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Shape of Te isotopes in mean-field formalism

T BAYRAM!* and A H YILMAZ?

I Department of Physics, Sinop University, 57000 Sinop, Turkey

2Department of Physics, Karadeniz Technical University, 61080 Trabzon, Turkey
*Corresponding author. E-mail: tbayram @sinop.edu.tr

MS received 8 February 2013; revised 14 February 2014; accepted 4 March 2014
DOI: 10.1007/s12043-014-0816-4; ePublication: 22 November 2014

Abstract. The systematic investigation of ground-state shape evolution from y-unstable O(6) to
spherical U(5) for even—even ''>~134Te has been presented by using the quadrupole moment-
constrained Hartree—Fock—Bogoliubov (HFB) method. By examining potential energy curves of
Te isotopes, it has been suggested that '2*Te nucleus may hold E(5) symmetry.
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1. Introduction

Spherical vibrator, rotational ellipsoid, and other deformed shapes are intimately linked
to the various modes of collective motion [1-3]. Depending on the changes in proton and
neutron numbers, nuclei can alter their energy levels and electromagnetic transition rates
among their collective modes. These changes from one kind of collective behaviour to
another are known as shape phase transition. These transitions are quantum phase transi-
tions (QPTs) [4]. However, QPTs are different from thermal phase transitions which are
functions of temperature. QPT implies changes in the shape of the nucleus and the control
parameter is the nucleon number. In the last decade, many researchers have given insights
into structural evolution of nuclei (in particular, transitional regions of rapid change) [5].
They have used the concepts of QPTs, phase coexistence, critical-point symmetries [6,7],
as well as geometrical models [8—13].

Theoretically, QPTs have been mostly studied within the interacting boson model
(IBM). It holds the U(5), SU(3) and O(6) symmetries within the simplest U(6) sym-
metry. The U(5), SU(3) and O(6) dynamical symmetries correspond to the shape phase
of a spheroid, axially prolate rotor and y-soft rotor, respectively [14]. Using the model,
Ginocchio and Kirson [15] and Dieperink e al [16] have pointed out that first-order tran-
sition occurs between O(6) and SU(3) and second-order transition take places between
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U(5) and O(6). More recently, lachello has shown that special solutions of Bohr Hamil-
tonian can describe the properties of nuclei lying at the critical-point symmetries E(5)
and X(5) which correspond to the second-order [6] and first-order transitions [7], respec-
tively. Experimentally, the £(5) and X(5) symmetries have been realized in the spectrum
of 1**Ba [17] and '*2Sm [18], respectively. These experimental realizations have triggered
many works on quantum phase transitions.

In the recent decade, mean-field formalisms (e.g., HFB method [19-21] and relativistic
mean field (RMF) model [22-25]) which predict many nuclear phenomena, have been
successfully employed to investigate shape phase transition in nuclei. The RMF theory
has been used to investigate the critical-point nuclei in even—even Sm [26] and Ce [27]
isotopes. In these studies, '*8:130:1528m and 28:130.132.134Ce have been suggested as exam-
ples of the possible nuclei with X(5) symmetry. Besides, Ti isotopes have been examined
in the HFB method [28] and RMF model [29] to investigate the critical-point nuclei.
In these studies, **32%°Ti and #*3>%°Ti have been found to be critical-point nuclei with
E(5) symmetry. Many isotopic chains in the rare-earth region have been found to be
critical-point nuclei [30,31]. Also, Mo isotopes were investigated by using the RMF the-
ory [32,33] and Yao and Guo [32] suggested **Mo to be a y-unstable nucleus. In these
studies, potential energy curves (PECs) obtained from constrained calculations have been
examined to identify the critical-point nuclei. For E(5) and X(5) symmetries, relatively
flat PECs and PECs with a bump are obtained, respectively (the relation between shape
phase transition and PECs can be found in [5,34]). However, for a quantitative analysis,
electromagnetic transition rates and ratios of excitation energies of nuclei should be cal-
culated [35]. For this reason, the generator coordinate method (GCM) has been used to
employ configuration mixing of angular momentum and particle-number projected rel-
ativistic wave functions [36]. In recent years, the GCM has been extended on triaxial
states [37-39]. However, the application of these methods in a systematic study of shape
transition is still very time-consuming at present because of its triaxiality. It should be
noted, however, that the PECs obtained from constrained calculations are important, and
can provide a qualitative understanding of the QPT. Particularly, the evolution of PECs
along the isotopic or isotonic chains can be useful for investigating shape phase transitions
in nuclei.

Rapid structural evolution in nuclei has been known for about half a century [5].
Classic shape transition regions occur in the light Si-Mg region [40], near A = 100
(Z ~ 40) [41], light rare-earth region (A ~ 150) and actinide region. Besides, the
y-unstable character of nuclei in the mass region A = 120-130 was investigated many
years ago [42]. '>*Te in this region was experimentally investigated and suggested to be
a possible y-soft nucleus [43]. In the present study, constrained HFB method has been
employed to obtain the ground-state properties of !'>~134Te isotopes, such as total bind-
ing energy and quadrupole deformation. The shape evolution of Te isotopes has been
analysed by examining their PECs.

2. Details of calculations

In the present study, the program HFBTHO (v1.66p) [44] is used to carry out
ground-state properties of even—even Te isotopes within the framework of HFB
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method. In this method, a two-body Hamiltonian of a system of fermions is given
by

H = Zenlnzczlcnz + i Z anlnznsmczlczzcmcns ) ()
nina ninansng
where Uy nynan, = (n1n2|V |n3ns — ngns) are antisymmetrized matrix elements of N-N
interaction and ¢ (c¢") is the annihilation (creation) operator. The ground-state wave func-
tion |®) is described as the quasiparticle vacuum o |®) = 0 and the linear Bogoliubov
transformation

o = Z(U:kcn + Vn*kcl-)5 C(Z = Z(Vnkcn + UnkCZ) (2)

provides connection between the quasiparticle operators («, o') and the original particle
operators. The method is mainly based on the density matrix and the pairing tensor. In
terms of the normal p and pairing x one-body density matrices are given by

pan = (@lefcal®) = (VV s s = (Plewes|®) = (VU D (3)
The expectation value of the Hamiltonian (1) can be expressed in terms of an energy
functional:

E —<®|H|®>—T 11“ 1T Ak* 4
[0, k] = (@|P) r[<e+2 )p}—z r[Ax™], 4

where Ty, = Y04 Onimangn Ongny a0d Apny = 5 34 OnnonangKnn, - By means of the
Skyrme forces, the HFB energy (4) has the form of local energy density functional:

Elp,pl = / d*H(r), ®)

where H(r) = H(r) + H (r) is the sum of the mean-field and pairing energy densities.
The variation of the energy (5) in terms of p and p results in Skyrme HFB equations:

3 h(r,0,0") h(r,0,0") U(E,ro’)
— \ h(r,0,0") —h(r,0,0") ) \ V(E, 1o’
_(E+Xx O U(E,ro) ©)
- 0 E—-»x V(E,ro) )’
where A is the chemical potential. h(r, o, 0’) and fz(r, o,0') can be obtained in the
coordinate space [19,44].
The HFB equations (5) can be solved by expanding quasiparticle wave functions that
conserve parity and axial symmetry on a harmonic oscillator basis expressed in coordinate
space as proposed in ref. [44]. For pairing, the zero-range pairing interaction has been

considered and Lipkin—Nogami method has been employed. The oscillator parameter by
has been taken as

by = \/2(h2/2m)(49.2A—1/3). (7)
To obtain the PECs in the present study, the standard quadratic form of the quadrupole
constraint [20,44] has been performed. Sixteen oscillator shells have been taken into
account in the present calculations. A number of effective Skyrme forces can be found
in [45-47]. In this work, the widely used Skyrme force SLy4 [47] has been employed to
calculate properties of even—even Te isotopes with 60 < N < 82.
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3. Results and discussions

The calculated ground-state binding energies for even—even '2~134Te isotopes obtained
from the constrained HFB method are tabulated in table 1. Also, the predictions of RMF
model [48] and the experimental data [49] are listed. The total binding energies of all
isotopes are reproduced well by the SLy4 Skyrme force. The deviations are at most 0.3%.
Also, as can be seen in table 1, the predictions of RMF model with NL3 interaction
are in a good agreement with the available experimental results. The mean differences
between experimental data and the predictions of the HFB method and RMF model with
NL3 interaction are 2.532 and 1.688 MeV, respectively. For this reason, it can be pointed
out that the predictions of both HFB method and RMF model are good in describing the
ground-state binding energies of 27134 Te,

The mean-field formalism based on the Hartree—Fock approximation with phenomeno-
logical effective interactions is important in the microscopic description of nuclei [50,51].
It allows a unified description for properties of nuclei throughout the nuclidic chart. One
of the great achievements of the theory is that it not only reproduces binding energies
and densities, but also provides a good description of the ground-state deformations in
nuclei [52]. In this study, the quadrupole deformation parameters B, for ''>~134Te have
been obtained from constrained HFB method with SLy4 Skyrme force. They are shown
in figure 1. Also, the predictions of RMF model [48] and the experimental data [53]
are shown. The calculated B, values obtained from HFB method with SLy4 parameters
are found to be in good agreement with the experimental data. Only the amplitude of
quadrupole deformation parameter 8, obtained from HFB method and RMF model are
given in figure 1. The exact values of B, are listed in table 2. It should be noted, how-
ever, that 8, cannot be observed directly in an experiment. To obtain experimental j;,
a conventional way is to use electric quadrupole transition rate from the ground-state 0
to the 2% state B(E2) 1 [53]. The correlation between B(E2) 1 and B, can be given
by the formula B = (47/3ZR3)[B(E2) 1 /e*]'/? where Ry = 1.2A'3. The formula
based on rigid rotor cannot always represent a parameter of deformation. Extracting 8, is

Table 1. The total binding energies for the ground-state of !'2~134Te in units of MeV.

Te isotopes This work RMF [48] Exp. [49]
H2Te 937.821 938.880 940.610
H4e 958.058 959.060 961.337
16Te 977.630 978.530 980.860
18T 996.680 997.600 999.454
120 1014.148 1015.640 1017.281
1227 1030.893 1032.530 1034.333
124 1047.472 1049.160 1050.686
126 1063.296 1066.980 1066.368
12816 1078.858 1080.750 1081.439
130 1094.204 1096.430 1095.941
1321 1108.850 1112.220 1109.914
1347 1123.508 1126.430 1123.435

978 Pramana - J. Phys., Vol. 83, No. 6, December 2014



Shape of Te isotopes in mean-field formalism

— T T T T T T T T T 1
04 -

i Te isotopes 1

03F A P i

02 i //x*\x\ T

a ol % aw=%-0 o PY i

A\\X [ ]

0.1 EXNA A ]

| —X— RMF-NL3 \ ~AL J

0.0 F —A—  This work \x__%/'x\%hg .

L ® Exp .

1 1 1 1 1 1 1 1 1 1 1 1

112 116 120 124 128 132 136
Mass Number (A)

Figure 1. The ground-state quadrupole deformation parameters for Te isotopes. The
predictions of the HFB method with SLy4 Skyrme force are compared with those of
the RMF model with NL3 interaction [48] and experimental results [49].

questionable in the case of spherical nuclei, because B(E2)? connects vibrational states
in the spherical nuclei. In particular, the radius Ry is so small for light nuclei. This elic-
its a very large B, deformation with the formula. However, this formula is suitable in
medium-mass and heavy regions [29].

The E(5) critical-point symmetry is related to the shape transition from spherical
to y-unstable nuclei. It has been carried out as a special case of the Bohr Hamilto-
nian [6]. Besides, IBM Hamiltonian at the critical point in the transition from spherical
to y-unstable shape can be represented in the geometrical model by a 8* potential. The
potential is presumed to depend only on the collective variable g and not on y. The E(5)
critical-point symmetry corresponds to a flat-bottomed potential. Systematic investiga-
tions on the shape evolution of some isotopic chains involving nuclei, suggested to be

Table 2. The ground-state quadrupole deformation parameters (f;) for Te isotopes.

Te isotopes This work RMF [48] Exp. [49]
H2Te 0.187 0.164

H4Te 0.304 0.232

16Te —0.171 0.257

18Te —0.173 0.175

120 —0.169 0.179 0.201
1227 —0.135 0.161 0.185
124 —0.096 0.138 0.170
126 —0.093 —0.003 0.153
12816 0.076 —0.002 0.136
130 0.062 0.032 0.118
1321 0.028 0.000

1347 —0.005 0.000
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possible examples of critical-point nuclei with E(5) symmetry, have been carried out by
using RMF model [30] and HFB method [31]. In these studies, rather flat PECs for the
nuclei suggested as good examples of E(5) symmetry have been found. In figure 2, we
show the PECs of '12~134Te. In the figure, the total binding energy of Te isotopes for the
ground state has been considered as the reference. In figure 2, starting from PEC of !'>Te
to '22Te, the nuclei have oblate shape. In the PECs of the '?4~128Te, their barriers against
deformation are weak which means that these nuclei may be in a transitional region. In
particular, the PEC of '**Te in figure 2 seems flat from 8, = —0.2 to 8, = 0.25. Through
these B, ranges, the variation of the energies in the PEC of '**Te are less than 0.4 MeV.
This implies that the barriers against deformation are very weak, and '?*Te may be a pos-
sible example of the critical-point nuclei with E(5) symmetry. The PEC of '3°Te exhibits
slight preference for a prolate shape. PEC of '**Te in figure 2 indicates that '**Te is very
close to spherical shape. Finally, '**Te which has shell closure, at magic neutron number
N = 82, is found to have a spherical shape.

In table 3, the energy differences between the spherical shape and the ground-state
shape of even—even !>~ 134Te isotopes are given to show how the shape of the Te isotopes
changes with the neutron number as an additional evidence to the results of the PECs.
They can show how soft the nucleus is against deformation. The calculated binding energy
differences between the spherical state and the ground state of ''?~!34Te isotopes change
from 0 to 2.572 MeV. Binding energy differences show drastic changes in '20~12*Te. A
clear jump can be seen at '**Te which implies that '>*Te can be a possible candidate for
critical-point nuclei with E(5) symmetry.

Some observables can be found as additional evidences for the confirmation of the
result of this study. The ratios of experimental excitation energies of '>*Te [43] are given
in table 4. The U(5), X(5), SU(3), E(5) and O(6) symmetry predictions are also listed for

8 b 112 F 114 F 116 F 118
Te Te Te Te
s [ r r
ok L L L
Il Il 1 1 1 1 1
o s 120 F 122 F 124 F 126
% T Te Te Te
<
m
/Moo 5 5 F
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Figure 2. The potential energy curves for ''2~134Te obtained from the constrained
HFB method with SLy4 Skyrme force.
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Table 3. The difference of the total binding energies
(in units of MeV) between the spherical state and the
ground state of ''2~134Te obtained by the constrained
HFB method with SLy4 Skyrme force.

Nuclei HFB-SLy4
12 2.329
H4e 2.397
116 2.519
18 e 2.572
120 1.900
1227 1.259
1247 0.354
126 0.410
128 0.227
130e 0.160
132 0.053
134 0.000

Table 4. The ratios of available experimental exci-
tation energies for 124Te isotopes compared with
some theoretical predictions [5-7,43].

Symmetry Rapn Roy2
U@ 2.00 2.00
X(5) 291 5.67
SU@3) 3.33 >2
E(5) 2.20 3.03
0(6) 2.50 4.50
Exp. 2.07 2.75

comparison [6,7,43]. The characteristic ratio R4, = E (4;’) /E (2;’) and the ratio of the
energies of the first two excited 0T states Roy = E (0;’) /E (2?’) are tabulated. As can
be seen in table 4, the E(5) symmetry values obtained from solution of Bohr—Mottelson
differential equations for R4/> and Ry, are 2.20 and 3.03, respectively. They are closer to
the observed ratios R4/, = 2.07 and Ry, = 2.75.

4. Summary

The values of total binding energies and quadrupole deformation parameters for
even—even ''>7134Te isotopes calculated in the constrained HFB method with Skyrme
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SLy4 force are in a good agreement with experimental data. The ground-state shape evo-
lution of Te isotopic chain has been investigated by using the potential energy curves.
124Te has been found to be an example for possible critical-point nucleus, which marks
the phase transition between spherical U(5) and y-unstable shapes O(6).
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