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Abstract. In this paper, an overview of some aspects of quantum phase transitions (QPT) in nuclei
is given and they are: (i) QPT in interacting boson model (sdIBM), (ii) QPT in two-level models,
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1. Introduction

Starting with Wigner’s spin—isospin SU (4) symmetry, Elliott’s rotational SU (3), Racah’s
pairing SU(2) and its extension to proton—neutron pairing with j—j coupling giv-
ing SO(5), Hecht and Arima’s pseudospin, Rowe’s Sp(6, R), Ginocchio and Feng’s
(k—i)—SO(8) symmetries in shell model are well studied and applied during 1950-1990.
Similarly, within sd interacting boson model (IBM) of Arima and Iachello for even—
even nuclei with pairing and quadrupole deformation, the vibrational U (5), rotational
SU3) and y-soft SO(6), their analogues in proton—neutron sdIBM with F-spin,
U (15) sdgIBM with hexadecupole degree of freedom, U (16) sdpfIBM with dipole
and octupole degrees of freedom, for odd-A nuclei Spin(5), Spin(6), U(S) ® SU(2),
SUB)QRU2),SO06)®SU2),U6)®@SU(2), U(6) ®U (20) etc., symmetries are well
studied and applied during 1975-1998. Beyond these, in the last 15 years many new direc-
tions are opened for symmetries defined by Lie algebras and the closely related topic of
solvable models in nuclear structure. Some of these are: (i) SO (8) proton—neutron pair-
ing symmetries in L—S coupling, (ii) quantum group extensions of SO (5) pairing in shell
model, (iii) introduction of U(n) D SO (n) class of symmetries in sdIBM with internal
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degrees of freedom, (iv) Richardson—Gaudin (RG) and other related methods for general-
ized pairing Hamiltonians in IBM and shell model, (v) partial dynamical symmetries, (vi)
supersymmetry (SUSY) defined by graded Lie algebras within IBM (SUSY describes
simultaneously the structure of even—even, odd-A and odd—odd nuclei) (see [1-12] and
references therein).

One of the most significant outcome of the studies, in the last decade, using symme-
tries in nuclear structure, is the discovery by Iachello, Jolie and Casten [13—15] that the
change from one type of symmetry to another, as we change neutron or proton number is
indeed a quantum phase transition (QPT). As Iachello and Zamfir state [14]: “Quantum
phase transitions — that is phase transitions that occur at zero temperature as a function
of a coupling constant — have become very important . . .. The concept of quantum phase
transition can also be used in mesoscopic systems, that is, systems with finite number
of particles, ... nuclei, molecules, atomic clusters, and finite polymers. The transi-
tions in these systems are between shapes or geometric configurations.” Phase transitions
within sdIBM were studied in 1980s using mean-field methods [2] and it is known that
U(5) to SU(3) is first order, U(5) to SO(6) is second order and for SO(6) to SU(3)
there is no phase transition. However, only recently it is understood [15,16] that these
are indeed QPT. As Cejnar et al state in their latest review article [13]: “It was argued
that the models of nuclear collective motion, apart from their empirical content, represent
a useful laboratory for testing and even inventing new theoretical descriptions of various
types of critical phenomena in quantum many-body systems.” Finally, as stated in [17]:
“the algebraic IBM and the geometric collective model (GCM), - - - -the coexistence of
simple and complex features disclosed in the IBM and GCM studies make the collective
models an excellent theoretical laboratory which in many respects surpasses the quantum
billiards commonly used in to study the interplay between regular and chaotic motion in
finite quantum systems.” The purpose of this paper is to give an overview of some topics
in QPT in nuclei. The topics selected are closely related to some of the studies made by
the author and his collaborators on Lie algebraic symmetry schemes in nuclei. Now, a
preview will be given.

Section 2 gives a brief discussion of QPT in sdIBM. Section 3 gives results for QPT in
two-level models. Section 4 introduces critical point symmetries. Section 5 gives results
for QPT in a simple solvable model with three-body forces in sdIBM. Finally, §6 gives a
list of some open problems.

2. Quantum phase transitions in even—even nuclei: Coherent states and sdIBM
symmetry limits

A Hamiltonian that covers the three sdIBM symmetry limits is

¢

H(, x) =¢o [(1—0”4— AN

0" - QX] &)

where Q% = (d'5 + sTd)? + )((d"’(?)2 and € is a scale factor. Note that ¢ = 0 gives the
U@®S) limit, ¢ = 1, x = 0 gives the SO(6) limitand ¢ = 1, x = :I:(\/7/2) gives the

744 Pramana - J. Phys., Vol. 82, No. 4, April 2014



Symmetries and quantum phase transitions

SU(3) limit (in fact the 4 sign gives SU (3) limit). Using the (f,, y) parameters for a
quadrupole surface, most general intrinsic state or coherent state (CS) for sdIBM is

—1/2

IN: B ) = [N (1+ )" ]

x [s(")‘ + B [cos ydi +2""2siny (d;' + diz)] ]N 10) )

where 8, > 0 and 0° < y < 60°. Now the equilibrium shape parameters (,83, )/0) are
obtained by using the expectation value of the H operator in the CS state

ECX(N; Bo, y) = (N; Boy yIH(E, Y)IN; B, v)

ECO(N; Ba, y)/(eoN) = VEX(N, Ba, y)

- elo-o- () ol 2 ()
= e 070 () 050+ e (ay

(N-1) (—¢ 2 2
4 g2y (4N) [4;8% —4/7 X B3 cos3y + xzﬂé‘] 3)

and minimizing it with respect to 8, and y. Then, (0E/9f,) = 0 and (dE/dy) = 0 will
give (ﬁg, o). To confirm the minimum, we have to check whether the second derivative is
positive, e.g., (32E/d(B2)?) > 0. It is seen that, using absolute minimum, the U (5) limit
gives spherical (,Bg = 0, vibrational, E is independent of y) shape, SU (3) limit gives
axially deformed (,83 # 0, yo = 0°, rotational) shape and the SO (6) limit is y-unstable
(BY # 0 and E is independent of ).

In the potential VEO(N, B2, v), one can take y = 0°, a fixed value of x (to represent
SU(3) or SO (6) quadrupole operator) and study Vi,in(B2) by varying the control param-
eter ¢. This will establish if there is a phase transition. If the first derivative of V[f]in (B2)
with respect to ¢ is discontinuous, we have first-order phase transition and the second
derivative is discontinuous, then second-order phase transition. It is established that U (5)
to SU (3) is first order, U (5) to SO (6) is second order and for SO (6) to SU (3) there is no
phase transition. More importantly, it is shown that SO (6) is not only a dynamical sym-
metry but also a critical point of prolate—oblate (i.e., SU(3) to SU(3)) first-order phase
transition. Thus: Landau’s theory of continuous phase transitions applies to IBM and the
phase diagram for sdIBM is now completely determined [13]. Note that Landau theory is
for V. — oo as f, — oo butin sdIBM, V(B,) is finite for §, — oo. Therefore, the phase
transition will be smoothed out for finite boson number (N), as it is the situation with
real nuclei, but the signatures remain. Iachello and Zamfir [14] suggested that quantities
such as isomer shifts (an order parameter) will distinguish first-order from second-order
transitions. Let us add that Arias et al [16] argued that U (5) to S O (6) transition is second
order QPT due to integrability, U(5) to SU (3) is first order due to level repulsion and
SU3) to SU(3) is due to level crossing.

Let us add that the sdIBM CS given by eq. (2) was extended to sdgIBM that includes
hexadecupole degree of freedom and/or pairs coupled angular momentum J” = 4% and
shapes in the symmetry limits of this model were determined in the past. Details are given
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in the first three references of [8]. Applications of this CS to QPT in sd gIBM model will
be briefly discussed in §6.

3. Second-order QPT in two-level models

A general class of interacting boson models (IBMs) that are simple to study QPT are two-
level models with degeneracies n; and n, for the two levels respectively [18,19]. Then
the spectrum generating algebra (SGA) is U (n; + ny) and it allows for two general group
structures. These are: (i) U(ny +ny) D U(n) ® U(ny) D SO(ny) & SO(ny) D K and
) Umi4+ny) D SO +ny) D SOn)®SO(ny) O K. As we shall see, the transition
from (i) to (ii) is a second-order QPT.

Let us consider N bosons in two levels with degeneracies n; and n,, respectively.
We can think of n; degrees of freedom of a single boson arising with the bosons car-
rying angular momenta ¢1, £, ..., £, such thatn; = Y_/_,(2¢; + 1). Similarly, n, from
0,8, ..., E; such that n, = 321 (2£’j + 1). With this we can introduce boson creation

operators yg and Z(T) [19],

1< 1<
il § il T § T
y = b . s o = b 2 (4)
0 \/p — £ ,0 0 \/q p K/ 0

and the pair creation operators S1. (i), i = 1, 2 for the two levels are S (1) = > "1, bz ~b2
and Sy (2) = ?:1172 . b[‘ For the combined system, the pair creation operator S; =

Sy (1) — S, (2) and annihilation operator is S_ = (S;.)T. Note that S, S_ is related to the
quadratic Casimir invariant of SO (n; + n,) in a simple manner. Now, N-boson coherent
state can be written as [19]

1 P N
IN,a) = \/N'(cosa yé —l—smayé)N [0). (®)]

A simple one-parameter Hamiltonian that interpolates the U (n;) @ U (ny) and SO (n; +
ny) limits, without changing the SO(n;) and SO (ny) quantum numbers w; and w,,
respectively, is

1 1
H= n S S5_ . 6
Nn2+N(N—1)n + (6)

Then, the CS expectation value of H is E(«) where
E(@) = (HYV* = sin’a + Z cos? 2a . 7

Now, the minimum value of E, i.e., Enin(«), is obtained using 0E/da = sin2a(1 —
ncos2a) = 0and 9>E /da’ = 2 cos 2o — 2 cosda > 0. Therefore, @ = 0 and cos 2« =
1/n will give Ei, with

E,mn(oz=0:n)=:71 for n<1,

1
Enin(cos2a = 1/n:n) = 4 @2n—1) for n>1. (8)
n
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For QPT we shall examine 9 E, /071 and BZEmm/ﬁnz. We have 0Enn/0n = 1/4 for
n < 1 and 1/4n? for n > 1. This shows no discontinuity and hence, there is no first-order
QPT. However, the second derivative is

9?Emin/0n> =0 for n<1,

1
= — for n>1. 9
20 n= ©))
This gives . = 1 and at this value the second derivative changes from 0 to —1/2. Thus,
the second derivative shows discontinuity and hence, the system exhibits second-order
phase transition for all (n;, n,). Numerical results for some values of N and (n;, n,) with
(w1, @) = (0, 0) are shown in figure 1. Here, the Hamiltonian used is

1—&. & .
H= " | "int 48,5~ NN +ni+n-2)]. (10)

The first part is the number operator giving the number of bosons in the n, orbit and
this will preserve U(n;) @ U (n;) symmetry. Similarly, the second part is the repulsive
pairing interaction with eigenvalues —w(w + 1 4+ n, — 2) in the SO (n; + n,) limit. The
SO(n; + ny) quantum number w takes values w = N, N —2,...,0or 1. Results in the
figure and the CS description confirm that for N > n;| + n; there is a QPT. Note that
&/(1 — &) = n/4 and therefore, n, = 1 gives & = 0.2 and this is seen in figure 1. More
discussions and examples are available in [18,19].

N=60, (»,,»,)=(0,0)

n,=6,n,=6
.

%ﬁ:’:f — —

o5 4

sdlBM-—
(ST)—space

0o 0.2 0.4 0.6 0.8 1

g

Figure 1. Spectra as a function of the mixing parameter & for (n1, ny) = (6, 6) and
(3, 3) with the boson number N = 60. Results are shown for (w;, wy) = (0, 0). All
the results are obtained using the mathematical formalism given in [20].
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4. Critical point symmetries

4.1 Critical point symmetries for U (5) — SO (6) transition

With QPT, from the point of view of experiments, an important question is: is it possible
to obtain analytical predictions for observables at the phase transition point, i.e., are there
solvable models or symmetries that describe the structure at the phase transition point? A
better starting point now is [21] to consider the five-dimensional Schrddinger equation for
the Bohr’s Hamiltonian in the (8, y) coordinates and the three Euler’s angles (61, 6,, 03),

l1a ,0 1 3. 3
= — B . sin 3y
2B | B*aB" 9B  PBrsin3y oy oy
1 L2
_ + V (8, 11
W; SmZ(y_gnk)} (B.7) (11)

and solve for HV = EW. For the U(5) — SO (6) transition, first, V (g, y) is indepen-
dent of y, i.e., V(B, y) = U(B) and secondly, at the phase transition point, the potential
U (B) has flat behaviour. Therefore, as a first approximation one can choose an infinite
square well with width g,

U(B) =0 for < Bu, UB)=oc  for f>py,. (12)

Now, one can separate the equation into B and y parts with ¥ = f(B)®(y,0). The y
part then gives

b0 ns 8+1Z Ly D(y,0) = AD(y,0)
- sin ,0) = ,0) .
sin 3y 9y Vay 4 sin (y — k) v v
(13)

This is the equation for C»(SO(5)) and its eigenvalues are A = t(t +3),7 =0, 1,2, ...
(and T — L is well known). With € = (ZB/hz)E, u(p) = (ZB/hz)U(,B), the equation
for f(B) is

1 9 0 3
[—ﬁ4 25" a5 T(’/; )+u(ﬁ)} FB) =€ F(B) . (14)
The solution, apart from normalization factor, is
. m(xer\’
fer(B) = B Tesap2 (’f; ﬂ>, o=, (’; ) , (15)

where x¢. is the &£th zero of J;13/2(z). Thus, one has bands with & =1, 7 = 0(L =
0),1(L =2),2(L = 2,4,3(L =0,3,4,6),..;6 =2, T =0L =0),1(L =
2),2(L =2,4),...andso on. The B(E2)s can be calculated using (with ¢ a parameter)

TE — (1) B |:D;2M0 cosy + , (D;,,+ D} _,) sin y:| . (16)

1
V2
Situation with U (B) being infinite well is called E(5) limit [21]. Actually, U(B) at the
critical point is more like 8*. Therefore, studies with U (8) = B* and also using sextic-
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oscillator form which is quasiexactly solvable [22] have been carried out. The nucleus
134Bais a good example for E (5) limit, so also many other nuclei. Some results are shown
in table 1. The U(5) — SO(6) transition is also solved for very large N both using RG
equation and by direct diagonalization. A summary of the various investigations related
to E(5) symmetry is given in table 2.

4.2 Critical point symmetries for U (5) — SU (3) transition

Here, the potential V (8, y) has a minimum at y = 0°. Now, assuming V(8,y) =
2B/h*)~'[u(B) + v(y)], noting that around y = 0°

> Li ~ A +L2< b 4) a7)
— sin’(y — jmk) 3 “\yr 3/)7

putting W = f1(B) nx(y) D@K(Q) and replacing 82 in the y part by (8%) we get the
equations
|: I o ,9 L(L+1)

“piapfap T g +u(ﬂ)}fL(ﬂ)=eﬁfL(ﬂ),

18 9 1, (1 4
[_ By oy oy Tapn s (y2 - 3> +U<V>} Nk (r) = € k() -
(18)

Examining V (B, y) at the critical point, it is seen that u(8) is flat and therefore can be
replaced by infinite square well and also assume v(y) to be harmonic, i.e., v(y) ~ y2.
With these, eq. (18) can be solved and this gives,

E=Eo+ A (x,1)* + Aany + A3 K2,
L(L+1)—K? 9}”2
+ 9

s 1s sth f J,(2); =
Xs,. 18 sth zero o (2); v [ 3 4

n,=0, K=0, n,=1, K=42, n, =2, K=0,44,...,
K=0—>L=0,24,...,

K#0—L=|K[,|IKI+1,IK|+2,.... (19)

Table 1. Some results with different U (8).

E4]) E0) B(E2;4F—21) B(E2;07 —271)
System EQH EQh BE22F 01 BE22F 01
U(B):E(5) 2.20 3.03 1.68 0.86
UB):p* 2.09 2.39 1.82 1.41
U (B):Sextic 2.39 3.68 1.70 1.03
134Ba 2.31 3.57 1.56 0.42
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Table 2. Summary of E(5) symmetry related investigations.

F lachello, Phys. Rev. Lett. 85, 3580 (2000) [introduced E(5) limit]

R F Casten et al, Phys. Rev. Lett. 85, 3584 (2000) ['3*Ba as first example]

A Frank et al, Phys. Rev. C 65, 014301 (2001) ['**Ru example]

NV Zamfir ef al, Phys. Rev. C 65, 044325 (2002) ['92Pd example]

M A Caprio, Phys. Rev. C 65, 031304 (2002) [U () is a finite depth square well]

J M Atrias et al, Phys. Rev. C 68, 041302 (R) (2003) [U(B) = B, compared with exact
results (used Richardson equation) for N up to 1000 for energies and N up to 40 for B(E2)s]
L Fortunato and A Vitturi, J. Phys. G 29, 1341 (2003) [Coulomb-like U(8) = —A/B

and Kratzer-like U(8) = —2D (%’ - 2‘?332) for y-unstable nuclei]

L Fortunato and A Vitturi, J. Phys. G 30, 627 (2004) [Coulomb-like or Kratzer-like for U () and
harmonic oscillator for U (y) for B-soft and y -soft axial rotors with 234U example]

R M Clark et al, Phys. Rev. C 69, 064322 (2004) [102pq, 106.108Cq 124 128%e

and 13*Ba as examples]

G Levai and ] M Arias, Phys. Rev. C 69, 014304 (2004) [sextic oscillator for U (8)]

D Bonatsos et al, Phys. Rev. C 69, 044316 (2004) [with U(B8) = B2, B*, B°, BS:
predictions for spectra and B(E?2)s]

D Bonatsos et al, Phys. Rev. C 74, 044306 (2006) ['?8-130Xe between E(5) and SO (5)]
J E Garcia Ramos et al, Phys. Rev. C 72, 037301 (2005) [U(B) = ,34 is established to be
the best — used matrix diagonalization with N up to 10,000 for energies and B(E2)s]

M A Caprio and F lachello, Nucl. Phys. A 781, 26 (2007) [E(5) symmetry details]

Thus, we have ground K = 0 band from s = 1, n, = 0, the 8-band froms = 2,n, =0,
etc. Situation with u(8) being infinite well and V (y) ~ )/2 is called X (5) limit [23]. A
summary of the various investigations on X (5) symmetry is given in table 3.

Table 3. Summary of X (5) symmetry related investigations.

F Iachello, Phys. Rev. Lett. 87, 052502 (2001) [introduced X (5) limit]

R F Casten et al, Phys. Rev. Lett. 87, 052503 (2001) ['32Sm as first example]

R Krucken ef al, Phys. Rev. Lett. 88, 232501 (2002) ['5ONd example]

P G Bizzeti et al, Phys. Rev. C 66, 031301 (R) (2002) ['**Mo with n,, =0, 1,2]
M A Caprio et al, Phys. Rev. C 66, 054310 (2002) [*°Dy example]

C Hutter et al, Phys. Rev. C 67, 054315 (2003) ['%*10Mo examples]

D Tonev et al, Phys. Rev. C 69, 034334 (2004) ['5*Gd example]

E A McCutchan et al, Phys. Rev. C 69, 024308 (2004) ['92Yb example]

D Bonatsos et al, Phys. Rev. C 69, 014302 (2004) [exact solution with u(8) = ﬁ2
and numerical results for u(8) = A%, B and B8; 1*8Nd as example for X (5) — B2,
160yh as an example for X (5) — ,34 and 158Er as an example for X (5) — ﬁﬁ]

D Bonatsos et al, Phys. Rev. C 70, 024305 (2004) [application of

4
Davidson potential u(8) = B2 + gg
A Leviatan, Phys. Rev. C 72, 031305 (R) (2005) [X (5) structure for finite N]

M Sugawara and H Kusakari, Phys. Rev. C 75, 067302 (2007) [X(5) and analytical
quadrupole and octupole axially symmetric (AQQA) model applied to “8Nd]

750 Pramana - J. Phys., Vol. 82, No. 4, April 2014



Symmetries and quantum phase transitions
Table 4. Other types of critical point symmetries and QPT in even—even nuclei.

F Iachello, Phys. Rev. Lett. 91, 132502 (2003) [Y (5) symmetry for axial to triaxial
angular phase transition]

D Bonatsos et al, Phys. Lett. B 588, 172 (2004) [Z(5) symmetry for prolate to oblate
shape phase transition]

D Bonatsos et al, Phys. Rev. C 71, 064309 (2005) [critical point symmetry for
transition from octupole deformation to octupole vibrations, 226Th and 220Ra examples]
R M Clark, A O Machiavelli, L Fortunato and R Krucken, Phys. Rev. Lett.

96, 032501 (2006) [critical point of transition from pair-vibrational to

pair-rotational regimes with example from pairing bands in Pb isotopes]

D J Rowe et al, Phys. Rev. Lett. 93, 232502 (2004); 93, 122502 (2004);

Nucl. Phys. A 745, 47 (2004); A 753, 94 (2005); A 756, 333 (2005);

A 760, 59 (2005) [phase transitions in GCM and their relation to IBM]

J N Ginocchio, Phys. Rev. C 71, 064325 (2005) [critical point symmetry in the
fermionic Ginocchio SO (8) model]

F Pan and J P Draayer, Nucl. Phys. A 636, 156 (1998); Ann. Phys. (N.Y.) 271, 120 (1999);
275, 224 (1999); J. Phys. A 33, 9095 (2000); Phys. Lett. A 339, 403 (2005)
[algebraic Bethe ansatz method and its application to U (5) to O(6) transition]

H Yepez-Martinez, J Cseh and P O Hess, Phys. Rev. C 74, 024310 (2006)

[phase transitions in algebraic cluster models]

A Frank, F Iachello and P Van Isacker, Phys. Rev. C 73, 061302(R) (2006)

[phase transitions in configuration mixed models]

R Fossion, C E Alonso, J] M Arias, L. Fortunato and A Vitturi, Phys. Rev. C 76,
014316 (2007) [shape phase transitions and two-nucleon transfer]

Yu Zhang, Z Hou and Y Liu, Phys. Rev. C 76, 011305(R) (2007)

[distinguishing first-order QPT from second-order QPT using B(E2) ratios]

Z Hou, Yu Zhang and Y Liu, Phys. Rev. C 80, 054308 (2009)

[statistical properties of E(5) and X(5) symmetries]

L R Dai, F Pan, L Liu, L X Wang and J P Draayer, Phys. Rev. C 86, 034316 (2012)
[QPT studied using [Q Q 01° where Q is the quadrupole generator of SO(6) of IBM]

There are other types of critical point symmetries and also several extensions of QPT
to proton—neutron IBM, sdgIBM, excited state QPT (EQPT) and so on. These are sum-
marized in table 4. More interestingly, QPT and critical point symmetries are also studied
in odd-A nuclei within the IBFM model [3,5] and experimental examples for these are

found. These are summarized in table 5.

5. Example of a simple analytically solvable QPT

Van Isacker et al showed that three-body forces will give new results in sdIBM [24].
Going further, recently Draayer et al identified a simple situation with three-body forces
that gives a solvable QPT [25]. Draayer et al considered the SU(3) limit of sdIBM

generated by the quadrupole (Qi) and angular momentum (LL) operators,

v dd?., L'=viodad).

2yt T2
QM—[S d—i—ds]u— )
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Table 5. Summary of QPT and critical point symmetries in odd-A nuclei.

F Iachello, Phys. Rev. Lett. 95, 052503 (2005); M A Caprio and F Iachello,

Nucl. Phys. A 781, 26 (2007) [Transitional odd-A nuclei near the critical point of
spherical to deformed y-unstable transition and E£(5/4) SUSY]

M S Fetea et al, Phys. Rev. C 73, 051301(R) (2006) [first test of E(5/4) in 13°Ba]

C E Alonso, J M Arias and A Vitturi, Phys. Rev. Lett. 98, 052501 (2007);

Phys. Rev. C 75, 064316 (2007) [critical point symmetry in odd-A nuclei: U(5) to SO(6)
with odd particle in j = 1/2,3/2 and 5/2 orbits]

J Jolie, S Heinze, P Van Isacker and R F Casten, Phys. Rev. C 70, 011305(R) (2004)
[shape phase transitions in odd-mass nuclei using a SUSY approach

with UB (6) ® UT (12) symmetry limits]

C E Alonso, J M Arias, L Fortunato and A Vitturi, Phys. Rev. C 72, 061302(R) (2005)
[phase transition between Spin(5) and Spin(6) limits of IBFM ]

C E Alonso, J M Arias, L Fortunato and A Vitturi, Phys. Rev. C'79, 014306 (2009)
[UBF(5) to SUBF QPT with a fermion in j = 1/2, 3/2 and 5/2 orbits ]

D Petrelli, A Leviatan and F lachello, Ann. Phys. (N.Y.) 326, 926 (2011)

[QPT in Bose-Fermi systems with sdIBM plus a particle in a j-orbit]

The SU (3) algebra admits quadratic (6’2) and cubic Casimir (6’3) invariants and they are
given by

O
S}
I

2Q-Q+iL-L,

—g«/35[QxQxQ]°— ‘/15[L><Q><L]°. QD

2

With respect to the SU(3) algebra, N boson states are denoted by |N, (An), K, L, M).
Note that (An) is a SU(3) irreducible representation (irrep) and K has the geometric
meaning as the ‘K’ in GCM for rotational nuclei. Given an N, the allowed (Au), K for a
given (Au) and L for a given K are givenby (—L < M < L)

A=2f1—2f, n=2f—2fs;
fizfh=f/320, fi+h+f3=N,

K =0,2,...,min(&, n),

&
[

L=0,2,..., max(A, uw) for K =0,
L=K,K+1,K+2,..., K+ max(A, ) for K #0. 22)

Action of the Casimir invariants on any SU (3) state |N, (An), K, L, M) will give the
same state multiplied by their eigenvalue that depends only on the SU(3) irrep. The
eigenvalues C,[(Au)] of C,, r = 2,3 are

Col(A)] = A% + p? + A+ 300 + ),

1
Glaw] = 9()~—M)(2A+/L+3)(k+2u+3)- (23)
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Let us mention that an easy-to-understand discussion of SU (3) algebra for nuclei is given
in [5]. It is easy to see from eq. (23) that —éz will give ground state (gs) with SU (3)
irrep having largest value for A (with A > w) and Cs gives gs with SU (3) irrep having
largest value for o (with ;0 3> X). It is easy to see from geometric analysis that the former
is prolate and the latter is oblate. Therefore, the simple Hamiltonian
x—=1) » X "

H@w =" VG G 24)
will generate prolate—oblate transition in gs as we change the parameter x from O to 1.
Equations (22) and (23) will give all the eigenvalues of H(x) without any matrix
construction. For example, for N = 8 the SU (3) irreps are (16, 0), (12, 2), (8, 4), (10, 0),
4,6), (6,2), (0,8), (2,4), (4,0) and (0, 2). Then, H(x) with x = 0 gives (16, 0) as gs
(prolate) and x = 1 gives (0, 8) as gs (oblate). Similarly, for N = 9 the SU (3) irreps
are (18, 0), (14,2), (10,4), (12,0), (6,6), (8,2), (2,8), (4,4), (6,0), (0,6), (2,2) and
(0,0). Then, H(x) with x = 0 gives (18, 0) as gs (prolate) and x = 1 gives (2, 8) as gs
(oblate). Using the CS defined by eq. (2), the CS expectation value (valid as N — o0)
(N; B2, vIH(X)|N; B2, v) of H(x) in eq. (24) can be determined. Then, carrying an anal-
ysis similar to the one in §3, it can be shown that H (x) generates prolate—oblate transition
and it is a first-order QPT. The transition occurs at x = x, = 0.6 with 8 = v/2and y = 0°
forx < 0.6 and g = 1/\/2 and y = 60° for x > 0.6. Using eqs (22) and (23), calcu-
lations for finite N are easy to perform and again one sees that as N increases x, — 0.6
(see [25] for further details). Let us add that the simple model defined by eq. (24)
explains the experimental data with prolate—oblate shape phase transition in '8OHf,
182-186yy 1881900 apd 192-198p¢ pyclei.

6. Open problems in QPT

In concluding this article, listed below are some open problems in QPT in nuclei:

(1) Study of phase transitions in sdgIBM using the symmetry limits [8] SU,q,(3),
8 044,(15) and U (6) @ U (9) was done [26]. It will be interesting to study QPT by
including the other two important symmetry limits SUsq, (5), SUjq,(6) of sdgIBM.
Note that SUsq,(5) generates AL = 4 staggering.

(2) It is also possible to carry out a simple analysis of QPT using SU,q,(3) with H
containing quadratic and cubic Casimir invariants as it is done for SU;;(3) (see
§5). In addition, it will be interesting to carry out an analysis of QPT using H
as a linear combination of C’z, 63 and 6‘4 of SUsq,(5) and similarly also for the
SUsqg(6) limit.

(3) QPT and the phase diagram for IBM-2 (proton—neutron IBM) was addressed using
U(12) D U(6) ® SU(2) symmetry limits in [27]. However, IBM-2 also admits
SO (12) symmetry limits [12,28] and they appear for systems with F'-spin broken
but M is good. Itis important to study QPT in IBM-2 including S O (12) symmetry
chains so that the phase diagram for IBM-2 can be completely determined (note that
M is preserved for all nuclei but F-spin could be broken).

(4) For bosons in n; levels and carrying n, internal degrees of freedom, the SGA is
U (n) ny). Then, we have two subalgebra chains: (i) U(nyny) D U(n) @ U (ny) D
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SO(n1) @ SO(ny) and (ii) U(nyny) D SO(myny) D SO(ny) ® SO(ny). They
appear in IBM-2, IBM-3 and IBM-4 models [12]. QPT between (i) and (ii) need to
be investigated.

(5) QPT in IBFM SU 57 (3) for odd-A nuclei [29] and SUBFF (3) of IBFFM for odd—

odd nuclei [30], as it was done for even—even nuclei (see §5), will give new insights
into QPT in odd-A and odd—odd nuclei. In general, it will be interesting and useful
to study QPT in heavy N = Z odd—odd nuclei as they are of astrophysical interest
and also they exhibit proton—neutron pairing correlations. These nuclei are being
studied using IBM-4, shell model SO (8) pairing algebra and the so-called de-
formed shell model [6,31,32].

(6) Phase transitions between the three limits of the shell model SO (8) pairing sym-

metries need to be studied. It should be noted that the three limits of this fermion
model generate vibrations, rotations and y-soft spectra in isospin space [6].

(7) In sdIBM, for L < 4 it is possible to write analytical formulas for Hamiltonian

matrix elements (V K B Kota, unpublished) when H is one plus two-body. There-
fore, QPT related issues can be analysed in sdIBM for very large values of boson
number N with L < 4. Implementing this will be useful in understanding the
results obtained so far using sdIBM and also it can be used for EQPT studies.

(8) EQPT [33,34] is related to changes in level densities and other statistical quantities.

Further studies on EQPT will give new insights into the relationship between QPT,
quantum chaos and random matrix theory.
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