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Abstract. We discuss aspects of entanglement and quantum discord, two of the quantum correla-
tions that are of much interest in the field of quantum information. Their definitions and handling
will be discussed, with simple illustrative examples. A specific example is of entanglement decay
resulting from a simple dissipative process and how to alter that decay. An analytical prescription
for computing quantum discord when a qubit (spin-1/2 or two-level quantum system) is involved is
presented along with applications, and its generalization to higher spins (many levels) indicated.
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1. Introduction

Quantum information, an umbrella term to embrace quantum computing, quantum tele-
portation, and quantum key distribution, exploits fundamental principles of quantum
physics:superposition, entanglement, and identity of particles [1]. Each of these non-
classical features makes possible certain calculations, or of speed up in them, that is not
achievable with classical objects or phenomena. Thus, the principle of superposition,
which speaks to the linearity of quantum physics at its fundamental level, allows a qubit
(a quantum two-level system) to be in a superposition with complex coefficients of the
two base states |0〉 and |1〉. This amounts to a three-parameter (normalization fixes one of
the four real parameters in the two complex coefficients) infinity of states, a vastly larger
state space than the two states of a classical bit. There lies the potential both for a vastly
larger memory and for the speed-up of calculations that lend excitement to the field of
quantum computing.

Next, a quantum system built-up of at least two parts, such as a pair of qubits, exhibits
unique correlations between them, entanglement being the best known [2]. Such pairs
lead to logic gates for quantum computation [1], and a shared entangled state is the way
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to teleport a quantum state [1,3] or securely exchange a cryptographic key between two
parties [4]. Other types of quantum correlations may also be useful for some applica-
tions. In this paper, after §2 that sets out definitions and notation, §3 will consider an
entangled pair of qubits and a phenomenon called finite end of that entanglement under
dissipative processes [5] and how to alter that end through unitary operations individu-
ally on the two qubits [6]. Section 4 presents a correlation called discord between two
subsystems [7], along with an analytical procedure for calculating it when one of the sub-
systems is a qubit [8,9]. A generalization for higher-dimensional ‘qudits’ will be briefly
discussed.

This paper will not consider the hardware for implementing qubits. Many candidate
systems are being explored: Nuclear magnetic resonance, Josephson junctions, trapped
atoms and ions, electron spins, quantum dots, photon polarization, nitrogen vacancies
in diamond, impurities embedded in silicon, etc. This paper was presented in a laser
workshop, laser technology being involved in some of these alternatives being explored.
But it focusses on ‘software’ questions, namely the quantum principles behind the appli-
cations of quantum information that are common to whatever specific hardware may
be used.

2. Pure and mixed states and their density matrices

Pure states of a qubit, such as |0〉, |1〉, or their superposition such as (|0〉+|1〉)/√2 can be

represented by column vectors with two entries as
(

1
0

)
,
(

0
1

)
, and

(
1/

√
2

1/
√

2

)
, respectively.

Corresponding to these kets, their density matrices ρ that are in the form of a ket-bra are(
1 0
0 0

)
,
(

0 0
0 1

)
, and

(
1/2 1/2
1/2 1/2

)
, respectively. Density matrices are normalized so as to have

unit trace and for all such pure states, the trace remains invariant upon squaring ρ.
Generally, one has access not to pure states but mixed states. They cannot be repre-

sented by ket vectors but only through density matrices and for them, Tr(ρ2) < Tr(ρ) = 1.

An example is
(

1/2 0
0 1/2

)
. No column vector representation is available for such a mixed

state. Rather, one may regard states such as this as resulting from a random averaging of
the phases in superposing the two base states with complex coefficients, thus rendering
the off-diagonal entries to be zero. One can also define a von Neumann entropy analogous
to thermodynamic entropy or Shannon’s information entropy through [1,10]

S = −Tr(ρ logρ), (1)

the logarithm taken to base 2. The trace involves a sum over the eigenvalues of ρ; for all
pure states, with these eigenvalues always 0 or 1, S vanishes. On the other hand, mixed
states have non-zero entropy, the example above having S = 1.

This terminology and notation extends to all quantum states. Moving to a bipartite
system such as two qubits, we have four base states. Taking product states of the two
qubits, a ‘separable’ basis may be represented as |00〉, |01〉, |10〉, |11〉, with entries for
the first and second qubit shown inside the ket. Their wave functions are direct products
of those of the individual qubits and may be represented by column vectors with four
entries, successive unit entries in the four positions starting from the top with all other
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entries being zero. Their density matrices will be 4×4 with a unity in one of the diagonal
positions and all other entries zero. On the other hand, taking the simple superposition
state (|0〉 + |1〉)/√2 mentioned above for each qubit, a product of them gives a column
vector with 1/2 in each of the four entries or a density matrix with 1/4 in all the 16 entries.
Again, the eigenvalues are all 0 or 1 and the entropy zero.

There are also other pure states such as the ‘singlet’ state (|01〉 − |10〉)/√2. Its ket
column vector has entries, in order, (0, 1/

√
2,−1/

√
2, 0), with the corresponding den-

sity matrix that has four non-zero entries in the middle, and again has S = 0. It differs,
however, from the states previously mentioned by not being separable, the state vectors
not factorizing as a product of those for each qubit. The state is ‘entangled’. The spin
state of the helium atom in its ground state is such a singlet, a state with definite quan-
tum number, namely zero, for the total spin operator �S2 and its projection Sz, which
commute with the total Hamiltonian and with each other. On the other hand, this set of
mutually commuting operators cannot accommodate the individual spin operators sz of
the electrons so that no definite value attaches to them, both ±1/2 occurring with equal
probability, only with the proviso that when one is 1/2, the other is necessarily −1/2.
The spins are entangled. Its ‘triplet’ counterpart, with a plus sign in place of the minus,
is also similarly entangled, with definite total values (spin = 1, projection Sz = 0) but
the individual spin projections undetermined. Along with the two other linear superpo-
sitions, ((|00〉 ± |11〉)/√2, of the base states (these are also triplets but without definite
Sz), these four states also provide a basis for the two qubits but now each of the four is
non-separable. Indeed, they are maximally entangled and are the so-called ‘Bell states’
(§1.3.6 of [1]). Note again that all are pure states and thus have both a ket vector and
density matrix representation, the latter having all eigenvalues zero or unity and thus with
zero entropy. In §4, we consider how another type of quantum correlation called quan-
tum discord distinguishes between entangled and unentangled states through a further
consideration of entropy.

With entanglement for pure states defined in terms of whether the wave function
factorizes or not, we consider next mixed states of a bipartite system AB. A natural gen-
eralization is whether the density matrix for the total ρAB decomposes into the direct
product of individual density matrices ρA and ρB or, in a further extension, to a sum of
such direct products with positive definite coefficients,

ρAB =
dA∑
i=1

piρ
A
i ⊗ ρB

i , (2)

with pi ≥ 0. pi may be interpreted as the probability of each separable component i.
Such a density matrix is said to describe a separable, unentangled mixed state. As such a
constructive decomposition of a separable mixed state may not always be easy to obtain,
other methods are necessary to determine whether a density matrix is separable. For a
pair of qubits, two convenient methods are to compute the ‘concurrence’ [11] through the
eigenvalues of ρ(σy ⊗ σy)ρ

∗(σy ⊗ σy) or by examining the eigenvalues of the ‘partially
transposed’ density matrix in which just one of the spins is transposed [12]. For higher-
dimensional spins, no such measures on mixed state density matrices are available for
determining whether a bipartite system is entangled or not [13]. This remains a major
open question in the topic of entanglement.
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3. Entanglement dissipation and its avoidance

As a simple pedagogical example to illustrate the aspects of entanglement and its time
evolution, consider two qubits where the excited state |0〉 decays spontaneously to the
ground state |1〉 with a rate � for each qubit [5]. This is the only dynamics postulated
and there is no coupling between the qubits. We shall follow the time evolution of var-
ious initial density matrices ρ(0). It is clear at the outset that, whatever the initial state,
entangled or not, at asymptotically large time, both qubits will be in the ground state and,
therefore, the system will be in |11〉 with no entanglement. What makes this system inter-
esting, however, is that for certain initial configurations, the entanglement can vanish at
a finite time even though there is still some population in the excited states [5]. Thus,
entanglement can decay away even when excitation has not completely dissipated.

Consider, for instance, a density matrix
⎛
⎜⎜⎝
a(t) 0 0 0

0 b(t) z(t) 0
0 z∗(t) c(t) 0
0 0 0 d(t)

⎞
⎟⎟⎠ , (3)

with unit trace, a(t) + b(t) + c(t) + d(t) = 1. With many zero entries, this is a subset
of the general two-qubit density matrix, indeed a further subset of what are called X-
states [5,14,15] which have non-zero entries only along the diagonal and antidiagonal.
The time evolution under the postulated decay is easily followed. Each |0〉 amplitude
decays exponentially to |1〉 so that the only off-diagonal element’s evolution is immediate:
z(t) = z(0) exp(−�t). The four diagonal elements are coupled, a decreasing at a rate 2�
while ‘feeding’ with rate � into b and c, while b and c decrease with rate � as they feed
into d .

Such a set of coupled equations is readily solved. An initial Bell state, with a(0) =
d(0) = 0, b(0) = c(0) = 1/2, z(0) = ±1/2, retains its entanglement at all t , reduc-
ing to the final unentangled state with d = 1 and all other coefficients zero only in
the limit of infinite time. On the other hand, an initial state such as d(0) = 0 and all
other coefficients initially equal to 1/3, loses its entanglement at a finite time t0, given by
�t0 = ln(1 + 1/

√
2) ≈ 0.535 [5]. Using photon polarization as the two states of a qubit,

such a finite time end of entanglement of certain density matrices has been experimentally
demonstrated [16].

A next interesting question is whether external intervention can alter the decay of entan-
glement. It is in the nature of entanglement that individual unitary operations on the
qubits cannot change the amount of entanglement correlation between them. But there
is an asymmetry with respect to the time evolution of the system in that only the upper
state decays while the lower one does not. Therefore, a unitary transformation of one
or both qubits that switches the base states |0〉 and |1〉 into each other, while leaving the
entanglement unaffected at that instant, nevertheless, can alter the subsequent evolution.
Indeed, as illustrated in figure 1, depending on when the switch is made, further evolution
can be altered in many ways [6]. Once launched from t = 0 with coefficients such as
to have entanglement die at t0, if a switch is made between tA and t0, entanglement will
end even sooner, while for switches between tB and tA, the entanglement persists past t0
although still terminating at a later finite time. Should the switch be made early enough,
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Figure 1. Evolution of negativity N, an index of entanglement, of a mixed state den-
sity matrix of two qubits [6]. The solid line shows evolution to zero entanglement at
time t0. The dash–dot line shows an even faster end of entanglement if base states of
both qubits are switched at a time tA < t < t0. The large-dash line shows a delay
in the end for switches made at tB < t < tA. The short-dash line shows a complete
avoidance of a finite end, N decaying only asymptotically, for switch times t < tB.

before tB, then the finite time end can be completely averted, entanglement vanishing only
asymptotically. The values tA and tB of critical times depend, of course, on the initial val-
ues of the parameters in eq. (3) [6]. There have been many studies of different dissipative
mechanisms and couplings between the two qubits and of switchings done at one or both
ends to study such entanglement decay and revival [17].

4. Quantum discord

As in classical physics with many types of correlations between subsystems, many quan-
tum correlations besides entanglement have been discussed [18]. A prominent one is
called quantum discord [7], the name itself not illuminating and perhaps unfortunate.
It is a very different type of correlation from entanglement with no simple relationship
between them as we shall see now. It rests on the definition of entropy introduced ear-
lier in §2 both for the full system and for the subsystems and on extracting out all the
classical correlations so that what is left is ascribed to ‘quantum discord’. Compared to
entanglement based on separability of the density matrix with measures available only for
spin-1/2 but not higher-dimensional subsystems, entropies and quantum discord can be
calculated, at least in principle, for any dimensional density matrices and systems. On the
other hand, the subtraction of all classical correlations poses a major challenge in calcu-
lating quantum discord, especially for larger dimensions. More recently, a variant called
geometrical discord [19] that is more accessible has been advanced and we shall consider
both in this section.

4.1 Entropic measure

With entropy as defined in eq. (1), correlations in a bipartite quantum state are quantified
by their ‘quantum mutual information’ defined as [20]

I(ρAB) = S(ρA)+ S(ρA)− S(ρAB), (4)
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in terms of the entropies of the composite system AB and of the individual subsystems
A and B upon tracing over one of them. Thus, for a separable, pure state |00〉, whose
ρAB is a 4 × 4 matrix with 1 in the first element and all others zero, ρA and ρB are both
2 × 2 matrices with entry 1 in the first element and three zeroes, and all S and thereby I
in eq. (4) vanish. On the other hand, a pure entangled Bell state |ψ−〉 = (|01〉− |10〉)/√2
has ρAB as in eq. (3) with a = d = 0, b = z = c = 1/2, with vanishing S while

ρA and ρB are
(

1/2 0
0 1/2

)
which are mixed states with S = 1. Therefore, the quantum

mutual information is 2. This same value applies to all the maximally entangled Bell
states and the quantity I proves convenient for distinguishing separable from entangled
pure states. It also represents the maximum amount of information that A can send to B
using the correlated quantum state between them as the key for one-time pad cryptography
[21].

Clearly, there is also classical correlation in such a coupled state AB, namely one clas-
sical bit of information that can be exchanged between A and B. This leads to the concept
of quantum discord as the correlation that exists beyond the classical,

Q(ρAB) = I(ρAB)− C(ρAB), (5)

its maximum amount, achieved in Bell states, being unity.
In extending to mixed states, eq. (4) continues unchanged. There remains the definition

of the classical correlation to obtain quantum discord. The logic followed is that any
measurement carried out on A alone with no involvement of B cannot affect a quantum
correlation between them. Therefore, the classical correlation is defined as

C(ρAB) = sup
Ai

(
S(ρB)− S(ρAB|{Ai})

)
, (6)

where the supremum is to account for the maximum possible classical correlation by
considering all possible measurements Ai on A, and S(ρAB|{Ai}) = �ipiS(ρi) with the
conditional density operator defined as

ρi = (Ai ⊗ I)ρAB(Ai ⊗ I)
pi

. (7)

Here, I stands for the identity operator for the second subsystem, and the measurement
operators Ai = U |i〉〈i|U † are chosen by transforming the orthogonal projectors �i =
|i〉〈i|, i = 0, 1 for subsystem A along the computational basis kets |i〉 by a general unitary
transformationU , and pi = Tr((Ai⊗I)ρAB(Ai⊗I)) [22]. More generally, to embrace all
possible measurements on A, one would use positive operator valued measures (POVM)
Ei (§2.2.6 of [1]) rather than orthogonal projectors�i but for qubits, this is not necessary,
the latter being sufficient.

For a qubit A, the unitary operatorU can be parametrized in terms of the Pauli matrices
as U = tI + i �y·�σ , where the four parameters t, �y are constrained by unitarity: t2 + y2

1 +
y2

2 + y2
3 = 1 [22]. The three independent parameters can be redefined into the unit vector

�z defined as [22]

�z = {2(−ty2 + y1y3), 2(ty1 + y2y3), t
2 + y2

3 − y2
1 − y2

2}. (8)

236 Pramana – J. Phys., Vol. 83, No. 2, August 2014



Entanglement and discord for qubits and higher spin systems

This unit vector is relevant for the choice of measurement directions i = ±ẑ. For any
vector �V and direction ±ẑ, the vector identity, Ai(�σ · �V )Ai = ±(�z · �V )Ai , together with
Ai = U |i〉〈i|U † = (1 ± �z · �σ)/2, leads to the standard polar decomposition

A+ =
(

cos2(θ/2) 1
2 sin θe−iφ

1
2 sin θeiφ sin2(θ/2)

)
, (9)

and A−, its parity conjugate, obtained by the substitution (θ, φ) → (π − θ, π + φ).
The algebra involved [8,22] in calculating the post-measurement state in eq. (7) finally

boils down to the following very simple prescription [9]. So long as A is a qubit, whatever
the dimension dB of B, view the density matrix ρAB as a block 2 × 2 matrix of four equal
blocks each of dimension dB × dB. (A+ ⊗ I)ρAB(A+ ⊗ I) is calculated by multiplying
the four blocks, considered in a clockwise manner from the top left, by the elements in
eq. (9), that is, cos2(θ/2), (1/2) sin θe−iφ , sin2(θ/2) and (1/2) sin θeiφ , respectively. To
trace out subsystem A, add the four blocks together. Compute the entropy of the resulting
matrix to enter into the second term on the right-hand side of eq. (6). As the eigenvectors
depend only on the unit vector �z, they are only functions of two parameters, the polar
angles (θ, φ) of �z. Therefore, the classical correlation calculation in eq. (6) involves a
maximization over just these two parameters, a feasible proposition [8,9].

Experience with thousands of randomly chosen density matrices has shown that in
many cases such as for the density matrices in eq. (3), the supremization involves only θ
and not φ and in others that the supremum is achieved for the special values of θ = 0, π/2
[9,23]. Indeed, this is so for over 99% of randomly chosen density matrices of qubit–qubit
and three qubits as illustrated in figure 2. This makes for easy calculation of quantum
discord.

As an illustration of differences between entanglement, classical correlation and quan-
tum discord, figures 3 and 4 show these quantities for mixed states obtained by ‘diluting’
Bell states with a simple separable state or with the completely mixed unit density matrix
[8]. Figure 3 shows the former for

ρ = a|ψ+〉〈ψ+| + (1 − a)|11〉〈11|, (10)

where |ψ+〉 = (|01〉 + |10〉)/√2 is the triplet Bell state. Entanglement, as measured by
concurrence C ′(ρ), diminishes linearly from its maximum of 1 to zero in terms of the
dilution parameter 1 − a. The values of classical correlation and quantum discord are
shown. For other Bell states, the relative order of the three quantities can be different and
that there is no simple ordering is illustrated in figure 4 which is for the ‘Werner state’
[24]

ρ = a|ψ−〉〈ψ−| + (1 − a)I/4. (11)

In particular, for the region 0 < a < 1/3, where the Werner state is well known to have
zero entanglement and the density matrix is separable, classical correlation and quantum
discord still remain non-vanishing.

We make brief remarks on extension of quantum discord calculations to systems AB
when neither subsystem is a qubit but is of higher dimension. The definitions given earlier
remain valid but the construction of the operators Ai is of course more complicated. For
a qutrit of dimension 3, there are three orthogonal projectors �i instead of two. Even
more, whereas for qubits the two orthogonal projectors suffice, this is no longer true in
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Figure 2. Points (θ, φ) on the Bloch sphere for 10,000 randomly chosen qubit–qubit
(fuzzy, light) and qubit–qutrit (sharp, dark), obtained by optimization, for quan-
tum discord. Because of antipodal symmetry, only half of the sphere suffices for
each case. 99.8% and 99.5%, respectively, of the points lie at the poles or Equator
(from [9]).

higher dimension d and one has to consider POVMs of which there are d(d + 1)/2 and
thus 6 for A, a qutrit [25]. These can be chosen to be the symmetric Gell–Mann or other
matrices for d = 3 and higher [26], just as the two symmetric Pauli σx and σz can be
used, along with the unit matrix, to define POVM for qubits [8]. The final supremum to
get the classical correlation with more parameters is also numerically more cumbersome.
For these reasons, an alternative correlation is increasingly being discussed.

Figure 3. Concurrence C′(ρ), quantum discord Q(ρ) and classical correlation C(ρ)
for the mixed state in eq. (10) (from [8]).
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Figure 4. Concurrence C′(ρ), quantum discord Q(ρ) and classical correlation C(ρ)
for the mixed state in eq. (11). Contrast with figure 3. Note that concurrence or
entanglement vanishes for 0 < a < 1/3 while the other correlations remain non-zero
(from [8]).

4.2 Geometric discord

An alternative formula for quantum discord for 2 ⊗ d systems, a geometric measure, is
defined as [19]

D
(2)
A (ρ) = min

χ∈C
‖ρ − χ‖2, (12)

where χ is a classical state. Such a classical state, in general, can be written as

χ =
dA∑
i=1

pi�
A
i ⊗ ρB

i , (13)

where dA is the dimensionality of subsystem A and �A
i are its projectors. ρB

i are den-
sity matrices describing states of subsystem B. Contrast with eq. (2). The logic of the
definition is to take the distance to the nearest classical state as a measure of the discord
[19].

For two-qubit systems, classical states are defined in terms of one pi , two angles defin-
ing the projectors �A

i and two sets of three parameters defining each ρi , a total of nine
parameters. The minimization in eq. (12) can be carried out analytically to give an acces-
sible closed form expression [19]. Remarkably, the same can be extended to qubit–qudit
states in spite of the larger number of parameters involved [9]. This is what makes
calculations of the geometric discord more tractable than of its entropic counterpart.
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