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Abstract. In this paper, the new generalized (G′/G)-expansion method is executed to find the
travelling wave solutions of the (3+1)-dimensional mKdV-ZK equation and the (1+1)-dimensional
compound KdVB equation. The efficiency of this method for finding exact and travelling wave solu-
tions has been demonstrated. It is shown that the new approach of generalized (G′/G)-expansion
method is a straightforward and effective mathematical tool for solving nonlinear evolution equa-
tions in applied mathematics, mathematical physics and engineering. Moreover, this procedure
reduces the large volume of calculations.
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1. Introduction

Now-a-days nonlinear evolution equations (NLEEs) have been the subject of extensive
studies in various branches of nonlinear science. A special class of analytical solutions,
named travelling wave solutions for NLEEs, are very important, because most of the phe-
nomena that arise in mathematical physics and engineering fields can be described by
NLEEs. NLEEs are frequently used to describe several problems of protein chemistry,
chemically reactive materials, in ecology (most of the population models), in physics (the
heat flow and the wave propagation phenomena), quantum mechanics, fluid mechanics,
plasma physics, propagation of shallow water waves, optical fibres, biology, solid-state
physics, chemical kinematics, geochemistry, meteorology, electricity etc. Therefore,
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investigation of travelling wave solutions is becoming more and more interesting in
nonlinear sciences day-by-day. However, not all equations posed by these models are
solvable. As a result, many new techniques have been successfully developed by diverse
groups of mathematicians and physicists, such as the exp-function method [1–3], the gen-
eralized Riccati equation [4], the Miura transformation [5], the Jacobi elliptic function
expansion method [6,7], the Hirota’s bilinear method [8], the sine–cosine method [9], the
tanh-function method [10], the extended tanh-function method [11,12], the homogeneous
balance method [13], the modified exp-function method [14], the

(
G′/G

)
-expansion

method [15–22], the improved
(
G′/G

)
-expansion method [23], the modified simple

equation method [24–27], the inverse scattering transform [28] and so on.
Recently, Naher and Abdullah [29] established a highly effective extension of the(

G′/G
)
-expansion method, called the new generalized

(
G′/G

)
-expansion method to

obtain exact travelling wave solutions of NLEEs. The objective of this paper is to apply
the new generalized

(
G′/G

)
expansion method to construct exact solutions for nonlinear

evolution equations in mathematical physics through the (3 + 1)-dimensional mKdV-ZK
equation and the (1 + 1)-dimensional compound KdVB equation.

This paper is organized as follows: in §2, the new generalized
(
G′/G

)
-expansion

method is discussed. In §3, this method is applied to the nonlinear evolution equations.
Section 4 has physical explanations while in §5 the comparisons and in §6 conclusions
are given.

2. Material and method

In this section, we describe the new generalized
(
G′/G

)
-expansion method for finding

travelling wave solutions of nonlinear evolution equations. Let us consider a general
nonlinear partial differential equation (PDE) in the form

P(u, ut , ux, utt , utx, uxx, . . .) = 0, (1)

where u = u(x, t) is an unknown function, P is a polynomial in u(x, t) and its derivatives
in which, highest-order derivatives and nonlinear terms are involved and the subscripts
stand for the partial derivatives.

Step 1: We combine the real variables x and t by a complex variable �

u(x, t) = u(�), � = x + y + z ± V t, (2)

where V is the speed of the travelling wave. The travelling wave transformation (2)
converts eq. (1) into an ordinary differential equation (ODE) for u = u(�):

Q(u, u′, u′′, u′′′, . . .) = 0, (3)

where Q is a polynomial of u and its derivatives and the superscripts indicate ordinary
derivatives with respect to �.

Step 2: According to a possibility, eq. (3) can be integrated term by term one or more
times, which yields constant(s) of integration. The integral constant may be zero, for
simplicity.
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Step 3: Suppose the travelling wave solution of eq. (3) can be expressed as follows:

u(�) =
N∑

i=0

ai(d + H)i +
N∑

i=1

bi(d + H)−i , (4)

where either aN or bN may be zero, but both aN or bN could be zero at a time, ai(i =
0, 1, 2, . . . , N) and bi(i = 1, 2, . . . , N) and d are arbitrary constants to be determined
later and H(�) is

H(�) = (
G′/G

)
, (5)

where G = G(�) satisfies the following auxiliary ordinary differential equation:

AGG′′ − BGG′ − EG2 − C(G′)2 = 0, (6)

where the prime stands for derivative with respect to �. A, B, C and E are real parameters.

Step 4: To determine the positive integer N, take a homogeneous balance between the
highest-order nonlinear terms and the derivatives of the highest order appearing in eq. (3).

Step 5: By substituting eqs (4), (5) and (6) in eq. (3) with the value of N obtained in Step
4, we obtain polynomials in (d+H)N(N = 0, 1, 2, . . .) and (d+H)−N(N = 0, 1, 2, . . .).
Then, we collect each coefficient of the resulted polynomial to zero, which yields a set of
algebraic equations for ai(i = 0, 1, 2, . . . , N) and bi(i = 1, 2, . . . , N), d and V.

Step 6: Suppose the value of the constants ai(i = 0, 1, 2, . . . , N), bi(i = 1, 2, . . . , N), d
and V can be found by solving the algebraic equations obtained in Step 5. As the general
solution of eq. (6) is well known to us by inserting the values of ai(i = 0, 1, 2, . . . , N),
bi(i = 1, 2, . . . , N), d and V in eq. (4), we obtain more general type and new exact travel-
ling wave solutions of the nonlinear partial differential eq. (1). Using the general solution
of eq. (6), we have the following solutions of eq. (5):

Family 1: When B �= 0, ψ = A − C and � = B2 + 4E(A − C) > 0,

H(�) =
(

G′

G

)
= B

2ψ
+

√
�

2ψ

C1 sinh
(√

�
2A

�
)

+ C2 cosh
(√

�
2A

�
)

C1 cosh
(√

�
2A

�
)

+ C2 sinh
(√

�
2A

�
) . (7)

Family 2: When B �= 0, ψ = A − C and � = B2 + 4E(A − C) < 0,

H(�) =
(

G′

G

)
= B

2ψ
+

√−�

2ψ

−C1 sin
(√−�

2A
�

)
+ C2 cos

(√−�

2A
�

)

C1 cos
(√−�

2A
�

)
+ C2 sin

(√−�

2A
�

) . (8)

Family 3: When B �= 0, ψ = A − C and � = B2 + 4E(A − C) = 0,

H(�) =
(

G′

G

)
= B

2ψ
+ C2

C1 + C2�
. (9)
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Family 4: When B = 0, ψ = A − C and � = ψE > 0,

H(�) =
(

G′

G

)
=

√
�

ψ

C1 sinh
(√

�
A

�
)

+ C2 cosh
(√

�
A

�
)

C1 cosh
(√

�
A

�
)

+ C2 sinh
(√

�
A

�
) . (10)

Family 5: When B = 0, ψ = A − C and � = ψE < 0,

H(�) =
(

G′

G

)
=

√−�

ψ

−C1 sin
(√−�

A
�

)
+ C2 cos

(√−�

A
�

)

C1 cos
(√−�

A
�

)
+ C2 sin

(√−�

A
�

) . (11)

3. Applications

In this section, we shall apply the new generalized (G′/G)-expansion method to find
exact solutions and the solitary wave solutions of the following two nonlinear evolution
equations.

3.1 The (3 + 1)-dimensional mKdV-ZK equation

In this section we will exploit the new generalized (G′/G)-expansion method to find
exact solutions and then the solitary wave solutions of the (3+1)-dimensional mKdV-ZK
equation in the form

ut + αu2ux + (
uxx + uyy + uzz

)
x

= 0. (12)

The wave transformation equation u(�) = u(x, y, z, t), � = x + y + z − V t . Reduce
eq. (12) into the following ODE:

−V u′ + αu2u′ + (3u′′)′ = 0, (13)

where the superscripts stand for the derivatives with respect to �.
Integrating eq. (13) with respect to �, we get the following ODE:

P − V u + 1

3
αu3 + 3u′′ = 0, (14)

where P is an integral constant that can be determined later.
Equating u3 with u′′ yields N = 1. Consequently, eq. (19) has the formal solution

u(�) = a0 + a1(d + H) + b1(d + H)−1, (15)

where a0, a1, b1 and d are constants to be determined.
Substituting eq. (15) together with eqs (5) and (6) into eq. (14), the left-hand side

is converted into polynomials of (d + H)N (N = 0, 1, 2, . . .) and (d + H)−N (N =
1, 2, . . .). We collect each coefficient of these resulted polynomials to zero, which yields a
set of simultaneous algebraic equations (for minimalism the equations are not displayed)
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for a0, a1, b1, d and V. Solving these algebraic equations with the help of a symbolic
computation software, such as Maple, we obtain the following:

a0 = −3(2dψ + B)

±Aα

√
−2
α

, b1 = 0, d = d, a1 = ±3ψ

A

√−2

α
,

V = − 3

2A2

(
B2 + 4Eψ

)
, P = 0, (16)

where ψ = A − C, A, B, C and E are free parameters.
Substituting eq. (16) in eq. (15), along with eq. (7) and simplifying, yields the following

travelling wave solutions (if C1 = 0 but C2 �= 0 and C2 = 0 but C1 �= 0), respectively:

u1(�) = ± 3
√

�

A
√−2α

coth

(√
�

2A
�

)

,

u2(�) = ± 3
√

�

A
√−2α

tanh

(√
�

2A
�

)

,

where

� = x −
{
− 3

2A2

(
B2 + 4Eψ

)}
t.

Substituting eq. (16) in eq. (15), along with eq. (8) and simplifying, the obtained exact
solutions become (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0), respectively:

u3(�) = ± 3i
√

�

A
√−2α

cot

(√−�

2A
�

)

,

u4(�) = ± 3i
√

�

A
√−2α

tan

(√−�

2A
�

)

.

Substituting eq. (16) in eq. (15) together with eq. (9) and simplifying, we obtain

u5(�) = ± 6ψ

A
√−2α

(
C2

C1 + C2�

)
.

Substituting eq. (16) in eq. (15), along with eq. (10) and simplifying, we obtain the
following travelling wave solutions (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0),
respectively:

u6(�) = ± 1

A
√−2α

(

3B − 6
√

� coth

(√
�

A
�

))

,

u7(�) = ± 1

A
√−2α

(

3B − 6
√

� tanh

(√
�

A
�

))

.
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Substituting eq. (16) in eq. (15), together with eq. (11) and simplifying, our obtained exact
solutions become (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0), respectively:

u8(�) = ± 1

A
√−2α

(

3B − 6i
√

� cot

(√−�

A
�

))

,

u9(�) = ± 1

A
√−2α

(

3B + 6i
√

� tan

(√−�

A
�

))

.

3.2 The (1 + 1)-dimensional compound KdVB equation

In this section, we shall utilize the new generalized (G′/G)-expansion method to find
exact solutions and then the solitary wave solutions of the (1+1)-dimensional compound
KdVB equation in the form

ut + αuux + βu2ux + γ uxx − δuxxx = 0, (17)

where α, β, γ and δ are nonzero constants.
The wave transformation equation u(�) = u(x, t),� = x − V t . Reduce eq. (17) into

the following ODE:

−V u′ + αuu′ + βu2u′ + γ u′′ − δu′′′ = 0, (18)

where the superscripts stand for derivatives with respect to �.
Integrating eq. (18) with respect to �, we get the following ODE:

P − V u + 1

2
αu2 + 1

3
βu3 + γ u′ − δu′′ = 0, (19)

where P is an integral constant that can be determined later.
Taking the homogeneous balance between u3 and u′′ in eq. (19), we obtain N = 1.

Therefore, the solution of eq. (19) is of the form

u(ξ) = a0 + a1(d + H) + b1(d + H)−1, (20)

where a0, a1, b1 and d are constants to be determined.
Substituting eq. (20) together with eqs (5) and (6) in eq. (19), the left-hand side is con-

verted into polynomials in (d + H)N (N = 0, 1, 2, . . .) and (d + H)−N (N = 1, 2, . . .).
We collect each coefficient of these resulted polynomials to zero, which yields a set of
simultaneous algebraic equations (for minimalism the equations are not displayed) for a0,
a1, b1, d and V. Solving these algebraic equations with the help of a symbolic computation
software, such as Maple, we obtain the following:

a0 = m2

2Aβm1
, a1 = ψm1

A
b1 = 0, d = d,

V = − 1

12A2βδ
(3A2δα2 − 2A2βγ 2 − 24Aδ2Eβ − 6δ2B2β + 24δ2CEβ),

P = 1

72δβ2A2m1
(−6A2αm1βγ 2 + 3A2α3m1δ + 8A2βγ 3 − 72Aαm1δ

2Eβ

−288Aβγ δ2E + 72αm1δ
2CEβ − 72δ2γB2β + 288βγCδ2E

−18αm1δ
2B2β), (21)
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where

ψ = A − C, m1 = ±
√

6δ

β
,

m2 = −(Aαm1 − 2γA + 12δdA − 12δCd + 6δB)

and A, B, C and E are free parameters.
Substituting eq. (21) in eq. (20), along with eq. (7) and simplifying, yields the following

travelling wave solutions (if C1 = 0 but C2 �= 0 and C2 = 0 but C1 �= 0), respectively:

u10(�) = 1

2Aβm1

{

m2 + βm2
1

(

2ψd + B + √
� coth

(√
�

2A
�

))}

,

u11(�) = 1

2Aβm1

{

m2 + βm2
1

(

2ψd + B + √
� tanh

(√
�

2A
�

))}

,

where

� = x −
{
− 1

12A2βδ

(
3A2δα2 − 2A2βγ 2

−24Aδ2Eβ − 6δ2B2β + 24δ2CEβ

)}
t.

Substituting eq. (21) in eq. (20), along with eq. (8) and simplifying, the obtained exact
solutions become (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0), respectively:

u12(�) = 1

2Aβm1

{

m2 + βm2
1

(

2ψd + B + i
√

� cot

(√−�

2A
�

))}

,

u13(�) = 1

2Aβm1

{

m2 + βm2
1

(

2ψd + B − i
√

� tan

(√−�

2A
�

))}

.

Substituting eq. (21) in eq. (20) together with eq. (9) and simplifying, we obtain

u14(�) = 1

2Aβm1

{
m2 + βm2

1

(
2ψd + B + 2ψ

(
C2

C1 + C2�

))}
.

Substituting eq. (21) in eq. (20), along with eq. (10) and simplifying, we obtain the
following travelling wave solutions (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0),
respectively:

u15(�) = 1

2Aβm1

{

m2 + 2βm2
1

(

ψd + √
� coth

(√
�

A
�

))}

,

u16(�) = 1

2Aβm1

{

m2 + 2βm2
1

(

ψd + √
� tanh

(√
�

A
�

))}

.

Substituting eq. (21) in eq. (20), together with eq. (11) and simplifying, our obtained exact
solutions become (if C1 = 0 but C2 �= 0;C2 = 0 but C1 �= 0) respectively:

u17(�) = 1

2Aβm1

{

m2 + 2βm2
1

(

ψd + i
√

� cot

(√−�

A
�

))}

,

u18(�) = 1

2Aβm1

{

m2 + 2βm2
1

(

ψd − i
√

� tan

(√−�

A
�

))}

.
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4. Physical explanation

In this section we shall put forth the physical significances and graphical representa-
tions of the obtained results of the (3+1)-dimensional mKdV-ZK and (1+1)-dimensional
compound KdVB equations.

4.1 Results and discussion

Solutions u1(�), u2(�), u6(�), u7(�), u10(�), u11(�), u15(�) and u16(�) are hyper-
bolic function solutions. Solutions u1(�), u6(�), u10(�) and u15(�) are the single
soliton solutions. Figure 1 shows the shape of the exact single soliton solution (shows
only the shape of solution of u10(�) for A = 4, B = 1, C = 1, E = 1, α = 1, β = 1,
γ = 1, δ = 1, d = 1 with −10 ≤ x, t ≤ 10). The shape of the figure of solutions
u1(�), u6(�) and u15(�) are similar to the shape of the figure of solution u10(�). Solu-
tions u2(�) and u7(�) are singular soliton solutions. Figure 2 shows the shape of the
exact singular soliton solution (shows only the shape of solution of u7(�) for A = 2,
B = 0, C = 1, E = 1, α = 1 with −10 ≤ x, t ≤ 10). The shape of the figure of
solution u2(�) is similar to the shape of the figure of solution u7(�). Solutions u11(�)

and u16(�) are the kink solutions. Figure 3 shows the shape of the exact kink solution
(shows only the shape of solution u11(�) for A = 2, B = 0, C = 1, E = 1, α = 1 with
−10 ≤ x, t ≤ 10 ). The disturbance with y = z = 0 represented by u11 (�) moves in
the positive x-direction. Solutions u3(�), u4(�), u8(�), u9(�), u12(�), u13(�), u17(�)

and u18(�) are complex periodic travelling wave solutions. Solutions u3(�), u12(�)

and u17(�) are the single soliton solutions. The shape of the figure of solutions u3(�),
u12(�) and u17(�) are similar to the shape of the figure of solution u10(�). Solution
u13(�) is the kink solution. The shape of the figure of solution u13(�) is similar to the

Figure 1. Single soliton.
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Figure 2. Singular soliton.

shape of the figure of solution u11(�). Solutions u4(�), u8(�), u9(�) and u18(�)

are the exact periodic travelling wave solutions. Figure 4 shows the multiple cuspon
obtained from solution u9(�) and graph of the solution u9(�), for A = 1, B = 0, C = 2,
E = 2, α = 1, d = 1, y = 0, z = 0 has been plotted within −1 ≤ x, t ≤ 1. For convenience

Figure 3. Kink solution.
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Figure 4. Periodic solutions.

this figure is omitted. Solutions u5(�) and u14(�) are complex rational travelling wave
solutions. Figure 5 shows the shape of the exact soliton solution (shows only the shape
of solution of u5(�) for A = 1, B = 2,C = 2, E = 1, α = 1, d = 1, C1 = 2, C2 = 1, y = 0,
z = 0 with −10 ≤ x, t ≤ 10). Figure 6 shows the shape of the exact singular kink

Figure 5. Soliton solution.
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Figure 6. Singular kink solution.

solution (shows only the shape of solution of u14(�) for A = 1, B = 2, C = 2, E = 1,
α = 1, d = 1, C1 = 2, C2 = 1, β = 1, y = 1, δ = 1 with −10 ≤ x, t ≤ 10).

4.2 Graphical representation

The graphical depictions of the obtained solutions for particular values of the arbitrary
constants are shown in figures 1–6 with the aid of the commercial software Maple.

5. Comparison

Zayed [30] investigated exact solutions of the (3+1)-dimensional mKdV-ZK equation
by using the (G′/G)-expansion method and obtained only five solutions (A1)–(A5) (see
Appendix). Moreover, in this paper nine solutions of the (3+1)-dimensional mKdV-ZK
equation are constructed by applying the new approach of generalized (G′/G)-expansion
method. But, by means of the new approach of generalized (G′/G)-expansion method,
we obtained solutions which are different from Zayed [30] solutions. These solutions
are new and were not obtained by Zayed [30]. On the other hand, the auxiliary equation
used in this paper is different, and so the solutions obtained also different. Similarly, for
any nonlinear evolution equation it can be shown that the new approach of generalized
(G′/G)-expansion method is much easier than the other methods.

6. Conclusions

The new generalized (G′/G)-expansion method in this paper was applied to the (3+1)-
dimensional mKdV-ZK and (1+1)-dimensional compound KdVB equations for finding
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exact solutions and the solitary wave solutions of these equations which attracted the
attention of many mathematicians. The obtained solutions showed that the new general-
ized (G′/G)-expansion method is more effective and more general than the other methods
(e.g., the (G′/G)-expansion method), because it gives more new solutions. Consequently,
this simple and powerful method can be more successfully applied to study nonlinear par-
tial differential equations, which frequently occur in engineering sciences, mathematical
physics and other scientific real-time application fields.

Appendix. Zayed solutions

Zayed [30] examined the exact solutions of the nonlinear (3+1)-dimensional mKdV-ZK
equation by using the (G′/G)-expansion method. He found the following five solutions
of the form:

u(ξ) = −3

√−2

α
i sec hξ, (A.1)

u(ξ) = 3

√−2

α
i sec ξ, (A.2)

u(ξ) = ±3

√−2

α
(coth ξ − tanh ξ), (A.3)

u(ξ) = ±3

√−2

α
(cot ξ + tan ξ), (A.4)

u(ξ) = ±3

√−2

α

(
B

Bξ + c1

)
. (A.5)
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