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Abstract. In recent years, nonlinear coupled reaction—diffusion (CRD) system has been widely
investigated by coupled map lattice method. Previously, nonlinear behaviour was observed dynami-
cally when one or two of the three variables in the discrete system change. In this paper, we consider
the chaotic behaviour when three variables change, which is called as four-dimensional chaos.
When two parameters in the discrete system are unknown, we first give the existing condition of the
chaos in four-dimensional space by the generalized definitions of spatial periodic orbits and spatial
chaos. In addition, the chaotic behaviour will vary with the parameters. Then we propose a gener-
alized Lyapunov exponent in four-dimensional space to characterize the different effects of param-
eters on the chaotic behaviour, which has not been studied in detail. In order to verify the chaotic
behaviour of the system and the different effects clearly, we simulate the dynamical behaviour in
two- and three-dimensional spaces.
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1. Introduction

Coupled reaction—diffusion system with different initial and boundary conditions as

0
d;(tx) = DIAGM) + [0, Y (),
)
0
‘”aix) = DyAY(x) + g(d(x). ¥ (X)),

has been naturally related with various phenomena in many different fields, such as in
material science [1,2], engineering applications [3,4], physics [5—13] and so on. In system

Pramana - J. Phys., Vol. 82, No. 6, June 2014 995



Li Zhang, Shutang Liu and Chenglong Yu

(1), x e Q C R",t € (0, +00), D; > 0 stands for the diffusion constant where i = 1, 2,
f(@(x), ¥(x)) and g(¢(x), ¥(x)) mean all kinds of noises in reality.

As the behaviour of coupled reaction—diffusion phenomena is very complicated,
according to nonlinear noise in the real physical world, f (¢ (x), ¥ (x)) and g(¢ (x), ¥ (x))
are often taken as nonlinear functions in system (1). However, it is difficult to solve sys-
tem (1) as coupled partial differential equations analytically according to the nonlinearity.
Therefore, the discrete solution of system (1) is usually studied to approximate its precise
solution.

Coupled map lattice (CML) method is an effective discrete method, which has been
intensively studied for many years (see, for example, [14—17] and the references cited
therein). The CML model for system (1), known as coupled reaction diffusion (CRD)
system, is obtained as follows:

Xm,n(s +1) = F(Xm,n(s)) + SG(AXm,n(S))v (2)

where

X () = @mn(5)s Ymn ()7,

F (X (5)) = @n () S @onn (8), Ymn (8)), Yo () +8 (Pmn (8), Ynn (D)),
AXpn(5) = (Apn($), A ()T,

AP () = Pus1.n(8) + Pu—1.(5) + Prnt1(5) + Pmn—1(5) — 4 n(s),

Alpm,n(s) = l/fm-‘rl,n(s) + I/fm—l.n(s) + I//m,n-H(s) + me.n—l (S) - 41//m,n(s)y

& = (DOI’ DO ),m,n eN, ={r,r+1,r+2,...},r >0, s stands for the discrete time
9 2

and ¢ means the coupled parameter.

System (2) has three variables m, n and s, and so we call it 3D discrete system.
Some interesting results have been established for this 3D discrete system (2) quantita-
tively, such as when the nonlinear function is in polynomial [18-23] or exponential form
[24-27]. These results focus on the numerical or analytical characterizations of system
(2) according to the change of one or two of the three variables, m, n and s. In fact, these
three variables independently play important roles in the CRD phenomena. Hence, it is
important to study the role of the three variables m, n and s for system (2), which will be
helpful to further understand the dynamical behaviour of system (2). However, there are
few results on this. So we consider the nonlinear behaviour dynamically for 3D discrete
system (2) in four-dimensional space.

Moreover, there has been a growing interest in the chaotic behaviour of CML model
such as proof of the existence of chaos [28], measure and distribution of chaos with
Belusov—Zhabotinskii reaction [29], synchronous chaos [30-32], control of chaos in CML
[33-36] and growth patterns for global weather models [37]. But there exist few results
for the chaotic behaviour of 3D discrete system (2). So we study the chaotic behaviour
in four-dimensional space for system (2). In order to verify our method, we take the
following nonlinear functions for system (2):

F@nn(8), Yinn($)) = (1 = D n(8) = 187G ($)eXPl— B n(5)],
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g(‘bm,n(s)v l/fm,n(s)) = _¢m,n(s)exp[_:31/fm,n(s)]«

Then we obtain the famous model as an example:

{ ¢m,n s+1)= D1A¢m,n (s) + M¢m,n(s)[l_¢m,n(s)]exp[_ﬁwm,n(s)]’ 3)

l/fm,rz (S + 1) = DZAwm,n(s) + ¢m,n (S)(l _exp[_lgwm,n (S)]),

which was proposed by Solé and Valls [38] to study the process of host—parasite interac-
tion in ecological system, where ¢,, ,(s) is the host density in generations s and s + 1,
Ym.n(s) represents the parasite density in generations s and s 4 1, u is the increasing
rate of the host population and 8 means the average area that the parasite searched in
its lifetime effectively. The identification [39—41] and the effects of the initial condition
for chaotic signals within the CML system (3) as lower-dimensional (dimension d < 2)
graph [42] were considered mostly.

In this paper, we obtain the existing condition of the chaotic behaviour in four-
dimensional space as two parameters are unknown, which is generalized by the definitions
of spatial periodic orbits and spatial chaos of Li—Yorke in §2. The variation of the two
parameters has different effects on the chaotic behaviour in four-dimensional space for
system (2). So we propose a generalized Lyapunov exponent to characterize the different
effects in §3. The chaotic variations, the spatial variations and cross-section of Lyapunov
exponent of system (2) in two- and three-dimensional spaces are simulated illustratively
in §4. Finally, conclusions and discussions are given in §5.

2. Chaotic existence using generalized definitions by spatial orbits

For convenience, we assume
H(Xpnn(s)) = F(Xin(s) +G(AXy ().
Then system (2) is replaced as follows:
Xnn(s+1) = H(X,,0(5)). “)
First, we give some definitions generalized by spatial orbits [43].

DEFINITION 2.1

Let non-empty set V € R*and I C R are any non-empty subsets of V. X,, ,(1) is the k
periodic point in four-dimensional space, if H(X,, ,(s)) is continuous and self-mapping,
which means that H (X, (s)) € C°(I%, 1), H(1?) C I?, and

Hk(Xm,n(l)) = Xm,n(l)v
H (Xpnn(1) # Xmn(l), 1=<s <k,

wherek =1,2,....
Based on Definition 2.1, we shall first prove the existence of a k periodic point in
four-dimensional space for system (3).
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Theorem 2.1. For system (3), there exists a k-periodic point in four-dimensional space,
if

Xm,n(])v an(Z) ~~~~~ Xm,n(k)
is a real-function sequence in which X,, ,(i) # 0, Xy, , (i) # X (j), 1, j =1,2,...,k,
i # jand

w= ¢m,n(s - 1)eXP[,31ﬁm,n (S - 2)]

¢m,n(s - 2)(1 - ¢m,n (S - 2)) '

wheres = 3,4, ..., k+2.

Proof. For system (3), we have
Xun(s +1) = H(X, 0 (5))

_ < DiA¢n($) + timn ()1 — dn(s)1expl—B Y n(s)]
Dy Ay n(8) + mn($)(1 — exp[—=BV.n(s5)])

satisfying

1A (2) 4 11bimn 2)[L =P (2) 1expl =B n (2)]

D
H(Xm,n(z)) = < D2A¢m,n (2) + d’m,n(z)(l — eXp[—ﬂ’ﬁm,n(z)])

1A (k) + ppm n () [1 = (k) 1eXp[— BV n (k)]
D Ay n (k) + ¢ (k) (1 — exp[—BVm.n(k)])

where m,n € N,,s = 1,2, ..., k. According to Systems (3) and (4), we get

DA (1) + b n (DI — @ n (D ]expl—BYm (D], )
D2A¢mn(1) + ¢mn(1)(1 - exp[_ﬂwmn(l)]) ’

H X (1) = <D1 Ana(D) + wm,n(l)[l—¢m,n(1>]exp[—ﬂwm,n<1)]) ’

H (X (k) = (D

Xm,n (2) = (

D1AGwn(2) + 1P n ()1 = i (2)1eXp[—BVm.n(2)] )

Xm,n(3) = ( D2A¢m,n(2) + ¢>mn(2)(1 — eXp[—ﬂlﬂmn(z)])

Xm,n(l) _ ( D1A¢m,n (k) + Md)m,n (k)[l — ¢m.n (s)]exp[—ﬁwm,n (k)] > 7

Dy Ay (k) + i (k) (1 — exp[—B Y n(k)])

and we also obtain the following condition:

w= ¢m,n(s - 1)€Xp[,31/fm,n(s - 2)]
¢m,n(s - 2)(1 - ¢m,n(s - 2)) ’
where s = 3,4, ..., k + 2. This completes the proof. (I

Next we give the definition of chaos in four-dimensional space generalized by the
spatial chaos in ref. [43].
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DEFINITION 2.2

Let V C R*, V,isthe non-empty subset of V, I C Vyand I € R. System (3) is chaotic in
Li—Yorke in four-dimensional space, if there exists a point ¢ € I and a continuous function
H: I — I satisfying H*(c) < ¢ < H(c) < H*(c) or H3(c) > ¢ > H(c) > H?(c).

Using Theorem 2.1 and Definition 2.2, we obtain the following theorem.

Theorem 2.2. Let V. C R*, V, is the non-empty subset of V,I* C Vy and I> < R?.
System (3) is chaotic in Li-Yorke in four-dimensional space, if the following conditions
are satisfied:

(1) For any m,n € Ny, i, j,s = 1,2,3, X, ,(s) € 12,Xm,,,(s) # 0, and X, , (i) #

Xnn(J), fori # j.
(2) Foranym,n € Ny,

X (1) > Xnn(2) > Xinn(3)

or
Xon (1) < Xmn(2) < Xomn 3.
(3) Let
(D1 G (5) + ibrn 51— b (5)EXPL— BV (5)]
HXonn ) = ( Dy Abn () + B (5)(1 — eXpL—BYmn (5)]) ) ’
where

= P A DeXPIBYmn (D] _ G n3)eXPLBYm (D] _ bmn (DeXpLBYm (3]
G (D= Gnn(D) DA =G n(2)  Fn(3A = $n(3)

4) H(U? c I

Proof. Because system (3) is as follows:
Xm.n(s + 1) = H(an(s)),

where

. D1A¢m,n (S) + /'L(Pm,n (S)[l - ¢m,n (S)]eXP[—,BWm,n(S)]
HXnas)) = < Dy Adn () + B (5)(1 — €XPL—BYmn (5)]) ) ’

s = 1, 2, 3, and condition (3) holds, we have
H (X (1) = X (1)
and
H' (X0 (1) # Xpnn (1),
i = 1,2, it is obvious that there is a three-periodic point X,, ,(1) in four-dimensional

space according to Theorem 2.1.
In addition, we easily get that H(I%) C I? and

HS(Xm,n(l)) :Xim,n(l) < Xm,n(z) = H(Xm,n(l)) < Hz(Xm,n(l)) = Xm,n(3)-

Then based on Definition 2.2, we obtain that system (3) is chaotic of Li—Yorke in four-
dimensional space. This completes the proof. O
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3. Variation of the chaotic behaviour as ¢ and 8 change

In §2, it is clear that we can obtain the chaotic behaviour for system (3) with three-
periodic point in four-dimensional space theoretically. Applying the conditions of the
three-periodic point in §2, we can calculate the values of i and . Moreover, parameters
w and B will have different effects on the chaotic behaviour of system (3). So we propose
a generalized Lyapunov exponent in four-dimensional space to consider these different
effects by the definition of Lyapunov exponent in ref. [43].

Theorem 3.1. The Lyapunov exponent A of system (3) in four-dimensional space is
defined as follows:

1 HY (X
%= lim =In Za ( mn(]))'
§=00 § i aan(])

Proof. Assume two initial values of system (3) that are very close to each other: Py =
Xm,n(o) and P(; = X;nn(o) Then we have

Xmn(s) = H* (X,,(0))
and

X, (5) = H'(X,, (0)).
If the values of X, ,(s) and X, , (s) depart very fast exponentially in the iteration process,
we get the following relationship:

1Xmn(s) = X)) = 1 Xmn(0) = X7, ,(0)[[e™,
where || - || means any matrix norm in ref. [44] and A; > 0. Then we get
1 Xmn(s) — X, (s
i L g X ) = X, )
$=00 § || Py— Pyl =0 | Po— Pyl
. . |H*(Py) — H (Pl
= lim - lim In -
5700 S || Py= Pyl -0 1Po— Pyl
L& OH (Xa()))

= lim —In -
s7oo s Jj=0 8an(.])

4. Simulations and results

From Theorem 2.2, we obtain the values of i and 8 based on the condition that
_ Pna)explBYm (D] mn)explBYm (D] Pmn(1)explBiimn(3)]
¢m,n(1)(l - ¢m,n(1)) ¢mn(2)(1 - ¢mn(2)) d)m,n (3)(1 - ¢m,n (3)) ‘
Then we simulate the chaotic behaviour of system (3) with some three-periodic points in
four-dimensional space.
Let Vo=V =[-2,2]*, 1 =[—1,1] C V, C R. The initial and boundary condition is
Xma(1) = (0.2,0.1894)T. Without loss of generalization, let X, ,(2) = (0.3, 0.2483)"
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Figure 1. The chaotic behaviour of Xs0,(s) = (¢50,,(s), 1//50,,,(s))T in d-
dimensional space, where s and n are taken respectively as 1,2,...,200. (a) The
spatial chaotic behaviour in three-dimensional space, (b) the cross-section of the
chaotic behaviour in three-dimensional space and (c¢) the chaotic behaviour in
two-dimensional space.
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Figure 2. The cross-section of the chaotic behaviour of Xs0,(s) =
(¢50.2(5), wso,n(s))T in three-dimensional space, where s,n = 1,2,...,200
as u and B vary. (a) The cross-section of the chaotic behaviour when u = 2, 8 = 5,
(b) the cross-section of the chaotic behaviour when © = 2, 8 = 6 and (c¢) the
cross-section of the chaotic behaviour when u = 3.5, 8 = 5.
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Figure 3. The spatial and cross-section variations of generalized Lyapunov exponent
A in three-dimensional space with 8 = (3.01,5) and u = (2.01, 4), respectively. (a)
The spatial variation between A and u when = 5, (b) the cross-section variation
between A and 4 when 8 = 5, (¢) the cross-section variation between A and p when
B =5, (d) the spatial variation between A and 8 when u = 4, (e) the cross-section
variation between A and 8 when u = 4 and (f) the cross-section variation between A
and B when u = 4.
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Figure 3. Continued
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Figure 4. The chaotic behaviour of Xs50,(s) = (¢50.(s), W50,n(s))T in three-
dimensional space, where s,n = 1,2,...,200, u = 2 as B changes. (a) 8 = 3,
(b)yB=4and(c) B =5.
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Figure 5. The chaotic behaviour of Xs0,(s) = (¢50.1(5), ¥50,n ()T in three-
dimensional space, where s,n = 1,2,...,200, 8 = 4 as u changes. (a) u = 2,
(b) w =3 and (¢) u = 4.
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and X, ,(3) = (0.4, 0.3922)7. In order to calculate the values easily, we take D; =
0.001, D, = 0.2, which is the same as in ref. [38]. From Theorem 2.2, using

= DA DeXp(BYmn(1)) _ Gm.n(3EXPBYnn(2) _ Pmn(DeXp(BYim.a(3))

(DA = nn(D)  Gnn @)L = Gnn () P31 = Pn(3))

we get

0.3 = 10.2(1 — 0.2)exp(—0.18948),

0.2483 = 0.2[1 — exp(—0.1894p)].

Then we have © = 3.9987, § = 3.9987. In addition, X,, ,(1) = (0.2, 0.1894)T is a
three-periodic point in four-dimensional space, satisfying

H3 (X (1)) = (0.2,0.1894)7 < (0.3,0.2483)7 = H(X,(1)
< (0.4,0.3922)" = H*(X,,.,(1)).

Hence, system (3) is chaotic of Li-Yorke in four-dimensional space according to
Theorem 2.2.

Because of the difficulty in visualizing the dynamical behaviour in four-
dimensional space for system (3), we simulate the chaotic behaviour of Xsy,(s) =
(#50.0(5), Y500 (s))T shown in figure 1 in two- and three-dimensional spaces, respectively.

Moreover, the chaotic behavior of system (3) will be different according to the variation
of i and B, which is illustrated in figure 2. To find the effects of 1 and B on the chaotic
variation, we also simulate the quantitative effects of parameters x and § on the Lyapunov
exponent A defined in §3 (see figure 3), which has not been studied in detail. It is clear
that the chaotic behaviour of system (3) can be obtained by choosing different values
for u and B from the simulation results shown in figure 3, where the initial value is
Xpma(1) = (0.2,0.1515)7. Figure 3 also shows that Lyapunov exponent A increases as
1 or B increases in general. Based on this result, we predict that the chaotic behaviour
will be more complex when i and f increase, respectively. Figures 4 and 5 illustrate the
two increasing effects on the chaotic behaviour of system (3) in three-dimensional space,
respectively.

5. Discussions and conclusions

Coupled reaction—diffusion (CRD) phenomena can be observed in a variety of spatially
extended systems in fields as diverse as biology, chemistry and engineering. Because of
the difficulty for solving coupled partial differential equations with nonlinearity analy-
tically, the discrete form of the CRD with three variables that are obtained by the CML
method has been in focus in recent years. Most researchers studied the properties of the
discrete CRD by changing one or two variables. In addition, chaotic behaviour [45-47] is
an important nonlinear behaviour. So we considered the chaotic variation of the discrete
CRD dynamically by changing these three variables.

In this paper, we investigated the chaotic behaviour of the nonlinear CRD system with
three variables which was named as four-dimensional chaos. At first, we presented a
chaotic definition in four-dimensional space and then proved the existing condition of the
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chaos with two unknown parameters. Based on the existing condition, we simulated two-
and three-dimensional chaos illustratively. Because of the variation of chaos with two
parameters in four-dimensional space, we also proposed a generalized Lyapunov expo-
nent to characterize different variations. Simulations illustrated that Lyapunov exponent
increased as the two parameters increase, respectively. Using these relationships, we can
predict the complexity of the chaotic behaviour when the two parameters change. It can be
seen that the complexity increases as two parameters increase in simulations. Our results
in this paper are very useful to further understand and control the nonlinear behaviour for
complex reaction—diffusion phenomena in reality.
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