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Abstract. In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk
viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the
equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient
and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the
expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model
in early and late stages of evolution of the Universe. This paper presents different string models
like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain
physical conditions. We discuss the nature of classical potential for viscous fluid with and without
magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future
evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous
fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous
fluid without magnetic field. The other physical and geometrical aspects of each string model are
discussed in detail.
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1. Introduction

Recently, the string cosmology has received considerable attention in the framework of
general relativity mainly because of its possible role in the early Universe. String theory is
particularly relevant to the initial singularity problem whose solution has been thought to
require a quantum theory of gravity, for which string theory seems to be the most promis-
ing candidate. The concept of string cosmology was developed to describe the events at
the very early stages of the evolution of the Universe. The presence of the strings dur-
ing the early Universe can be explained using grand unified theories [1-3]. In the early
stages of the evolution of the Universe, it was expected that topological defects could
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have formed naturally during the phase transitions followed by spontaneous broken sym-
metries. Cosmic strings, which might have played important roles in structure formation,
are linear topological defects, having very interesting properties. These cosmic strings
have stress energy and are coupled to the gravitational field.

Letelier [4] and Stachel [5] have studied the gravitational effects of strings in general
relativity. Letelier [6] first used this idea for obtaining some relativistic cosmological
solutions of cloud formed by massive strings in Bianchi type-I and Kantowski—Sachs
space-times. In these models, each massive string was formed by a geometric string with
particles attached along its extension. In principle, the string can be eliminated and ended
up with the cloud of particles. This desirable property of the model of a string cloud can
be used in cosmology. Matraverse [7] presented a class of exact solutions of Einstein field
equations with a two-parameter family of classical strings as the source of gravitational
field. Exact solutions of string cosmology in Bianchi type II, VIy, VIII and IX space-
times were studied by Krori et al [8]. Yavuz and Tarhan [9], Bali and Dave [10,11], Bali
and Upadhaya [12], Bali and Singh [13], Bali and Pradhan [14], Pradhan and Chouhan
[15] and Mahanto et al [16] have investigated Bianchi-type string cosmological models
in general relativity.

The study of magnetic field provides an effective way to understand the initial phases
of cosmic evolution. Primordial magnetic field of cosmological origin was discussed by
Asseo and Sol [17] and Madsen [18]. Wolfe et al [19], Kulsrud et al [20] and Barrow
[21] have studied the cosmological models with magnetic field and have pointed out its
importance in the early evolution of the Universe. Matraverse and Tsagas [22] have found
that the interaction of the cosmological magnetic field with the space-time geometry could
affect the expansion of the Universe. Banerjee et al [23], Chakraborty [24], Tikekar and
Patel [25,26] have studied Bianchi type-I and type-III string cosmological models with
and without source-free magnetic field. ShriRam and Singh [27] have obtained some
new exact solutions of string cosmology with and without a source-free magnetic field
in Bianchi type I space-time in different basic forms. Patel and Maharaj [28] and Singh
and Singh [29] have studied string cosmology with magnetic field in anisotropic models.
Singh and ShriRam [30] have presented a technique to generate new exact Bianchi type
IIT string cosmological solutions with magnetic field. Kilin¢ and Yavuz [31], Pradhan
et al [32], Pradhan [33], Bali and Jain [34], Saha and Visinescu [35], Pradhan ez al [36,37],
Saha et al [38], Pradhan et al [39], Amirhashchi et al [40] and Rikhvitsky et al [41] have
investigated string cosmological models in the presence and absence of magnetic field.

The observations indicate an accelerated expansion and it is generally interpreted in
terms of perfect fluid. However, for a realistic treatment of the problem one has to con-
sider material distributions other than the perfect fluid. It is known that when neutrino
decoupling occurred, the matter behaved like a viscous fluid in the early stage of the
Universe. From a hydrodynamics point of view this is somewhat surprising, as there
are several situations in fluid mechanics, even in homogeneous space without bound-
aries, where the two viscosity coefficients, the shear coefficient and the bulk coefficient,
come into play. This means a deviation from thermal equilibrium to the first order [42].
Therefore, to have the realistic cosmological models we should consider the presence of
material distributions other than a perfect fluid. It is found that the bulk viscosity plays
a very important role in the history of the Universe. Also, we find that viscosity causes
the expansion of the Universe to accelerate. The possibility of particular interest for the
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present work, however, is that of bulk viscosity within the cosmic fluid. Such a term
resists the cosmic expansion and therefore acts as negative pressure. Indeed, it has been
shown that for the right viscosity coefficient, an accelerating cosmology can be achieved
in the absence of a cosmological constant. Therefore, dissipative processes are thought to
be present in any realistic theory of the evolution of the Universe. Earlier, as we did not
know the nature of the content of the Universe (dark matter and dark energy components)
very clearly, assuming the bulk viscosity was reasonable and practical. In order to study
the evolution of the Universe, many authors [43—51] have investigated cosmological mod-
els with a fluid containing viscosity. Yadav [52], Mohanty and Gauranga [53] are some
of the authors who have studied string cosmological models with viscous fluid.

As we know, the standard Big Bang cosmological model has various drawbacks in
explaining many observations such as the acceleration of the Universe and the anisotropy
of the cosmic microwave background radiation. This led to the pursuit of more general
models in which the geometry and matter content change when compared to the stan-
dard Friedmann—Robertson-Walker (FRW) cosmologies. As pointed out by Ellis [54], the
anisotropic Bianchi-type cosmologies are worthy of attention even if the current observa-
tions indicate that our Universe does not rule out the possibility of dominant anisotropic
effects in the early Universe.

Among the anisotropic Bianchi models, Bianchi type-I cosmological models are the
simplest anisotropic Universe models which are the generalization of flat FRW models but
the contraction or expansion rates are direction-dependent. Bianchi type-V cosmological
models are the natural generalization of FRW models with negative curvature. These
open models are favoured by the available evidences for low-density Universe. In these
anisotropic models, it is possible to accommodate the presence of cosmic strings and
magnetic fields. Also, in Bianchi V model we find one more field equation compared
to Bianchi I model which makes the field equations very complicated to solve exactly.
Therefore, these geometrical and physical structures make Bianchi V models interesting
to study the dynamics of the Universe in early and later times of the evolution.

Coley [55], Singh et al [56-58], Singh and Beesham [59], Singh [60] have stud-
ied Bianchi V models in general relativity in many physical contexts. Chakraborty and
Chakraborty [61] have studied string cosmological models with magnetic fields in Bianchi
V model and have found solutions in some cases. Bali [62] has studied string Bianchi
V magnetized dust string cosmological model. Some authors [63,64] have investigated
anisotropic models with magnetic field and bulk viscosity in Bianchi I and VI string cos-
mological models where energy density is equal to string tension density. Recently, Sharif
and Waheed [65] and Singh [66] have studied Bianchi I magnetized viscous fluid model
in string cosmology and have discussed the effect of viscous fluid and magnetic field on
the classical potential.

In [43-53,62,63], the authors have studied string cosmological models in Bianchi V
with viscous fluid only and have obtained the solution for dust string model. Motivated
by these works, the author has studied Bianchi V cosmological model with viscous fluid
and magnetic field in string cosmological models to investigate the effects of viscous fluid
with and without magnetic field for three different string models.

Therefore, the aim of this paper is to find some exact solutions in Bianchi V model with
magnetized viscous fluid in string cosmology and discuss their effects in early and late
time evolution of the Universe. The equation of state for a cloud of strings, and the inverse
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relation between expansion scalar and bulk viscous coefficient are used to solve the field
equations exactly. The present work finds solutions for three different string models and
discusses the physical and geometrical behaviours during early and late time evolution of
the Universe. It is observed that the presence of bulk viscous fluid prevents the Universe
from being empty in its late time evolution with or without magnetic field. This paper is
organized as follows.

In §2 the field equations for Bianchi V model with bulk viscosity and magnetic field in
string cosmology are presented. Section 3 deals with the solution of field equations where
a general quadrature form of volume scale factor of the model is given. Three different
exact string models are presented in §4. We discuss the various physical parameters in
each case. Finally, we present a summary of the results in §5.

2. Model and basic equations

We consider the homogeneous and anisotropic Bianchi-V metric in the form

ds® = —dr* + A%dx® + e** (B*dy* + C?dZ?), (1)
where A, B, and C are scale factors in anisotropic background and are functions of cosmic
time 7.

The energy—momentum tensor for bulk viscous string dust with magnetic field is given
by [6,67]

T/ = puju! — rxix! — &uly(g] + u)) + E/, ©)

where p is the proper energy density for a cloud of strings with particles attached to them
and X is the string tensor density and is related by p = p, + A, where p, is the particle
energy density. The unit time-like vector u’ describes the four-velocity of the particle and
unit space-like vector x’ denotes the direction of the string which must be taken in either
of the three directions x-, y- or z-axes. Let us choose the string direction along x-axis,
ie.,

x'=(A71,0,0,0). 3)
In a co-moving coordinate system, we have

u' =(0,0,0,1). “4)
Therefore, we have

uin' = —x;xt = —1, uix' =0. (®)]

In eq. (2), & is the coefficient of bulk viscosity, uf ;, = 0 is the expansion scalar and E [.j is
the electromagnetic field tensor which is given by (see [68])

. R 4
E/=q [|h|2 (u,-uf + Eg/) - h,-hf} , ©6)
where it is the magnetic permeability and /; is the magnetic flux vector defined by

1 ,
hi = = Fjju’. (7
i
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The dual electromagnetic field tensor F; ;18 defined as

Fj = Beijlekls (8
2
where FX is the electromagnetic field tensor and €;y; is the Levi—Civita tensor density.
We assume that the magnetic field is generated in yz-plane as its source is the electric
current that flows in x-direction. Therefore, the magnetic flux vector has only one non-
zero component hy, i.e., h; # 0, hp = 0 = h3 = hy. Moreover, the assumption of infinite
electrical conductivity [69] along with finite current leads to Fi4 = 0 = Fq = F34.
Using Maxwell’s equations

Fijx + Fiii + Fri.j =0 and F’If =0, )
we find
F»; = I = constant. (10)

Hence, the non-zero component of the magnetic flux vector is

1= _A—I (11)
uBC
As b2 = hih! = k' = g (h)?,
|h|* = _r ) (12)
A2B2C2
Using eqs (11) and (12) into (6), the components of E lj are given by
P P Y Yy (13)
1 22B2C? 2 3 4
The Einstein’s field equations (in gravitational units ¢ = 87 G = 1) read as
R/~ R =1}, (14)

where R/ is the Ricci tensor and R = g/ R;; is the Ricci scalar.
The field equations (14) with (1) and (2) subsequently lead to the following system of
equations:

AB N BC N CA 3 N I? 15
AB BC ' CcA A2 PToaBcY

AL dc L I Ly (16)
A C A A2 2aB2C? ’

A+E+AB L _ r + &6 (17)
A B B A2 2aB2C? ’

é+6+BC ! =i+ r + &6 (18)
B C BC A? 2B2C? ’
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25 -2 -~ =0, (19)

where the over dots indicate ordinary differentiation with respect to .
Let us define the volume scale factor 7 as

r = ABC. (20)

Let us consider the various important physical quantities such as expansion scalar 6,
anisotropy parameter A and shear scalar o2, which describes the dynamics of the Universe
during the early and late time evolution. They are defined, respectively as

, A B ¢ ¢

0=u,==—+=+==-, 21
=Rt ET T 2
3 2
1 H — H
A=-— , 22
2% @
o2 = L gt = Lamn (23)
2 Y 3 ‘

Here, H = 6/3 is the mean Hubble parameter and H; = AJ/A, H, = B/B and H; =
C/C are the directional Hubble parameters along of x-, y- and z-axes, respectively.
The energy conservation equation le i= 0 takes the form
> + ’ A)» =£ - (24)
PP T

3. Solution of the field equations

To solve the field equations (15)—(19), we follow the method used by Saha and Visinescu
[35]. From (16) and (17) we get

d (C B N ¢ B A+B+C _o 25)
d\C B c B)\A B cCc)

Using (20) into (25), we get
d /(C B ¢ B\t
—=-= ———=)=-=0, 26
ic5)(c5): @

which on integration, gives

dt
C =dBexp <k1 f —) , 27)
T

where d; and k; are constants of integration.
From (19), we get

A% = d,BC, (28)

where d» is a constant of integration, which is taken as unity without the loss of generality.
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From (15)—(18) and (28), we obtain
A’1*] 3 6
i i|+§§9+m- (29)

From eqs (20), (27) and (28), we find the following forms of metric functions in terms
of t:

T 1
—=—[(3p+k)+
T 2

A=1'83, (30)

1. ki [ dt .
Nz e""[‘?/?}’ Gl

C =d, 1P exp [ﬁ/g} (32)

2 T
Now, eqgs (24) and (29) take the forms
p+(p—§>§=sz—z (33)
and
.1 ki 3,3
T = E(3p+k)t+§ T + 61 ~|—§§91, (34)

where k = I?/.
In [6,70-74], we have the equation of state (EoS) for a cloud of string models

p =ak, (35)

where the constant « is defined as

a=1 (geometric or Nambu string),
=(1+w) (p-string or Takabayasi string),
= -1 (Reddy string), (36)

where o is a positive constant. It is pointed out by Letelier [6] that A can be taken as
negative or positive. Therefore, inspired by EoS (35) and assuming that A is negative,
to get the determinate solution of the highly non-linear field equations, Reddy [70,71]
proposed that the sum of energy density and string tension density may be zero, i.e.,
p + X = 0. Reddy [70,71] proposed this condition for the first time, therefore, it is called
as Reddy string model, although Letelier [6] did not propose this possibility in his work.

We further assume that the coefficient of bulk viscosity is inversely proportional to
the expansion scalar [75], which means that the rate of cosmic expansion decreases as
viscosity increases, i.e.,

§0 = ka, (37)

where k; is a positive constant. From (33) and (35), we get
P T
(1—13a)p—ky T

; (38)
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which on integration, gives

3a
Ga—1)
where k3 is a constant of integration. For p > 0, we must have eithera > 1/3 or o < 0.

It means that all the above three string models (36) may be described by assuming relation
(37). Further, inserting p from (39) into (34), we find

3Ca+Dks 15,  k__yp5 13 1 18a
S Ve A VE B 0V ko, 40
N R Er Y A (40)

p= [k + kyz =D/ (39)

whose solution is

2 = Jaks L GetD /e ﬁkfz/z 49743 4 Jaky 24 ks, (41)
3 — 1 2 3 — 1

where k4 is a constant of integration. Now, eq. (41) can be rewritten as

9k 3 Dok
t_J( a3>r@www+§kﬂﬂ+9ﬂﬁ+(;ﬁlﬁfz+h- (42)

3 —1 a—1

Taking into account that the energy and string tension densities obey the EoS (35), we
conclude that p and 2, i.e., the right-hand side of eq. (34) is a function of t only, i.e.,

7= F(r). (43)

From the mechanical point of view, eq. (43) can be interpreted as EoS of a single particle
with unit mass under force F (7). Then, the following first integral exists:

T =+/2[e —u(r)], (44)

where € can be viewed as energy level and u(7) is the potential of the force F'. A compre-
hensive description concerning the potential is found in [76]. Comparing (42) and (44),
we find € = k4/2 and

daks Gat)f3a | 3,273 4 Yaks
et o o Zk / 9 /3 T 2 )
u(t) = 2|:<3 _1>r —l—zr +91t77 + Ey— T

(45)
Finally, we write eq. (42) in a general quadrature form as
f dr
\/ uks ) pGoct DB 4 k723 4 Or4/3 4 () ¢2 4k,

=t+1, (40)

where the integration constant ¢y can be taken as zero for simplicity.

4. Solution of various string models

We observe that it is too difficult to solve (46), in general. Therefore, we present the
following three string models depending on the values of « as defined in (36).
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4.1 Geometric string model (o = 1)

Let us find the solution for viscous fluid with and without magnetic field in the following
sections.

4.1.1 Viscous fluid solution with magnetic field. For k4 = 0, eq. (46) reduces to
dr

/ \/% (k3 +2) T4 + k123 + Sko1?

=1. (47)

For 3(ks + 2)? < 4kk,, on integration eq. (47) gives

3/2
1\/4kk2—3(k3+2)2 . ks +2
= | — h(v2k t) — , ky # 0,
’ [2k2 3 Sm( 2) 2ks 2 7
(48)

and when 3 (k3 + 2)? > 4kks, eq. (47) gives

32
1 30 +2)7 — 4kk ks 42

z:[_/(3+) 2cosh(,/zkzt)— 32:] ks # 0.
2

2k 3
(49)
For small #, we have sinh ( 2k, t) ~ \/2k, t. Therefore, eq. (48) can be written as
T = (Pt — Q) (50)
where
4kks — 3(k3 + 2)2 ky +2
P — 2 — 3(ks +2) and 0, = 3+ .
6k, 2ks

At t = 0, T becomes imaginary. Thus, for the model to be real,  must satisfy ¢ >

(Q1/Py).
Using (50), eqs (30)—(32) take the forms

A=.Pit— 0, (51)
B = L,/Plt -0 exp[#} , (52)
1

Vv vPit— 0
ki
C=diyPit — 0 exp[—i} . (53)
PPt — 0
The directional Hubble parameters along x-, y- and z-axes are, respectively given by
Py Py ky
H=-—a"t—\ H= — 5
2(Pit — Q) 2(Pit — Q1) 2(Pit — Q)Y

2(Pit — Q1) 2(Pit — Q)%

H; = (54
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The average Hubble parameter in terms of cosmic time ¢ becomes
P
H=_——.
2(Pit — Q1)
The anisotropic parameter and shear scalar, respectively have the following expressions:
_ 2k} o2 — k? .
3PH(Pit — Q1) 4(Pit — Q1)?
We observe that the scale factors increase with time for # > (Q;/P;). The other physical

parameters (54)—(56) diverse at t = O/ P; and tend to be zero as t — oo. From (55) and
(56), we get

(55)

(56)

o k 1
—= (57)
0 3P/ (Pit— Q1)
which is time-dependent and tends to zero as ¢t — oo, which shows that the model
becomes isotropic in late time. The deceleration parameter ¢ = —17 /7> gives g = 1,
i.e., a positive constant. Therefore, the present model expands with the decelerated rate
throughout the evolution which means the strings dominate over the particles.
The energy density and string tension density are given by

PR P (58)
b= =37\ Pi—0,)

which shows that the matter behaves as a cloud of geometric strings. The particle den-

sity pp remains zero throughout the evolution. We observe that p and A remain positive

throughout the evolution and become infinite at the initial epoch at r = Q/P;. However,

p and A decrease with time for ¢ > Q;/P; and approach a constant value, %kz ast — oo.

We observe that this constant value of p is due to the viscous term, k,. It means that the

viscosity parameter stops the Universe from becoming empty at late times of its evolution.
The classical potential (45), in terms of ¢ takes the form

3
u) = =7 [3ka(Pit — Q1) + 3(ks +2)(Pit — Q1) +k(Pit — Q1)].
(59)

4.1.2 Viscous fluid solution without magnetic field. For o = 1 and in the absence of
magnetic field (k = 0), eq. (46) becomes

dr
=t, (60)
V2 ks +2) T + kot
which on integration gives
k 2 3/2
T = [( 32: ) (cosh(,/zk2 1 — 1)} . ks #£0. 61)
2

We find that the solution (49) also gives the same solution (61) in the absence of magnetic
field, i.e., k = 0. Therefore, the solution (49) may be considered for viscous fluid without
magnetic field.
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For small ¢, eq. (61) gives

ka4 2\ 32
t=<3+ ) o, (62)
2
Therefore, the scale factors in terms of ¢ have the following solutions:
ks +2
4= ( chus ) : (63)
2
1 (ks +2 ki 2 V71
B=— t — =, 64
a ( 2 ) eXp[4<k3+2) 2 (e

ks +2 ki 2\ 1
C=./d t - —1. 65
1 ( 2 ) eXp |: 4 (k3 + 2) t2 ( )

The directional Hubble parameters along x-, y- and z-axes are, respectively given by

1 1 &k 2 1
Hl = - H2 = - - DIE)
t t 4 \kz+2 t
gl k(2 | )
T T 4 s +2 r
The average Hubble parameter is
1
H=-. (67)

t
The anisotropy parameter and shear scalar, respectively take the form
L S S
3(ks +2)%’ 9(k3 +2)* 12

From the above solutions, we observe that the Universe starts with # = 0 and expands in
all directions for r > 0. The rate of expansion in each direction diverse at # = 0 and tends
to zero as t — 0o. The anisotropy parameter becomes constant throughout the evolution
of the Universe whereas the shear scalar varies inversely with the square of time. The
model remains anisotropic throughout the evolution as the ratio of o/ = 1/9(ks + 2)*/?,
i.e., a constant.

The deceleration parameter ¢ is zero which shows margin inflation during the expan-
sion. Therefore, we can say that the particles dominate over the strings in this case.
It is worth mentioning that the astronomical observations predict that there is no direct
evidence of strings in the present day Universe.

The energy and string tension densities are given by

3 2ks 1
=A==k + — — ). 69
P 2<2+k3+2t2) (69)

A (68)

We find that the energy density remains positive throughout the evolution of the
Universe. It is infinite at initial epoch and decreases with time, and ultimately attains
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u(t)
1 -

0F———— : : x
1 ~0.5 1.0 1.5 2.0

2ot \

—3f \
—4f \
—5t
-6t !

Figure 1. Classical potential vs. time for viscous fluid with (solid line) and without
(dashed line) magnetic field.

a constant value, 3k, /2 in late time expansion of the Universe. Therefore, the bulk vis-
cosity prevents the Universe to be empty during late time of evolution. From (58) and (69)

we find that the energy density attains the same constant value with and without magnetic
field in late time of evolution.

The classical potential (45) in terms of ¢ takes the form
3
u(t) = _9(k3 +2)
32
Figure 1 plots the potential with respect to time in the presence of viscous fluid and
magnetic field (solid line) and with only viscous fluid (dashed line). We have used the
numerical values of various constants as ko, = 2, k3 = 1, I = 2 or 0 and o = 1.00001.
We observe that 1¢(¢) shows positive and negative nature with respect to time ¢ in mag-

netized viscous fluid. However, it always has negative value and decreases rapidly with
time in the presence of viscous fluid, which may be acceptable for our model.

2 + Kottt (70)

4.2 Reddy string model (« = —1)

Let us find the solution for viscous fluid with and without magnetic field in the following
sections for Reddy string model.

4.2.1 Viscous fluid solution with magnetic field. For ks = 0, eq. (46) becomes

dr
=1. (71)
JOT 4 3Gy + 2072 + kot
For ky (3k; + 2k) < 12, on integration (71), we obtain
_ 3/2
| 1 12— ka(3k3 + 2k) 2
T = k_2 3 cosh <\/k72 t) — k_z (72)
and for k, (3ks + 2k) > 12, eq. (71) gives
_ 3/2
1 [ky(Bks +2k) — 12 2
. _\/ 2G3ks + 26) sinh<\/k_2t)—— . (73)
kz 3 k2
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For small ¢, we have sinh ( ko t) ~ \/k, t, and therefore, (73) takes the form
T = (Pt — Q1) (74)

where

1 2
P, = | —1k,(3k 2k) — 12 d = —.
) \/3k2[ 2(3ks + 2k) ] an ) I

Att = 0, T becomes imaginary. For reality of the model, r must satisfy r > Q,/P>.
From eqs (30)—(32) and (74), we find

A =Pt — Qs (75)
B=— /Py 0 ep[ ki } (76)
= —=V 1l =2 XpP| ———F—=oo-r— |,
Vdi Py Pt — Qs
ki
C = \/d\\/P:t — Q; exp [—7} (77)
PPt — O
The directional Hubble parameters along x-, y- and z-axes are, respectively given by
P P k
Hi = > Hy = . - 1 373
2(Pt — Qo) 2(Pt — Q1) 2(Pat — Q2)¥
P, ky
H; = . 78
CT AP0, 2P~ 0 7o
The average Hubble parameter in terms of cosmic time ¢ is
P
H=— 2 (79)
2(Pt — Q)
The anisotropic parameter and shear scalar, respectively take the forms
2k? K?
1 2 1 (80)

= =, o = —
3P} (Pt — Q») 4(Pot — Qo)?

The above physical parameters in eqs. (78)—(80) diverge att = O,/ P, and asymptotically
tend to zero as t — oo. From (79) and (80), we get

(o2 k1
- 81
0 3P,/(Pt — Q) ®b

which is time-dependent and tends to zero as + — oo. Therefore, this string model
also becomes isotropic for large 7. The energy, string tension and particle densities are,
respectively given by

3 ks N ks
P= Z[kz—i_(Pzt—Qz)z] h= 4[k2+(P2t—Q2)2]
3 ks
Pp = 3 |:k2+ 7(P2t — Q2)21|. (82)
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We find that p and p, are infinite at 1 = Q»/P, and tend to constant values, 3k,/4 and
3ky/2, respectively as t — oo. The constant values of p and p, in the later stages of
evolution are due to the bulk viscosity. The string tension density A remains negative and
gradually increases with time and finally it approaches a constant value as t — co. We
observe that the ratio of strings and particles in the Universe, i.e., pp/|A| turns out to be
pp = 2[Al.

The potential in terms of ¢ is written as

3
un) = -3 [3ka(Pat — 02)° + 12(Pot — Q2)* + (Bks + 2k)(Pot — 02)].
(83)

The nature of different density parameters and u(f) are shown in figures 2 and 3,
respectively.

4.2.2 Viscous fluid solution without magnetic field. For « = —1 and in the absence of
magnetic field (k = 0), eq. (46) gives
dr
=t. (84)

VT3 (k3 /4) T3 + (9/4) ka2

For kyks < 4, on integration (84), we obtain

32
r = [i\/4 ~ Kok cosh(\/kz t) _ 3} (85)
k2 k2

and for koks > 4, eq. (84) gives

32
r = [kl\/kzkg 4 sinh(\/k2 t) _ 3} . (86)
2

ko

One may observe that eqs (85) and (86) are the same as the ones directly obtained by
putting k = 0 in (72) and (73), respectively. Therefore, the solution of various physical
parameters and their physical significance of this viscous solution may be discussed in
§4.2.1 by taking k = 0.

4,

Figure 2. Density parameters vs. time for viscous fluid with (solid lines) and without
(dashed lines) magnetic field.
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Figure 3. Potential vs. time for viscous fluid with (solid line) and without (dashed
line) magnetic field.

For small ¢, eq. (86) gives
3/2

koky =4 2 &)
T = —_— - — ,
ks ks

which is the same as the solution (74) in the absence of magnetic field (k = 0).

Figure 2 plots the graph of energy density, energy tension density and particle density
with respect to time in the presence of magnetized viscous fluid (solid lines) and non-
magnetized viscous fluid only (dashed lines) fork, = 1, k3 =2, = 2 and u = 1.00001.
The figure shows that the energy and particle densities are positive throughout the evo-
lution and decrease with time whereas the energy tension density is negative, increases
with time and attains a constant value in late time in both cases. It is interesting to note
that these parameters attain the same value, respectively in both the cases in late time
evolution. The behaviour of classical potential with time in both cases is shown in figure
3forky =3,k3 =2,1 =2or0and g = 1.00001. The figure shows that 1 (¢) is positive
and negative in nature in both the cases but decreases rapidly in the former case.

4.3 Takabayasi string model (¢ = 1 + w)

For k4 = 0, eq. (46) reduces to

f dr
9U+w)ks _ (3w+4)/(Bw+3 3k .2/3 4/3 4 94wk 2
\/3u)+2 TEAD/Cot) S 4 97 SR

=t1. (88)

One can observe that it is very difficult to find a general solution of 7 in terms of .
Therefore, we express p, A and p, in terms of 7 as

3(1 + w) _
— k k 243w)/3(1+w) , 89
3w+2[2+3f ] (89)
3
A= k k —(243w)/3(14+w) , 90
3w+2[2+3f ] ©0)
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Figure 4. Potential vs. time for viscous fluid solution with (solid line) and without
(dashed line) magnetic field.

B 3w
T 3w+2

Py [k2 + k3_c—(2+3w)/3(l+w)] ) 1)

As w > 0, we find that p, A and p, remain positive throughout the evolution of the
Universe. These physical parameters are decreasing functions of t and become constant
for large ¢ due to the bulk viscosity. The geometrical string model may be recovered for
o = 0 as discussed in §4.1. The classical potential is given by

336+ ) wiswypare | K 23 4 ap S(d+o) ,
= | @ @ — > 3 /
u() 2[ 3wt+2 ¢ R L B Prori e

92)

Figure 4 illustrates the behaviour of potential p(¢) with respect to t for k, = 3, k3 = 2,
I =2,0r0, & = 1.00001 and w = 1. It is clear that the potential remains negative
and decreases rapidly throughout the evolution of the Universe for viscous fluid with and
without magnetic field. It decreases rapidly due to the viscous fluid only.

5. Conclusions

We have studied anisotropic Bianchi-V string cosmological model with viscous fluid and
magnetic field in general relativity by taking certain physical assumptions. As viscous
fluid and magnetic field have cosmological origin, it is interesting to discuss the viscous
and magnetic field effects on the expansion history of the Universe in early and late stages
of evolution in string cosmology. The Einstein’s field equations have been solved exactly
for geometrical and Reddy string models for viscous fluid with and without magnetic
field whereas a general quadrature form of the average scale factor has been found in
Takabayasi string model. The solutions present interesting features in the presence of vis-
cous fluid and magnetic field and in the presence of viscous fluid only. We have found that
the viscous term affects the solutions much rapidly compared to magnetic field. We have
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also analysed the behaviour of various physical parameters graphically in the presence of
magnetized viscous fluid and bulk viscous fluid without magnetic field.

As we know, Hubble parameter and the deceleration parameter are some of the observa-
tional cosmological parameters which describe the dynamics of the Universe during early
and late time evolution. As mentioned in the Introduction, since strings are not observed
at the present time of evolution of the Universe, in principle we can eliminate the strings
and end up with a cloud of particles. In other words, we can say that the particles dom-
inate over the strings at the present time of the evolution of the Universe. The result is
summarized as follows.

In geometrical string model, we have observed that proper energy density remains pos-
itive throughout the evolution and attains the finite constant value during late time for
viscous fluid with and without magnetic field. Hence, the presence of viscous term pre-
vents to be empty in its future evolution. The classical potential changes its behaviour
rapidly due to the bulk viscous term. It is negative throughout the evolution in the absence
of magnetic field but it is positive for some finite time and after that it shows the negative
nature during late time.

In Reddy string model, the proper energy density and particle density remain positive
throughout the evolution and attains some finite constant value during late time for viscous
fluid with and without magnetic field. The string tension density is always negative and
increases with time, and turns out to be finite during late time. At initial epoch, these
physical parameters are infinite while they will be finite in late time due to bulk viscous
effects in both cases.

In the above two string models the other physical and kinematical parameters such as
the respective directional Hubble parameters, anisotropic parameter and shear scalar o
in both the string models are infinite at initial epoch and approach zero asymptotically.
The models approach isotropic at later stages of the evolution of the Universe for viscous
fluid with magnetic field whereas these models are always anisotropic for viscous fluid
without magnetic field. The deceleration parameter turns out to be a positive constant in
the presence of viscous fluid with magnetic field which shows that the Universe expands
with decelerated rate. The string might be dominant over the particles but there is no
such observational evidence in the present day Universe. It is zero in the case of viscous
fluid only showing marginal inflation during the expansion. This means that the particles
dominate over the strings which is in agreement with the results obtained in [77].

In Takabayasi model we have found a quadrature form of average volume which is too
difficult to solve, in general. The solution for the proper energy density, string tension
density and particle energy density in terms of average scale factor has been represented.
These physical parameters approach a constant value asymptotically as ¢t — oo due to the
bulk viscosity.

We have also discussed the classical potential with respect to time in each string model
and have observed that the classical potential changes its behaviour rapidly due to the
bulk viscous term. In geometrical string model it remains negative and decreases rapidly
in viscous fluid solution without magnetic field. In Takabayasi string model it remains
negative in both cases but the effect of viscous fluid with and without magnetic field
varies rapidly. Thus, we conclude that the bulk viscous fluid with and without magnetic
field plays an important role in the evolution of the Universe in anisotropic models as
analysed in this paper.
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