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Abstract. A new method, homoclinic (heteroclinic) breather limit method (HBLM), for seek-
ing rogue wave solution to nonlinear evolution equation (NEE) is proposed. (1+1)-dimensional
Boussinesq equation is used as an example to illustrate the effectiveness of the suggested method.
Rational homoclinic wave solution, a new family of two-wave solution, is obtained by inclined peri-
odic homoclinic breather wave solution and is just a rogue wave solution. This result shows that
rogue wave originates by the extreme behaviour of homoclinic breather wave in (1+1)-dimensional
nonlinear wave fields.
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1. Introduction

In recent years, rogue waves, a special type of solitary waves, has triggered much interest
in various physical branches. Rogue wave is a type of wave that seems abnormal, which
is first observed in the deep ocean. Its amplitude is always two to three times higher than
its surrounding waves and generally forms in a short time so that people think that it
comes from nowhere. Rogue waves have been the subject of intensive research in
oceanography [1,2], optical fibres [3–6], superfluids [7], Bose–Einstein condensates
[8], financial markets [9] and other related fields. The first-order rational solution of
the self-focussing nonlinear Schödinger equation (NLS) was first found by Peregrine to
describe the rogue wave phenomenon [10]. Recently, rogue wave solutions in complex
systems such as Hirota equation, Sasa–Satsuma equation, Davey–Stewartson equation,
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coupled Gross–Pitaevskii equation, coupled NLS Maxwell–Bloch equation, coupled
Schrödinger–Boussinesq equation and so on, were obtained [11–17].

In this work, we propose a homoclinic (heteroclinic) breather limit method for seeking
rogue wave solution to NEE. We consider a general nonlinear partial differential equation
in the form

P(u, ut , ux, . . .) = 0,

where P is a polynomial in its arguments. To determine u(t, x) explicitly, we take the
following four steps:

Step 1

By Painlevé analysis, a transformation

u = T (f ),

is made for some new and unknown function f .

Step 2

By using the transformation in Step 1, original equation can be converted into Hirota’s
bilinear form

G(Dt ,Dx; f ) = 0,

where the D-operator [18] is defined by

Dn
t Dm

x f (x, t) · g(x, t) =
(

∂

∂t
− ∂

∂t ′

)n (
∂

∂x
− ∂

∂x ′

)m

×[f (x, t)g(x ′, t ′)]|x′=x,t ′=t .

Step 3

Solve the above equation to get homoclinic (heteroclinic) breather wave solution by
using extended homoclinic test approach (EHTA) [19].

Step 4

Let the period of the periodic wave go to infinity in homoclinic (heteroclinic) breather
wave solution. We shall obtain a rational homoclinic (heteroclinic) wave and this wave is
just a rogue wave.

Now we consider (1+1)-dimensional Boussinesq equation. It is of considerable impor-
tance in both physics and mathematics. It is well known that many attempts have been
made to study the nonlinear evolution equations governing wave motions in media with
damping mechanism. One of the typical examples is the Boussinesq (Bq) equation

utt − uxx − 3(u2)xx + σuxxxx = 0, −∞ < x < ∞, t ∈ R, (1)

where σ > 0 is called the ‘good’ Bq equation and σ < 0 the ‘bad’ Bq equation. Bq
equation can be used to describe many real-world processes such as the propagation of
long waves in shallow water and the oscillations of nonlinear elastic strings. The ‘good’
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Bq equation describes the two-dimensional irrotational flow of an inviscid liquid in a
uniform rectangular channel. There are known results due to local well-posed, global
existence and blow-up of some solutions [20–22]. The ‘bad’ Bq equation is used to
describe two-dimensional flow of shallow water waves having small amplitudes. There is
a dense connection to the so-called Fermi–Pasta–Ulam (FPU) problem. The existence of
Lax pair, Backlund transformation and some soliton-type solutions were also discussed
[22]. Recently, Dai and his group further investigated the Bq equation [23–26] by Hirota
technique and its exact homoclinic orbit, homoclinic breather and bifurcation of solution
were obtained.

This work focusses on rational homoclinic wave solution of (1+1)-D Boussinesq equa-
tion. Applying HBLM to (1+1)-D ‘bad’ Bq equation, we obtain homoclinic breather
solution and rational homoclinic solution. It is interesting to note that the rational homo-
clinic solution obtained here is just a rogue wave. This is the new physical phenomenon
found out till now.

2. Inclined periodic homoclinic breather and rogue waves

We consider ‘bad’ Bq equation

utt − uxx − 3(u2)xx − uxxxx = 0, −∞ < x < ∞, t ∈ R. (2)

It is easy to see that eq. (1) has an equilibrium solution u0 which is an arbitrary constant.
It was shown that u0 is a homoclinic fixed point, when u0 �= −(1/6) [23]. We suppose

u = u0 + 2(ln f )xx, (3)

where f (x, t) are unknown real functions. Substituting (3) into (2), we obtain the
following bilinear equation [19]:

(D2
t − (1 + 6u0)D

2
x − D4

x)(f · f ) = 0, (4)

where D2
xf ·f = 2(fxxf −f 2

x ). In this case, we choose extended homoclinic test function

f = e−p1(x−αt) + b1 cos(p(x + βt)) + b2ep1(x−αt), (5)

where p1, p, α, β, b1 and b2 are real constants to be determined.
Computing D2

t (f · f ),D2
x(f · f ) and D4

x(f · f ), we get

D2
t (f · f ) = 2[b1(p

2
1α

2 − p2β2) cos(p(x + βt))e−p1(x−αt)

+b1b2(p
2
1α

2 − p2β2) cos(p(x + βt))ep1(x−αt)

+4b2p
2
1α

2 − b2
1p

2β2 + 2b1pp1αβ sin(p(x + βt))e−p1(x−αt)

−2b1b2pp1αβ sin(p(x + βt))ep1(x−αt)], (6)

D2
x(f · f ) = 2[b1(p

2
1 − p2) cos(p(x + βt))e−p1(x−αt)

+b1b2(p
2
1 − p2) cos(p(x + βt))ep1(x−αt) + 4b2p

2
1 − b2

1p
2

−2b1pp1 sin(p(x + βt))e−p1(x−αt)

+2b1b2pp1 sin(p(x + βt))ep1(x−αt)] (7)
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and

D4
x(f · f ) = 2[b1(p

4
1 + p4 − 6p2

1p
2) cos(p(x + βt))e−p1(x−αt)

+b1b2(p
4
1 + p4 − 6p2

1p
2) cos(p(x + βt))ep1(x−αt)

+4b2
1p

4 +16b2p
4
1 −4b1(p

3
1p−p3p1) sin(p(x+βt))e−p1(x−αt)

+4b1b2(p
3
1p − p3p1) sin(p(x + βt))ep1(x−αt)]. (8)

Substituting (6)–(8) into (4) yield an algebraic equation of ep1(x−αt). Equating all
coefficients of different powers of ejp(x−αt)(j = −1, 0, 1) to zero, we get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1(p
2
1α

2 − p2β2) − b1(1 + 6u0)(p
2
1 − p2) − b1(p

4
1 + p4 − 6p2

1p
2) = 0,

b1b2(p
2
1α

2 −p2β2)−b1b2(1+6u0)(p
2
1 −p2)−b1b2(p

4
1 +p4 −6p2

1p
2)=0,

4b2p
2
1α

2 − b2
1p

2β2 − (1 + 6u0)(4b2p
2
1 − b2

1p
2) − 4b2

1p
4 − 16b2p

4
1 = 0,

b1pp1αβ + b1pp1(1 + 6u0) − b1(p
3
1p − p3p1) = 0,

b1b2pp1αβ + b1b2pp1(1 + 6u0) − b1b2(p
3
1p − p3p1) = 0.

(9)

Solving eq. (9) and taking p1 = p yield⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p2 = 1

4
(β2 − α2),

b1 = ±2

√
(2α2 − (1 + 6u0) − β2)b2√

2β2 − (1 + 6u0) − α2
,

αβ = −(1 + 6u0).

(10)

Choosing u0 �= −(1/6) and b2 > 0, we get from (10)

|β| > |α|, α = −1 + 6u0

β

and

α2 > 1 + 6u0, u0 < −1

6
or > −1

6
(11)

or

α2 < 1 + 6u0, u0 > −1

6
.

Substituting (10) and (11) into (3) and taking positive and negative signs in eq. (10) yield
the solutions of ‘bad’ Bq equation as follows:

u1(x, t) = u0+
p2

[
h0+2h1 sin(p(x+βt)) sinh

(
p

(
x + 1 + 6u0

β
t

)
+γ

)]
(

cosh

(
p

(
x + 1 + 6u0

β
t

)
+ γ

)
+ h1 cos(p(x + βt))

)2

(12)

and

u2(x, t) = u0+
p2

[
h0 −2h1 sin(p(x+βt)) sinh

(
p

(
x+ 1 + 6u0

β
t

)
+γ

)]
(

cosh

(
p

(
x + 1 + 6u0

β
t

)
+ γ

)
− h1 cos(p(x + βt))

)2 ,

(13)
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where

h0 = 3(β2 − α2)

2β2 − (1 + 6u0) − α2
, h1 =

√
2α2 − (1 + 6u0) − β2√
2β2 − (1 + 6u0) − α2

< 1,

γ = ln
√

b2, p = ±
√

β2 − α2

2
, β, α ∈ R.

The solution u1(x, t) (respectively, u2(x, t)) shows a new family of two-wave, inclined
periodic homoclinic breatherwave, which is a homoclinic wave, homoclinic to a fixed
point u0 of eq. (2), when t → ±∞ [23–25], and meanwhile it is a periodic wave whose
amplitude periodically oscillates with the evolution of time. It shows elastic interac-
tion between a left-propagation (backward direction) periodic wave with speed β and
homoclinic wave of different direction with speed (1 + 6u0)/β. The trajectories of these
solutions are defined explicitly by

p

(
x + 1 + 6u0

β
t

)
+ γ = 0.

That is, these solutions evolve periodically along a straight line with a certain angle with
x-axis and t-axis. So, we can see that this solution is not only a space-periodic breather
or an Akhmediev breather, but also a time-periodic breather or Ma soliton [27]. From
figure 1, it is observed that the spatial structures of the functions u1(x, t) and u2(x, t) are
similar to the structure of breather-type solutions [27] and single homoclinic orbit [28].
At the same time, we can see that an obvious feature of these solutions u1 and u2 is that
it is a singular breather and describes a single wave in localized space and time in each

periodic unit. Meanwhile, it is periodic in p

(
x + 1 + 6u0

β
t

)
+γ = 0 with period 2π/p.

So this solution is called the inclined periodic homoclinic breather solution.
Using eq. (10) and taking b2 = 1, γ = ln(

√
b2) = 0 in u2. So, solution u2 can be

rewritten as follows:

u2(x, t) = u0 +
p2

[
h0 − 2h1 sin(p (x + βt)) sinh

(
p

(
x + 1 + 6u0

β
t

))]
(

cosh

(
p

(
x + 1 + 6u0

β
t

)))
− h1 cos(p(x + βt))2

,

(14)
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Figure 1. Spatial–temporal structures of the inclined periodic homoclinic breather
waves: (a) u1(x, t) and (b) u2(x, t) with p = 0.1, β = −1, u0 = −1/3.
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where

h0 = 12p2

4p2 + β2 − 1 − 6u0
,

h1 =
√

α2 − 1 − 6u0 − 4p2√
4p2 − 1 − 6u0 + β2

.

Now, we consider a limit behaviour of u2 as the period 2π/p of periodic wave
cos(p(x + βt)) goes to infinity, i.e. p → 0. By computing, we obtain the following
result:

Urogue wave = u0 +
8

(
A − 2

(
x + (1 + 6 u0) t

β

)
(x + βt)

)
((

x + (1 + 6 u0) t

β

)2

+ (x + βt)2 + A

)2 , (15)

where

A = − 6

1 + 6 u0
and β2 = −(1 + 6 u0).

From eq. (15), this family of solution is valid, when u0 < −(1/6). Under this condi-
tion, the denominator in eq. (15) is clearly non-singular. From figure 2a, it is observed
that it has one upper dominant peak and two small holes. The spatial structure of
the function Urogue wave has similar structure of the rogue waves, which is a point of
hot discussion recently [29,30]. The maximum amplitude of the rogue wave solution,
Urogue wave, occurs at point (0,0) and the maximum amplitude of this rogue wave solu-
tion is equal to −7u0 − (4/3). The amplitude of Urogue wave is minimum at two points

(t = 0, x = ±3
√

− (1 + 6 u0)
−1), and the minimum amplitude of this rogue wave solu-

tion is equal to 2u0 + (1/6). Urogue wave contains two waves with different velocities and
directions. It is easy to verify that Urogue wave is a rational solution of ‘bad’ Boussinesq
equation. Moreover, we can show that Urogue wave also is a homoclinic solution. In fact,
Urogue wave → u0 for fixed x as t → ±∞. So, Urogue wave is not only a rational homoclinic
solution, but also a rogue wave solution which has two to three times amplitude higher
than its surrounding waves and generally forms in a short time (see figure 2a). It is a new
discovery that the rogue wave solution can come from homoclinic breather solution for
Boussinesq equation (see figures 1a and 1b). One may think whether the energy collection
and superposition of homoclinic breather wave in many periods lead to a rogue wave or
not. Moreover, it follows from figure 2b, that the amplitude of Urogue wave becomes more
and more short as time goes, and finally approaches a non-zero constant background.
It is shown that the rogue wave arises from the non-zero constant background and then
disappears into the non-zero constant background again.

Remark

Applying HBLM to ‘good’ Bq equation and by following the same procedure of dealing
with eq. (2), we can obtain similar results.
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Figure 2. (a) Spatial–temporal structure and (b) plot of Urogue wave for time t =
0 s, 5 s, 20 s with u0 = −(1/3).

3. Conclusions

In this paper, we proposed a new method for seeking rogue wave, i.e. homoclinic (hete-
roclinic) breather variation method (HBLM). Applying this method to ‘bad’ Bq equation,
we obtained a family of inclined periodic homoclinic breather solution and rational homo-
clinic solution. Furthermore, rational homoclinic solution obtained here is just a rogue
wave solution. In future, we intend to study the interaction between breather wave and
solitary wave. We intend to get answers to the following questions: Can we obtain sim-
ilar results to other integrable or non-integrable system with homoclinic or heteroclinic
breather wave? How can one use the homoclinic breather wave to obtain rogue wave
under certain conditions?
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