fr isotopes increase rapidly

with increasing excitation energy over its entire range, whereas the dissipation strength

remains nearly zero till 70 MeV of excitation energy followed by a slower rate of increase

for 213Fr. The overall magnitude of the dissipation strength also remains much smaller for
213Fr than for the other two isotopes of Fr.

Ground-state shell corrections in the LDM masses were subsequently incorporated in

the statistical model calculations [18]. Figure 7 shows the dissipation strengths required

to fit the experimental multiplicities for all the three Fr isotopes. It is clearly observed in

figure 7 that the anomalous lowering of dissipation strength for 213Fr disappears and all the

isotopes require nearly the same dissipation strength to fit the experimental results. This

observation can be explained as follows. As the masses are considered to be the sum of the

LDM masses and the shell corrections, the neutron separation energy obtained from the

shell-corrected LDM masses increases for 213Fr compared to that from the LDM masses
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Figure 6. Excitation energy dependence of β required to fit the experimentally

obtained Mpre for different systems using LDM and without shell correction in fission

barrier. The lines are drawn to guide the eye.

Figure 7. Excitation function of β values required to fit experimentally the obtained

Mpre using the shell-corrected LDM mass and without shell correction in fission

barrier for different isotopes of Fr. The lines are drawn to guide the eye.
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while it decreases for the other two isotopes. This reduces the Mpre values for 213Fr, but

increases the same for 217Fr and 215Fr for a given value of the dissipation strength in

the statistical model calculations. Consequently, higher values of dissipation strength are

required to fit Mpre for 213Fr whereas lower values of dissipation are required for the other

two isotopes, in comparison to the calculations without shell correction in masses. The

dissipation strengths of the different isotopes therefore converge.

The LDM masses with shell corrections however differ from the experimental ground-

state masses to some extent. Hence, the experimental ground-state nuclear masses were

used in the statistical model calculations [18]. Figure 8 shows the fitted β values for the

three isotopes of Fr. Here also we find the excitation functions of the fitted β values to be

nearly the same for all the three Fr isotopes.

Comparing the results given in figures 6, 7 and 8, an interesting observation is made

here. When shell correction is not applied to the ground-state nuclear masses, the fitted

β values for the different Fr isotopes are quite different (figure 6). However, the best-fit

β values for the three Fr isotopes converge to a common value at each excitation energy

when either shell-corrected (figure 7) or experimental nuclear masses (figure 8) are used

in the statistical model calculations.

The effect of shell correction to the fission barrier on the fitted values of dissipation

strength was investigated next [18]. To this end, the excitation functions of the fitted

β obtained without shell correction to fission barrier (figure 8) are compared with those

obtained with shell-corrected fission barrier (figure 9). Experimental nuclear masses are

used in both the calculations. It is observed that inclusion of shell effects in fission barrier

affects the fitted β values differently for shell-closed and non-shell-closed nuclei at low

Figure 8. Excitation function of β values required to fit experimentally the obtained

Mpre using the experimental mass and without shell corrections in fission barrier for

different isotopes of Fr. The lines are drawn to guide the eye.
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Figure 9. Excitation function of β values required to fit experimentally obtained Mpre

using the experimental mass and shell-corrected fission barrier for different isotopes

of Fr. The lines are drawn to guide the eye.

excitation energies. However, the effect of inclusion of shell correction in fission barrier

is not as severe as the effect of shell correction in LDM masses (figures 6 and 7) or the

effect of shell correction in the level density formulas [17].

5. Multidimensional Langevin equation

Though the statistical model of nuclear decay with Kramers’ fission width can reproduce

pre-scission multiplicities of light particles and photons, a multidimensional dynamical

equation is required to obtain the fission fragment mass and kinetic energy distributions.

The fragment mass and kinetic energy distributions are determined to a large extent by the

potential energy profile along the saddle ridge in a multidimensional potential landscape.

Though one can obtain the fragment distribution along the saddle ridge by assuming an

equilibrated configuration [25,26], it is evidently more desirable to get it from a dynamical

model. In the descent from the saddle ridge to the scission configuration, the fission

fragment mass and kinetic energy distributions can evolve further which can be followed

through a dynamical equation. Multidimensional Langevin equation has been employed

by several researchers to study fission fragment mass and kinetic energy distributions [27,28].

The multidimensional Langevin equation has the following form [29]:

dpi

dt
= −

pjpk

2

∂

∂qi

(m−1)jk −
∂V

∂qi

− ηij (m
−1)jkpk + gijŴj (t),

dqi

dt
= (m−1)ijpj , (10)
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where qi stands for the collective coordinates and pi represents the respective momentum,

V is the potential energy of the system and mij and ηij are the shape-dependent collective

inertia and dissipation tensors, respectively. The strength of the random force is related to

the dissipation coefficients through the fluctuation–dissipation theorem and is given as

gikgjk = ηijT , (11)

where T is the temperature of the compound nucleus. Usually, the one-body wall plus

window model of nuclear dissipation [23] is used in Langevin dynamical calculations.

In what follows, the collective coordinates will be taken as the ‘funny hills’ shape

parameters (c, h, α′), where the symbols represent the elongation, neck and the mass

asymmetry of a nucleus, respectively [30]. A two-dimensional contour plot of finite-range

LDM potential of 224Th is shown in figure 10 [31].

The Langevin equation in elongation and neck coordinates were numerically solved

in [3] using the potential given in figure 10 and the kinetic energy distributions of the

fission fragments were obtained by assuming symmetric fission (figure 11). The kinetic

energy distributions obtained in one dimension (with only elongation coordinate) are also

shown in figure 11. It is observed that the two-dimensional fission trajectories give rise

to fission fragment kinetic energy distributions which are distinct from those obtained in

one-dimensional motion. As the potential energy at scission is the same for all the trajec-

tories in one dimension, the Boltzmann-like distribution indicates a near-equilibration at

scission. On the other hand, the potential energy at scission can be different for different

two-dimensional trajectories which, in turn, results in a kinetic energy distribution which

is more symmetric than the one-dimensional distribution. One can also expect that the

dispersion of potential energy at scission would further increase with the addition of more

degrees of freedom resulting in a broader and more symmetric distribution. Experimen-

tal fission fragment kinetic energies displaying Gaussian distributions therefore suggest a

multidimensional dynamics of fission.

We further note in figure 11 that the peak appears at a lower energy for two-dimensional

motion compared to that in one dimension. This aspect essentially reflects the fact that

a nucleus with (c, h) degrees of freedom is more elongated at scission than the one with

Figure 10. Potential energy contours (in MeV) in elongation (c) and neck (h) coordi-

nates for 224Th. The minimum in the potential energy valley is marked by the dotted

line. The dashed line corresponds to scission configuration.
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Figure 11. Fission fragment kinetic energy distribution calculated with wall friction

(WF) at different spins and temperatures of 224Th. The yield of fission fragments in %

(y-axis) is plotted against the kinetic energy of the fission fragments in MeV (x-axis).

The solid and dotted lines are obtained from calculations in two and one dimensions,

respectively.

only c degree of freedom. This results in a lower Coulomb barrier and hence a smaller

kinetic energy of the fission fragments for the former case compared to the latter.

Another example of a two-dimensional potential landscape is shown in figure 12, where

elongation (c) and asymmetry (α′) are considered as the relevant coordinates [32]. The

mass asymmetry parameter α′ is related to the ratio of masses of the nascent fragments

A1 and A2 as

A1

A2

=
1 + 3

8
α′

1 − 3
8
α′

. (12)

Figure 12. The potential energy landscape in elongation and mass asymmetry coor-

dinates for 224Th.
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Table 1. Z2/A, saddle-to-scission distance cSS (in unit of compound nuclear radius)

and fission barrier (VB) for symmetric fission of several compound nuclei.

124Ba 184W 208Pb 206Po 224Th 254Fm

ℓ = 60� ℓ = 60� ℓ = 60� ℓ = 60� ℓ = 60� ℓ = 40�

Z2/A 25.29 29.76 32.33 34.25 36.16 39.37

cSS 0.08 0.14 0.32 0.46 0.63 0.74

VB (MeV) 8.61 8.63 3.41 1.76 0.38 0.10

Numerical solutions of the Langevin equation in (c, α′) coordinates were obtained with

a view to study the role of saddle-to-scission dynamics in fission [32]. We shall briefly

discuss here some of the results obtained in [32]. In addition to the (wall+window) dissi-

pation, another dissipation term γ asym associated with the rate of change of time of mass

asymmetry degree of freedom [33] was considered in [32]. Calculations were performed

for a number of nuclei with spin values so chosen that they represent a broad range of

saddle-to-scission distances and also a range of fission barriers as given in table 1.

In a Langevin dynamical calculation, a fission trajectory can cross the saddle ridge

many times in a to-and-fro motion before it reaches the scission line. Accordingly, the

asymmetry coordinates corresponding to the last crossing of the saddle ridge by the fission

trajectories were used to obtain the mass variance at the saddle and those corresponding

to the crossing of the scission line gave the mass variance at scission. Mass variances

were obtained with and without the term γ asym in the calculation.

The distribution of fission fragment mass were initially calculated without the γ asym

term and the corresponding mean-square deviations σ 2
m for the different systems were

obtained as shown in figure 13. It is observed that the mass variance of a system decreases

as it moves from the saddle to the scission region. As γ asym was not included in the

calculation of mass variance in figure 13, a strong dissipative force was absent in the

saddle-to scission dynamics. Therefore, the funnel shape of the potential landscape in

the saddle-to-scission region pushes the system towards a symmetric configuration and

consequently, the mass variance at scission decreases.

Figure 13. The mass variances σ 2
m at the saddle ridge (�) and on the scission line

(◦) as a function of the saddle-to-scission distance from dynamical model calculation

without the γ asym term. Lines are drawn to guide the eyes.
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Figure 14. The mass variances σ 2
m calculated with (•,�) and without (◦) the γ asym

term for different systems. The circles and squares represent the variances at scission

and saddle, respectively. The variances at the saddle with and without γ asym are nearly

the same and are indistinguishable in the plot. Lines are drawn to guide the eyes.

The mass variances were subsequently obtained with γ asym in the Langevin dynamical

calculations and are shown in figure 14. Dynamical model results without γ asym (as given

in figure 13) are also shown in this figure for comparison. The variances at the saddle

obtained with and without γ asym are indistinguishable in this figure, which is expected

because γ asym becomes effective only beyond the neck line. It is observed in this figure

that the variances at scission are enhanced with the inclusion of γ asym in the calcula-

tion. This is a consequence of the random force associated with γ asym, which operates

between the neck line and the scission line and drives the system towards larger asymme-

try, thus demonstrating the importance of the asymmetry term in the generalized one-body

dissipation.

A large volume of experimental data has been analysed in recent years by employing

three-dimensional Langevin equation [28,34–37]. It is observed in all such analyses that

a reduction of the strength of one-body wall dissipation is required to fit the data. It is

also observed that different strengths of dissipation are required to fit different types of

experimental data. Evidently, further investigations are necessary to resolve such issues

in future works.

6. Summary and outlook

In summary, we have discussed the dissipative dynamical nature of heavy-ion-induced

fusion–fission reactions. It has been pointed out that while dissipation can be taken into

account in statistical model calculations by using the fission width due to Kramers to

calculate pre-scission multiplicities of evaporated particles, multidimensional Langevin

dynamical calculations are essential for calculating fission fragment mass and kinetic

energy distributions. Though considerable progress has been made in understanding the

dynamical features of nuclear fission, testing of the dynamical models with inputs from

microscopic models are yet to be performed. The role of isospin degree of freedom in

fission is also expected to be investigated in detail from fusion–fission experiments with
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unstable beams. Thus, development of a dynamical fission model with isospin degree of

freedom is expected to be addressed in future works.
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