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Abstract. We study the well-known one-dimensional problem of N particles with nonlinear
interaction. The f-Fermi—Pasta—Ulam model is the special case of quadratic and quartic inter-
action potential among nearest neighbours. We enumerate and classify the simple periodic orbits
for this system and find the stability zones, employing Floquet theory. We quantize the nonlinear
normal modes and construct a wavefunction for what we believe is a primitive nonlinear analogue
of a ‘phonon’.
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1. Introduction

Some of the fundamental questions underlying equilibrium statistical mechanics are
related to equipartition and ergodicity [1]. These questions for macroscopic systems are
intimately linked to the dynamical behaviour of the microscopic systems. One of the most
popular systems is chains of particles attached by ‘springs’. The ‘springs’ correspond to
linear and nonlinear forces and these give rise to a set of nonlinear coupled equations
whose analytic solutions are rare. Thus, numerical studies have been carried out for a
large class of these systems, the foremost being the Fermi—Pasta—Ulam (FPU) system
[2]. The breakdown of recurrences due to overlapping resonances [3] and the appearance
of ergodicity with large-scale chaos are quite well-understood [4,5]. A lot of work was
done to study the existence of discrete breathers in the lattice systems [6—8]. Flach and
coworkers [9—11] have studied all the periodic orbits, which are exponentially localized in
g-space of normal modes, where ¢ is the wave number. These periodic orbits are termed
as ‘g-breathers’. By continuing the periodic orbit for the linear system into the domain of
non-zero nonlinearity, for fixed energy, they numerically calculated all exact g-breathers.
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Further, they also carried out stability analysis for these g-breathers by employing Floquet
method [20].

Here, we study the dynamics and stability properties of simple periodic orbits (SPOs)
of the B-FPU lattice. The normal modes employed to study the lattice systems inher-
ently assume linearity of the Hamiltonians, unless one arbitrarily discards the particle
non-conserving terms. We present nonlinear normal modes having the form of elliptic
functions, in spirit of the earlier work by Budinsky and Bountis [12]. These are extended
over all the modes and are valid for all values of 8. The nearest-neighbour interaction
allows only a certain number of modes which are listed here. The stability of these modes
is then presented using the standard analysis. In ref. [13], Lakshmanan and Saxena
have also obtained several static and moving periodic soliton solutions for a classical
anisotropic, discrete Heisenberg spin chain using Jacobi elliptic function. These studies
are important for understanding the equilibration of energy on the one hand, and for quan-
tization in terms of recurrent patterns on the other hand. These are also of a great interest
in nonlinear lattice dynamics [14].

As pointed out in [7], quantization of these systems is rather difficult. One of the possi-
bilities is, of course, a generalization of Gutzwiller’s periodic orbit theory [15] for this
system of many particles. This requires all the periodic orbits with their stability proper-
ties. We are not even close to anything like this. However, we believe that the orbits
(usually called as SPOs) studied here will bring us slightly closer to the Gutzwiller
quantization. The quantization of these systems has been attempted using the Einstein—
Brillouin—Keller (EBK) method in refs [7,16]. Schulman [16] has presented a generalized
EBK method and employed path integral formalism to evaluate the semiclassical wave-
functions. We present our rather simple and straightforward generalization of quantization
of nonlinear normal modes from what is done in constructing phonons from linear normal
modes. The number of nonlinear normal modes and the number of particles for a non-
linear one-dimensional system will not match in general as a chaotic system is certainly
non-integrable.

We consider the 8-FPU Hamiltonian,

N N
1 ) 1 1
H=, ;:l:xf + j§:0j (2(’”“ —x)*+ B —x,»)“) =E, M

where B is a real constant, N is the total number of particles and x; denotes the displace-
ment of the jth particle from its equilibrium position. If we consider nearest-neighbour
interaction, we get equations of motion as follows:

IV
8)(3]

= xjp+x0 =20+ B[ —x)° — O —xo0)*] 2)

Xj =

where
1 1
Vi= ) ((rjp1 = x)% 4 (x; — xj—1)2)+4,3 ((je1 = x4+ (o —x-D%).

3)
We can apply periodic boundary condition (PBC),

xj(t) = xj4n(1), “4)
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or fixed boundary condition (FBC),
Xo(t) = xny41(1) =0V 1. )

We can transform the fixed boundary condition into periodic boundary condition in the
following manner. If N’ is the total number of degrees of freedom or total number of
particles in the problem with FBC and N is the total number of degrees of freedom or
total number of particles for the same Hamiltonian subjected to PBC, then it can be shown
that [17]

N =2N"+2
Xn+N'+1 = —Xn, n:l,z’_“,N/_|_1.

2. Periodic solutions and their stability

We find out all possible SPOs of one-dimensional 8-FPU lattice such that all the particles
are governed by a common equation of motion. As we consider only nearest-neighbour
interaction, we group these basic arrangements of triplets (jth, j + 1th, j — Ith particles)
that yield periodic solution on repetition. We describe the possible arrangements and the
stability of the periodic solutions ensuing therefrom.

2.1 Casel

(O S N N N S S S N

3 4 5 6 7 8 9 10 11 12

When x;, x;;1 and x;_; are in same phase with equal magnitude of displacement, we
get a trivial equation of motion

i =0, ©6)
forj=1,2,...,N.

2.2 Casell

SERRRSTRSTY

When x;;, x2;_; are in same phase and x,;, x2;41 are in opposite phase with equal
magnitude of displacement, we get an equation of motion

i = —2x; — 8px], (7)

forj=1,2,...,N/2and N = 4n, where n = 1, 2, 3, ... . This admits an elliptic solution
of period 4K [5,18],

x(t) = Cen(ht, k), (®)
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where & is the elliptic modulus, and

2 k2
C° = , 9
28(1 — 2k2?) ©)
2
2 — . 10
(1 — 2k2) (10)
For 8 < 0, the solution is
r(t) = Ssn(At, k?), (11)
with
$? = K
28(1 +Kk2)’
2
2 _ . 12
(1+k%) (12)

To find energy per particle, substitute (7) in (1), and let us rewrite the Hamiltonian as

1 . 1 1
H= ) 55+ (z(x,-ﬂ —xpt 4 Bl - x»“)
j=1 j=0
N/2
=Y [#3; +2x3; +4Bx3;]. (13)
j=1
Using eqs (8), (9),
%2 = —Chsn(rt, k*)dn(rt, k?). (14)

Substituting the solution and its derivatives, we get the following expression for the energy
per particle:

E 1 k1-K)

N 280 —2k>?" (15)

2.2.1 Stability. We would like to find out whether the periodic solution given here is
stable. For determining this, we must perform the linear stability analysis for the periodic
orbit employing Floquet theory [20]. To briefly summarize the method [19], stability is
found by perturbing this many-particle orbit, and checking if the perturbed orbit remains
in the vicinity of the original SPO. This complex multidimensional motion is then quan-
tified by the Floquet exponents. Finally, a stability condition gives us the zones in the
parameter-space, where the orbit is stable. Thus, let us begin by perturbing the SPO, x;
to

xj=35j+}’j, (16)
and substitute in (7). We get
o = (14 128822701 — (24 128%7)y2) + 121 (17)
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and

Fojo1 = yaj — (2 + 12B%%) yaj1 + (1 + 1283%) 320, (18)

In this paper, we are presenting the calculation for N = 12, as various distinct SPOs are
shown by taking this many particles. We get

. (2+ 12522) 1 0 0 0 (1 + 12522)
) 1 - (2 + 12ﬁ£—2) (1 + 12ﬁx—2) 0 0 0 ’
ié 0 (1 + 12ﬁ)22) - (2 + 12,8)22) 1 0 0 :é
B 0 0 | ~(2+12852) - 0 0 I
is 0 0 0 (1 + 12,3.%2) o 0 0 s
}g — 0 0 0 0 0 0 \?
i 0 0 0 0 0 0 v
i 0 0 0 0 0 0 s
i 0 0 0 0 0 0 o
11 0 0 0 0 . (1+12,3;2) 0 i1
hip) R Y2

0 0 0 0 . —(2+12ﬁx ) 1
(1 + 12ﬁx—2) 0 0 0 1 - (2+ 12,8)22)
We get the following distinct eigenvalues:

A =0,

Ay = =2,

A= =2 (1412837,

A= —4(1+6p%7),

As = —2(1 + 6832 — V31 + 12852 + 488234,

Ao = —2(1 + 6852 + V31 + 12832 4 488234,

A = —2(1 + 6832 — /1 + 12852 + 1448234,

As = —2(1 + 6852 + /1 + 12852 + 1448254,

For each distinct eigenvalue, we solve the eigenvalue equation to find the corresponding
eigenfunction. Using the solution (8), (9) and u = At, we get the Lamé equation, which
is an example of the Hill’s equation,

Zj(u) + Q)z(u) = 0. (19)
The eigenfunctions z(u) are linear combination of y; and

. dz;(u)

zj(u) = leu (20)

For each distinct eigenvalue, the function Q (u) takes distinct forms. According to Floquet
theory, Q(u) is a T-periodic function with T = 2K, i.e.

Qu) = Q(u + 2K). 21

Depending on the nature of solutions of (19), whether they are bounded or not, the
stability is determined. We express Q(#) and z(«) in Fourier series [20] as

+00 .
ow = Y anfexp<’”lf”>, (22)
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+00 .
dw =Y ¢ exp(’"g”)exp(m, (23)

where y is the Floquet exponent. Substituting (22) in the Hill’s equation (19) and equating
the corresponding coefficients, we get an infinite order matrix, D[iy] with elements as
follows:

Dliylym = an—pm ...n % m,

) . ni \\2
Dliylom = ao — (zy - ( )) . (24)
K
We define another matrix,
A = [Am,n]v
with
A [(nm/K) —iy)*] — ao
e n?m?/K? — ay
—Qm—n
Am,n =

(n*r2/K?) —ap
Also we define,

A1(17/) = [Bm,n]s

Bm,m = 17

—Am—n

(m/K) —iyP—ag ™7 "

man =

Now, P
L : ap— (iy — (nw/K))?
A(iy) = A(iy) Ph—lgonl__[p< ap — (n?m2/K?) )’

) 2 gt — 2
sin(x) = x]:[l< oo > (25)

Using ‘sin(x)’ expansion, we can write

sin(K (iy — y/ao)) sin(K (iy + /ao))

A(y) = —A1G , 26
(iy) 10y) sin? (K Jao) (26)
putting y = 0 for A(0) and further simplifying, we get
.2 .
. sin“(Kiy)
Aliy) =A@ — "5 @7
sin“(K \/ao)
to find roots of the above equation,
A(iy) =0,
sin®(Kiy) = A(0) - sin?(K /ag). (28)
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Figure 1. The plot of cos2aK vs. the elliptic modulus k brings out the regions
of stability. The curves marked ‘1’, ‘2’ 3°, ‘4’ respectively, correspond to the
Q(u)’s equal to 2(1 4 12852), 24 12852 — /3(1 + 12852 + 4882%4), 2+ 12852 +
V14 12852 + 1448234, 2 + 12852 — 1+ 12852 + 144B8234; the regions of

stability are given in table 1.

Table 1. Stability zones in k-space.

Eigenvalue Stability region in k

2(1 4+ 128%2) [0, 0.4479]

2+ 12852 4+ /3(1 + 12822 + 48B2%4) [0, 0.5547] and [0.6918, 0.6935]
2412852 + \/1 + 128%2 + 1448234 [0, 0.3603] and [0.6916, 0.6930]
2412852 — \/1 + 12882 + 1448234 [0, 0.5335] and [0.6385, 0.6494]

Simplifying it further, we get the stability condition,
cos(2Kiy) = 1 — 2sin*(K \/ap) A(0).
Putting iy = o, we get
cos(2aK) = 1 — 2sin*(K /ap) A(0).

(29)

(30)

From figure 1, we can find the regions of stability corresponding to each eigenvalue.

These are summarized in table 1 .
2.3 Case 111
¢ ¢ 7 ¢ ¢

Pramana - J. Phys., Vol. 83, No. 6, December 2014

931



Rupali L Sonone and Sudhir R Jain

When x3;_1, x3;_> are in same phase and x3;_1, x3;4 are in opposite phase with equal
magnitude of displacement and x3; is at rest, we get an equation of motion

ij—xj—ﬂx?, (31)
for j =1,2,..., N/3and N = 3n, even values, where n = 2, 4,... . The solution is,
x(t) = Cen(ht, k%), (32)

with k as elliptic modulus.

) 2k?
C B =2kY)
1
2
= . 33
(1 —2k?) 3
For B < 0, the solution is
r(t) = Ssn(At, k%), (34)
with
2 _ —2k?
B(1+k?)
1
2
= ) 35
(14 k%) 39
To find energy per particle, substituting the solution and its derivative in (1):
E 2 K0-k
_ ( ) (36)

N 3B —2k»)?

2.3.1 Stability. Following the same method as earlier, we get different Hill’s determi-
nants, with distinct eigenvalues as follows:

A =0,

r = —1 — 3832,
A= =3 (14 B1Y),
A= =3 (14337,

s (5 +9B%2) + /9 + 42832 + 818234,

Il
=\

ko = = (5 +9BF%) — /9 + 42532 + 815254, 37)
The stability zones are found as shown in figure 2 and table 2.
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Figure 2. The plot of cos2aK vs. the elliptic modulus k brings out the regions
of stability. The curves marked ‘1°, ‘2°, ‘3’ respectively, correspond to the Q(u)’s

equal to 1 + 38%2, (1/2)(5 + 9852 + /9 + 42852 + 818254), (1/2)(5 + 9B%% —
V9 + 42852 + 818234) ; the regions of stability are given in table 2.

Table 2. Stability zones in k-space.

Eigenvalue Stability region in k
1+ 3p%2 [0, 0.4479]
(1/2)(5 + 9% + \/9 + 42872 + 8182x4) [0.6683, 0.6739]
(1/2)(5 +9B%% — \/9 + 42852 + 8182%4) [0, 0.6221]
2.4 Case IV

[T AL A A A

When x3;_1, x3j_» are in opposite phase and x3;_;, x3;4 are also in opposite phase
with equal magnitude of displacement and x3; is at rest, we get an equation of motion

ij = —3x; — 9Bx], (38)
forj=1,2,...,N/3and N = 3n, wheren = 1, 2, ... . The solution is
x(t) = Cen(ht, k%), (39)
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with & as elliptic modulus.

) 2k>
Cc =
3B(1 — 2k2)’
3
A= . 40
(1 —2k2) (40)
For B < 0, the solution is
r(t) = Ssn(At, k?), (41)
with
5 —2k?
S =
38(1 +k?)
2o 2 (42)
(14K

To find energy per particle, substituting the solution and its derivative in (1):
E 2 kX (1 — k%)

N 3B —2k»)? “43)

2.4.1 Stability. Solving the Hill’s determinant in this case, we get distinct eigenvalues
as follows:

A =0,
A = —1 —3B%2%,
Ay = =3 (1+3p37),
A= =3 (14937,
1
py —2(5+33/6)22) +3/1 + 10822 4 578234,
1
he ==, (5+ 33612) — 3y/1 4 10842 + 57824 (44)

The stability zones are found as shown in table 3 and figure 3.

Table 3. Stability zones in k-space.

Eigenvalue Stability region in k

1+ 3p42 [0, 1/+/2]
3(1+38%2 [0, 1/4/2]

3 El + 9812 [0, 0.4479]

(1/2)(5 + 33B%2) +3/1 + 10852 + 578234 [0, 0.3752] and [0.6984, 0.6993]
(1/2)(5 + 33B%2) — 3,/1 + 10852 + 578234 [0, 0.5875] and [0.6693, 0.6744]
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1

cos 20K
o
T

-0.5 Fo .
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k

Figure 3. The plot of cos 2a K vs. the elliptic modulus k brings out the regions of sta-
bility. The curves marked ‘1°, ‘2’, *3”, ‘4’, ‘5’ respectively, correspond to Q(u)’s equal
to 143852, 3 (1 +3822),3 (1 + 9B%2), 1/2(5+3381%) +3y/1 + 10852 + 578234,
1/2(5433B52)—34/1 4 108£2 + 57B2%4; the regions of stability are given in table 3.

T 0 3 0 /I\ 0 7 o T o 11 0
1 2 \L 4 5 6 \L 8 9 10 \L 12

When x5;1, x2;—1 are in opposite phase with equal magnitude of displacement and x;
is at rest, we get an equation of motion

i) = —2x; — 2Bx], (45)
forj=1,2,...,N/2and N = 4n, wheren = 1, 2, ....,. The solution is
x(t) = Cen(ht, k%), (46)

with & as elliptic modulus.

5 2k
Ce =
B(1 —2k2)’
w= 2 1)
(1 =2kY
For B < 0, the solution is
r(t) = Ssn(At, k?), (48)

Pramana - J. Phys., Vol. 83, No. 6, December 2014 935



Rupali L Sonone and Sudhir R Jain

with
2 _ —2k?
B(l+k2)’
2o 2 (49)
T+ EY
To find energy per particle, substituting solution and its derivative in (1):
E k(1 — k?
_ kX ) (50)

N B —2k>»?

2.5.1 Stability. Solving the Hill’s determinant in this case, we get distinct eigenvalues
as follows:

a =0,

r = —1 — 3832,

A= =2 (143837,

A= =3 (14337,

As = —4 (143837,

he = —(2++/3) (1 +3p37),

A= —(Q2—3)(1+3B%%). (51)

The stability zones are found as shown in figure 4 and table 4.

05| T

cos 20K

- 1 1 1 1 \\\\ 1 1 L

0 0.1 0.2 03 0.4 05 0.6 07

k
Figure 4. The plot of cos2a K vs. the elliptic modulus k brings out the regions of
stability. The curves marked ‘1°, 2’, ‘3’ respectively, correspond to the Q(u)’s equal
to 1 43852, 2(1 + 38%2), (2 — +/3) (1 + 3B%2); the regions of stability are given in
table 4.
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Table 4. Stability zones in k-space.

Eigenvalue Stability region in k
1+ 3p32 [0, 1//2]
2(1 +3p%2) [0, 0.4479]
2 —3) (1+383?) [0, 1/+/2]
2.6 Case VI

T 2 T 4 6 8 T 10 T 12
o4 7 Voo o

When x;, x4 are in opposite phase with equal magnitude of displacement, we get an
equation of motion

T T

ij = —4x; — 168x], (52)
for j =1,2,...,Nand N = 2n, where n = 1, 2, ... . The solution is
x(1) = Cen(rt, k2), (53)

with k as elliptic modulus.

Cc? = «
2B(1 —2k2)’
4
2
= . 54
(1 —2k?) >4
For 8 < 0, the solution is
r(t) = Ssn(At, k%), (55)
with
g K
2B(1 +k2)’
4
2
= . 56
(1+k?%) (>6)
To find energy per particle, substituting solution and its derivative in (1):
E k(1 — k?
_ Kk ) 57)

N B —2k>»?
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1

cos 20K

05 F Tl T ]

Figure 5. The plot of cos2a K vs. the elliptic modulus k brings out the regions of
stability. The curves marked ‘1°, 2°, ‘3’, ‘4’, *5’, ‘6’ respectively, correspond to
the Q(u)’s equal to 1 + 12852, 2 (1 + 128%2), 3 (1 + 128£2), 4 (1 + 12852), 2 +
V3) (14 12B8%%)(2 — v/3) (1 + 12B%?); the regions of stability are given in table 5.

Table 5. Stability zones in k-space.

Eigenvalue Stability region in k

1+ 12852 [0, 1/4/2]
2(1+ 12,3)22) [0, 1/+/2]
3(1+ 128%%) [0, 1/4/2]

4(1+ 12B12) [0, 1/4/2]

2+ 3) (1 + 12B52) 0, 1/v/2]

(2 —+/3) (1 +128%?) [0, 1/4/2]

2.6.1 Stability. Solving the Hill’s determinant in this case, we get distinct eigenvalues
as follows:

A =0,
r = —1 — 12832,

A= —2(1+ 128587,

A= =3 (1412827,

As = —4(1+ 12857,

he = —(2+3) (1 + 12857,

A= —(@2—3)(1+128%%). (58)
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The stability zones are found as shown in figure 5 and table 5.

3. Quantization

We would like to recall the construction of the wavefunction of phonons very briefly
before we write down the wavefunctions in the present case. In the case of a harmonic
chain, the Schrodinger equation is written in terms of normal mode coordinates with cor-
responding frequencies. To recapitulate, we recall this for two masses (mass, m) attached
to two ends by springs and also coupled by an identical spring. The transverse motion of
these masses is quantified by two position coordinates, g;, g, and the conjugate momenta
p1, p2. The coupled equations satisfied by the coordinates can be uncoupled by making
a transformation to the normal coordinates, Q1 = (g1 +¢q2)/ /2 and O =(q—q1)/ V2.
Quantum wavefunction [y (¢)) satisfies the time-dependent Schrédinger equation with
the Hamiltonian expressed in normal mode coordinates. This Hamiltonian is separable,
whereas the Hamiltonian in g, ¢ is non-separable. Due to separability, the ground-state
wavefunction can be expressed as

Vv (Q1. @2) = Yo(Q1)Vo(Q2). (59)

Due to the fact that normal modes could be found, an effective separability is achieved
and consequently, a product wavefunction is realized. These correspond to phonons, and
for a beautiful illustration, see ref. [21].

For the nonlinear problem at hand, we have found nonlinear normal modes. We would
now construct the ground-state wavefunction labelled by the quanta corresponding to
these modes. Unlike the linear case, we do not have the same number of coordinates
as the number of particles and so the problem cannot be separated completely. But these
modes are the ones in terms of which we can write some of the quantum states, if not
all. Elaborate discussion on nonlinear normal mode and quanta of 8-FPU lattice can be
found in [27]. It is rare to be able to write down even approximate solutions of nonlin-
ear many-body problems. For an example of a system, where in spite of chaos, some
eigenfunctions have been written analytically, see ref. [25]. An interesting semiclassical
study of some exact intrinsic localized mode solutions of a one-dimensional anisotropic
Heisenberg ferromagnetic spin chain can be found in ref. [28].

3.1 Semiclassical wavefunctions

As explained above, we shall take each mode and then write the wavefunction in a prod-
uct form as each of the mode is independent. The total wavefunction is then written as
a product wavefunction in the two coordinates. Thus, we need to quantize the quartic
oscillators underlying each of the modes obtained in the last section. We illustrate this for
one mode, and write the final result.

For Case II, the underlying Hamiltonian is

2
Pr iy 2Bx* = const., Ej, (60)

Hi(p,x) = )
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where p is the momentum canonically conjugate to x. The Schrodinger equation is

92 2
2] n

gy T (1= x? = pxtyyn =0, (61)

subjected to the boundary condition that the solution must vanish at infinity. The solution
can be written to a leading order [24]:

1 X
Yi(x) = lel(x)l/“ exp [:i:if k[(u)du:| ,

i L

Ym Yy

0.00040

0.72

0.00038 -
0.71

0.00036

L . - S W6 04 02 02 0.4 be_ w
© (@

[2%

0.785
0.780 -

0.775

I I I
-0.3 -0.2 =0.1 0.1 0.2 0.3

(e)
Figure 6. Wavefunctions calculated semiclassically for each of the modes, shown
here as a function of the variable defining the mode, x;,i = I, 11, ..., V by figures (a),
(b), (¢), (d) and (e) respectively.
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where

2
ki(u) = \/ p2 (B = u — 2pu). (62)

Similarly, we can write wavefunctions for all the cases. Finally, the wavefunction is
W (xy, X, -, Xv) = Y () Y (o) Y () Yy () Yy (xv) - (63)

The product form requires N coordinates for N particles. Thus, the final wavefunction
is a function of all the coordinates. Here, we have integrated the equation representing
Hamiltonian of each case as shown in eq. (60) for Case II. Using the boundary condition
of solution in eq. (62), we then calculated wavefunction for all six cases, i.e. normal
modes. We can show various sections by making projections (figures 7-9). We show
three projections by integrating out the other coordinates. These are contour plots with
lightest colour being maximum.

These contour plots of the product of wavefunctions in the respective normal mode
coordinate planes show the maximum at zero. This is also reflected in figure 6, wherein
the maximum of each wavefunction, plotted against its respective normal mode coordi-
nate, is at zero. Turning points of each wavefunction are calculated by solving the EOM
of each mode, which can also be seen in figure 6.

-1.0 -0.5 0.0

i

Figure 7. Contour plot of wavefunction in the (x;—xpy) plane. The lighter regions
correspond to larger positive values. Thus, we see that the system is ‘bound’ in a cer-
tain region. Of course, the state is residing in a five-dimensional space, each dimension
being taken to build a nonlinear normal mode.
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. P
-0.10 -0.05

-0.4 -0.2 0.0 0.2 0.4

X

Figure 9. Contour plot of wavefunction in the (xiy—xv) plane.

4. Concluding remarks

In this paper, we have considered 12-particle B-FPU lattice with quadratic and quartic
potentials subjected to periodic boundary conditions. Allowing only nearest-neighbouring
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interaction, we have enumerated all possible simple periodic orbits. Further, we have
characterized each of these simple periodic orbit or mode by solving the equation of
motion corresponding to each distinct mode. We have obtained cn and sn Jacobian elliptic
functions as solutions for § > 0 and B < 0 regions, respectively. Energy per particle for
each mode is calculated in terms of the elliptic modulus k and 8. We have carried out the
linear stability analysis for ‘cn elliptic function’ by employing Floquet theory. By solving
the Hill’s equation corresponding to each distinct eigenvalue of all the modes, we have
found the stability regions in ‘k-space’. Some of these simple periodic orbits (Cases IV, V
and VI) have been previously studied and characterized by Antonopoulos, Budinsky and
Bountis [5,12]. They have found elliptic solutions for § > 0 and stability analysis was
carried out for some modes.

In §3, we have semiclassically quantized S-FPU Hamiltonian of Case II using nonlinear
normal modes. Among the various previous attempts, Aubry [7] has done quantiza-
tion of the classical breather in quantum Boson—Hubbard model with boson conservation
using Einstein—Brillouin—Keller (EBK) method, resulting in narrow bands of many bound
bosons. Schulman [26] has studied one-dimensional FPU chain along the Jahn—Teller
distortion axis to explain the anomaly in the relaxation of alkali metal halide crystals
due to the existence of classical breather and quantized [16] it using the generalized
EBK method. Ivic and Tsironis [23] quantized the B-FPU model using boson quanti-
zation rule retaining only the number conserving terms. They have identified on-site
and nearest-neighbouring site biphonons within the mean-field approximation. Recently,
Riseborough [22] calculated the lowest energy quantized breather excitation for 8 and
a-FPU lattice using two-phonon propagators keeping the phonon non-conserving terms
of the Hamiltonian. In §3.1, we have plotted various sections of wavefunctions in the
corresponding normal mode coordinates. The calculations are based on the local analysis
of the Schrodinger equation, and the plots show that each of those are the lowest states.
Thus, the product represents the ground state.
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