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Abstract. In this paper, the synchronization problem of general complex networks is investigated
by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling
etc. exist universally in real-world complex networks. The adaptive synchronization scheme is
designed for the complex network with multiple class of coupling terms. A criterion guaranteeing
synchronization of such complex networks is established by employing the Lyapunov stability the-
orem and adaptive control schemes. Finally, an illustrative example with numerical simulation is
given to show the feasibility and efficiency of theoretical results.
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1. Introduction

In recent years, complex networks have become considerably interesting in various sci-
ence and technology fields [1-11]. The investigation on dynamical complex networks
becomes more and more important with the development of industry and the growth in
realization of physics, biology, and social sciences. Therefore, it is very interesting and
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important to investigate the synchronization dynamical behaviours of various coupled
complex networks.

The synchrony of all dynamical nodes for coupled complex network is a prominent
phenomenon. In a case where not all the dynamical nodes synchronize, the controllers
may be designed to ensure synchronization. Some controllers have been commonly used,
such as feedback and delayed feedback controllers [12,13], nonlinear adaptive feedback
controllers [14—-17], and so on.

Coupled linear ordinary differential equations are widely used to describe a large class
of dynamical systems with continuous time and state, as well as discrete space. This class
of dynamical systems has been extensively investigated as theoretical models of synchro-
nization in complex networks [18-27]. Analytical results have shown that quite rigorous
mathematical conditions are required to guarantee the synchronization of complex net-
works. Yet in practice, such synchronization is urgently expected [28,29]. Although
pre-exist synchronization schemes are quite simple, the assumptions of network mod-
els are not always reasonable or complete. One key reason is that a huge quantity of
nodes and complexity will lead to partially or completely coupling structures of complex
networks.

Some authors utilized adaptive methods to deal with the synchronization problem of
complex networks with nonlinear couplings [30-35]. Some others used the knowledge of
nonlinearities to construct controllers for synchronization of complex networks. In this
case, the nonlinear couplings have been considered [36—40].

Moreover, as we know, time-delay exists commonly in real-world complex networks,
and cannot be ignored in many cases like the finite speed of transmission, long-distance
communication, traffic congestion and so on. Therefore, time-delays should be modelled
in the controlled network.

Furthermore, in some cases the more realistic network model should also include the
past change rate information of the state variables of complex networks, such as the stock
transaction system, the population ecological system, the biological system and ecosys-
tem, where each node’s state is defined by the present and historical fluctuating rate
information. Recently, the synchronization problem of a general complex network with
non-derivative and derivative coupling was considered [41]. Synchronization of complex
networks with derivative coupling and time-delay coupling was investigated by adaptive
control schemes [42].

However, our understanding of the synchronization of complex networks is still insuffi-
cient. On the one hand, there are a few results concerning nonlinear coupling, time-delay
coupling and derivative coupling, simultaneously and on the other hand, no study was
done on synchronization of general complex networks consisting of more models.

Motivated by the above discussions, in this paper, we shall formulate the synchroniza-
tion problem for general complex networks with time-delay coupling, nonlinear coupling
and derivative coupling. The most important aims of this paper are to establish a synchro-
nization criterion and propose effective adaptive synchronization schemes for a general
complex network. These criteria and schemes will be given to ensure such a network to
be global synchronization.

The rest of this paper is organized as follows. In §2, a general complex network is
introduced and several hypotheses and lemmas are given. In §3, the synchronization
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problem is investigated, and an adaptive synchroniation controller is designed. Numerical
simulations for verifying the theoretical results are given in §4. Finally, conclusions are
presented in §5.

2. Problem formulation

2.1 Model description

In ref. [41], the synchronization of complex dynamical networks with non-derivative
coupling and derivative coupling was investigated, and the complex network can be
represented by

i) = f(xi(0) + Z cij % () + Z V%), i€l (1)

j=1

where x;(t) = [xi1(t), xi2(t), ..., xin(1)]T € R" is the state vector of node i, Z =
(1,2, ..., N}, fx;(@®) = [AAi(xi (D), L(x (@), ..., f(xi)]T € R" is a smooth non-
linear Vector-valued function, C® = [clfj) Inxy € RV*N(k = 1,2) are the coupling

matrices. c ) is defined as follows:
e = Z o, k=12 iel
J=Li#]

In ref. [42], the problem of synchronization of complex networks with derivative
coupling and time-varying coupling delay was investigated by using adaptive control
schemes, whose networks can be described as follows:

xi(1) = Axi(0) + f(xi (D) + Zc(“r“)x (t— (1)

j=1
N
+ Z ¢’ TP%;(t — (1), i€l )
j=1

where A is a constant matrix, 7(¢) > 0 is the time-varying coupling delay, I'® (k = 1, 2)
are the inner coupling matrices.

In this paper, we consider a general complex network consisting of N coupled iden-
tical nodes with derivative coupling and time-varying coupling delay, each node is an
n-dimensional system. This network has the following form:

Xi(1) = Axi(t) + f(xi (1) + g(xi (¢ — 11(2)))
+hi(x1 (1), x2(2), ..., xn (1))
Hi(x1(t — ©2(1), x2(1 — 2(0), ..., XN (E — 12(2))
+mi (%t — 13(0), X2(r — 13(0)), ..., Ain( —13()), i€, (3)
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where 7;(t) (k = 1,2,3) are the time-varying delay in isolated node, time-varying
coupling delay and time-varying derivative coupling delay, respectively. g(-) is a con-
tinuously differentiable nonlinear vector function, and h;,l;, m; : R™ — R" are
coupling functions. We assume that the complex network (3) satisfies the following initial
conditions:

xi(t) = ¢i(t) € L([—7,00, R"), i€,

where T = max{t(¢), 12(¢), 13(¢t)}, L([—7, 0], R") denotes the set of all continuous
functions from [—7, 0] to R".

Remark 1. The complex network model (3) is very general, which includes almost all the
dynamical systems studied in [43,44]. The coupling functions h;, [;, m; are quite general.
First of all, it can be chosen as linear combinations of the states of the nodes, that is,
h; = ¢ Z?’:l ¢;jl'x; [43,45-48], where ¢ is the coupling strength. Secondly, we can
choose delayed couplings, that is, /; = ¢ Zj‘\]:l ¢;jTx;(t — ©(t)) [25], where ©(¢) is the
time-varying coupling delay. In addition, they can be chosen with derivative coupling, that
is, m; = ¢ Z?Ll ¢;jl'x;(t — ©(¢)) [41,42]. Moreover, they can be chosen as distributed
delayed coupling, thatis, /; = Z;V:l Cij fioo k(t—s)x;(s)ds [46], where k(-) is the weight
matrix function. Last but not the least, 4;,[; and m; can be combinations of nonlinear
function, that is, h; = ezy:l ¢ijTH(x;)and [; = ¢ Z?’zl cijTL(xj(t — (1))),where
H () and L(-) are the inner coupling functions [49].

2.2 Control object

In this paper, we shall investigate the synchronization problem of the complex network
model (3). Let solution s(z) of an isolated node satisfies

$(t) = As(t) + f(s(1)) + (s — 11(1))), “)

where s(¢) may be an equilibrium point, a periodic orbit or even a chaotic orbit. In order
to synchronize the complex network (3) to object state s(¢), the controllers will affect
some of its node. The controlled network can be described as

xi (1) = Axi(t) + f(xi (1) + g(xi (t — 11(1)))
+hi(x1 (1), x2(2), ..., xn (1))
Hi(x1 (1 — ©2(2)), X2(t — 12(1)), ..., XN (E — T2(1)))
+m;(x1 (1 — 13(0)), X2(t — T3(2)), ..., XN (1 — 73(0)))

+u;(t), i€l &)

where u; € R" is the feedback controller which will be designed later. The general
nonlinear coupling function and the input should vanish under the controlled complex
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network (5) achieved complete synchronization. This means that any solution s(¢) of any
isolated node is also a solution of synchronized coupling networks.

2.3 Preliminaries

In order to obtain the main result, the following assumptions and lemma are needed.

Assumption 1. Functions f(-) and g(-) are Lipshitz, that is, there exist non-negative
constants «, 8 for all x, y € R" such that

If @) = FODII < allx =yl llgx) =gl < Bllx =yl -

Assumption 2. For functions 4;(-), [;(-) and m;(-), when the controlled complex network
(5) achieves synchronization, the general nonlinear coupling functions and the control

inputs should vanish, that is, #;(s, s, ...,s) = 0, [;(s,s,...,s) = 0, m;(s,5,...,5) =
0,u;(t) = 0. Additionally, there exist non-negative constants y;;, 7;;, &; (,j =
1,2,..., N) such that
N
Wi Ger xa, o xn) = hils, s, OIS ) vl = sll,
j=1

N
W Gerxas o xy) = lils, s, OIS Y gl = sll,
j=1

N
[ZE TR I U O SO 1 = N 771 = ]
j=1

Remark 2. Assumptions 1 and 2 are quite mild. Assumption 1 is satisfied as long
as df/dx and dg/dx are bounded. If we choose h; = eZ?’:l ¢iilx;, I =

e 0L eyt —t(@) andm; = € Y)L ¢ T4; (6 =1 (0) (Where ¢;i = — S0 1 cip),
Assumption 2 automatically vanishes when synchronization is achieved. Therefore, the
complex network (3) actually includes many dynamical networks.

Assumption 3. The time-varying coupling delay 7 (¢) (k = 1, 2) is a differential function
with

0<u@® <m<1, 0=u@ <%
Clearly, this hypothesis is ensured if the delay 7 (¢) is a constant.

Lemma 1 (Matrix Cauchy inequality [50]). For any symmetric positive definite matrix
M € R"" and x,y € R", there is

+2xTy <xTMx+yTM~'y.
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The error dynamics is defined as e; () = x;(¢) — s(¢). Subtracting (4) from (5), yield

ei(t) = Ae;(t) + f(xi (1) — f(s(2) + g(xi (t — 71 (7))
—g(s(t —11(1) + hi(x1,x2, ..., xNn) — hi(s,s,...,5)
Hi(x1(t — 72(2)), X2(t — 12(2)), ..., XN (t — T2(2)))
—li(s(t — 12(1)), s(t — 12(2)), ..., s(1 — T2(2)))
+m; (X1(t — 13(0)), X2 — 73(2)), ..., XN (1 — T3(1)))
—mi(s(t —13(1)), s(t —13(t)), ..., s(t —13(2))) +u; (), ieZ. (6)

3. Synchronization of general complex networks

In this section, the synchronization problem of the complex network (3) is investi-
gated. The controller is designed to achieve the synchronization of controlled complex
network (5).

Theorem 1. Suppose Assumptions 1-3 hold. The controlled complex network (5) can
achieve synchronization under the following adaptive synchronization controller:

u;(t) = —bi(t)e;(t)
—ki(O)[m;(x1(t — 13(1)), X2t — 13(2)), ..., AN (t — T3(2)))
—m;($(t — 13(1)), $(t — 13(1)), ..., 8(t — 3(®))]. @)

with the following adaptive updating laws:
bi(1) = el (ei (1),
ki(t) = Bie] (1)[mi Gy (1 — 13(0)), ot — 13(1)), ... En (F — T3(0)))
—mi(3(t — T3(1)), §(t = 3(1)), ..., §(t — T3 ()))], (8)

where o; and B; are arbitrary positive constants. |

Proof. We choose a non-negative function as Lyapunov function, that is
AN
Vi(e(t)) = Z el (Dei(t) + Z (bi() =) + > g (0 = 1)?
i=1
/ Ze (s)e; (s)ds
T i Ji—r ) 4

f Ze (s)e; (s)ds, )
1 — M2 Jt () ;

where A} and n are positive constants to be determined later.
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The derivative of Lyapunov function (9) with respect to time ¢ along (6) is then given by

N N
. 1 .
Vile(t)) = 2 E el ()éi(t) +2 E o (bi(t) — h)b;(t)
i=1 !

i=1

N o ) 1 N ,
+2§ g ki =Dk + ;ei (e (1)

1—4() —
- ;“ ;eiT(t — 1 ()ei(t — 11(1))
N
¥ ZNM ;J(r)e,- )
1= 5() &

N
=2 Z el (D[Aei(t) + f(xi(1) = f(s(1)

i=1

+g(xi(t — 11 (1) — g(s(t — 11 (1))

+hi (x1 (1), x2(8), ..., xn(t) —hi(s,s, ..., s)
Hi(x1(t — ©2(1)), X2(t — 12(1)), . . -, xy(t — 1a(1)))
—li(s(t = r2(0)), s(t — 02(1)), ... ., s(t — 12(1)))
+m; (X1 (t — 13(0)), X2(t — 13(1)), .. ., xn (1 —13(1)))
—m;(5(t — 13(1)), (1 — 13(0)), ... ., 5(t — 73(1)))

N
1 .
HuiO1+2)  (bi) = h)bi()
i=1 '

N 1 . X N )
+2§ g ki = DR+ gei (t)e; (1)
N

D el (t —n)eit — (1))

i=1

1 —7()
1 —

N
1
+ Nel (t)e;: (1)

. N
N 11__TZ(§) ; nNe/ (t — 1a(1))ei (t — 12(0)). (10)
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Using the adaptive synchronization controller (7) and the adaptive updating law (8), yield

N
Vi) = 23" el [Aei() + f(xi(1) — f(s(0))

i1
+g(xi(t — (1)) — g(s(t — (1))
+hi(xi (1), x2(2), -+, xn (@) — hi(s, s, -+, 5)
+Hi(x1(t — (1), x2(r — T2(2)), -+ L xn (F — T2(1)))
—li(s(t = (1), st — ©2(2)), - -+, s(t — T2(1)))]
—ZXN:hfke-T(t)e,-(t) + ! zNje-T(l)ei(t)
= =7
-4 ¢

= e = n@et = n@)
It S

nN Y
+ el (e (t)

1= 1(1)
_ 1—22 ;mve? (t = @) = @)

According to Assumption 1, we have

el (DL (xi(0) = f(s(0))] < ae] (e ().

el (Hgxi(t — 11 (1) — gls(t — ()] < Blle] Dllei (¢ — 1 (@) -

According to Assumption 2, we have

ei (1) [hi(x1 (1), x2(0), . ..., xn (1) — hi(s, s, ..., s)]

N
<llei() Y vije; 0l -

j=1
ei () [li(x1(t — (1)), x2(t — 12(1)), .. ., xy (= 12(0)))

—Li(s(t = 12(0)), s(t = ©2(1)), ... ., s(t — 2(0)))]

N
<llei®) Y mijej(t = )l -

j=1
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Let n = maXi<i<n,i<j<n Nij> ¥ = MaXi<i<ni<j<n ¥ij and >}, el‘zj = e/ (e ().
According to Lemma 1 yield,

2Blle] (1ei(t — i)l < Bl (Dei(t) + €] (t — Ti(t))ei(t — T (1).  (16)

N
2lei (1) Y vije; 1)

j=1

N
<y Y [ef Weit) + el (e; ()] (17)
j=1

N
2[ei(t) Y mije;(t — Ta(1))

Jj=1

N
<n)_[ef et
j=1

+ef(t —n()e;(t — 1a(1)]. (18)
According to (11), (12), (16)~(18),

N N
Vite) =2 e (VA1) +2) el (ae; (1)

i=1 i=1

N N
=2 hiel ety + B2 el (e (1)
i=1

i=1

N N
+Y el —n@®)et — @)+ N Y el (Dei(t)

i=1 i=1

N N
9N Y el (t = nM)eit =) +yN Y el (e (1)

i=1 i=1

N

N
—l—yNZeiT(t)e,- @® + 1 1M ZeiT(t)e; (1)
— i

i=1 i=1

N

Y oelt —n@)eit — 1)

i=1

1 —1(t)
=

N N
+ " B ;J (D)ei (1)
N
- Y (U —t@)e] ¢ = nt)eit — 12(1)
i=1
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N
< Y el (1) (Amar(A+ AT) + 20 + B> + N + 2y N
i=1

1 N
—2h* + + )e,-(t)
I—pur 1—p

-4 w
+<1_ 1_;“ )ZeiT(t—rl(t))ei(t—Tl(l))
i=1

. N
N <1 - 11__’;(? ) S el - noe - ). (19)
i=1

According to Assumption 3, we have
1 —1() <1 (1)
<

1< , . (20)
1 — 1 — 2
According to (19) and (20),
N
Vie®) < Y el (1) [Am(A +A") +2a + B2+ N + 2y N
i=1
1 N
oK+ 7 } e (o). @1)
l—pur 1=
We can choose suitable 4} such that
1 N
max (A + AT) 20+ B2+ N +2y N — 21 + + ™ 20 2

l—pur 11—
It is easy to know that
Vi(e() < 0.

Then the error dynamics (6) is asymptotically stable. That is to say, the dynamical net-
work (3) achieves synchronization under the adaptive control scheme (7) and the adaptive
updating law (8).

The proof is thus completed. O

Remark3. When A = 0,h; = Yi_ cijx;j(t), I = 0, m; = Y00 dijx; (1), g(xi(t —
71(1))) = 0, the complex network (3) is translated into

n N
xi() = i)+ Y epxj )+ Y dyip(), i€l (23)
j=1 j=1
which was investigated by Xu [41]. Obviously, it is a special case of this paper.

Remark4. When A =0,h; = 0,1; = Y"_, c;jHx;(t—7(t)) andm; = Y1, a;; Gk (e —

j=1
7(1)), g(x;(t — 71(¢)) = 0, the complex network (3) is translated into

n N
xi(0) = i)+ cipHoay(t=t0)+)_ai;Gijt—t(0), eI, (24)
Jj=1 j=1
which was regarded as the special case of this paper and was investigated by Jian [42].
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State respones of the error dynamics e11
T

T T T
Il Il Il Il
0.5 1 t 1.5 2 25
State respones of the error dynamics e12
T T T T
1 1 1 1
0.5 1 t 1.5 2 25
State respones of the error dynamics e13
T T T T
1 1 1 1 ]
0.5 1 1.5 2 25

t

Figure 1. Adaptive synchronization errors ej;(t) (i =

synchronization controllers (7) and (8).

1,2, 3) with the adaptive

6 State respones of the error dynamics e21
T T T T
4 _
2 .
0
_2 1 1 1 1
0 0.5 1 i 1.5 2 25
10 State respones of the error dynamics e22
T T T T
8 : -
6 -
4l n
oL _
(o]
_2 1 1 1 I
0 0.5 1 t 15 2 2.5
1 State respones of the error dynamics e23
T T T T
(o]
1L n
_2 _
-3 Il Il Il Il
0 0.5 1 t 15 2 25
Figure 2. Adaptive synchronization errors e; (r) (i = 1,2,3) with the adaptive
synchronization controllers (7) and (8).
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Remark 5. If g(x;(t — t1(t))) = 0, m; = 0, this special case was proposed by Wang
[51]. Obviously, the simplified case can still ensure the stability of the network by using
controllers of this paper.

Remark 6. 1If there is no derivative coupling, this special case was investigated by Yu [52].
Obviously, this can be regarded as the special case of this paper.

4. Numerical examples

In this section, illustrative example is provided to verify the effectiveness of the synchro-
nization controller obtained in the previous section. Without loss of generality, we take
the time-delay Chen chaotic system [53] as the local node dynamics, which can be given
by

x1(1) = a(x(t) — x1(1)),
X2(1) = (¢ — a)x1 (1) + cxa(t) — x1(O)x3(),
x3(t) = x1(®)x2(t) — bxz(t) + d(x3(t) — x3(t — 11)),

wherea =35,b=3,¢c=18,d =3.8and 1y = 0.3.
The constants in Assumption 1 are calculated as « = 45 and 8 = 3.

State respones of the error dynamics e31
T T T T

e31
ANDOMNMOO®
|

I I I I

0 0.5 1 t 1.5 2 2.5

State respones of the error dynamics e32
T T

e32

I I I I

0.5 1 t 1.5 2 25

State respones of the error dynamics 33
T T T

e33
N

-5 1 1 1 1

0 0.5 1 t 15 2 2.5

Figure 3. Adaptive synchronization errors e3; (r) (i = 1,2,3) with the adaptive
synchronization controllers (7) and (8).
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Let
} 1\ 1
(1) .
hi =& JZZ;CU re |:xj(t) + 2log, (|xj| ~|—2> + 2sm(t)] ,
3
=) ciTPx(t — (1)),
j=1
3
m; = &; Zcf;)rmfcj(t - 153(1)),
j=1
where
-1 1 0 -2 2 0 2 -1 -1
C(l): 1 _2 1 3 C(Z): 4 _5 1 9 C(S) = 3 _4 1 4
0 1-1 3 5-8 —4 -2 6
100 1-2 6 312
rY=jo10f|, ™@={4 23 |, 19=|020|,
001 2 5-3 101
1 —t —t
e1=1, &=, sa=1, n)=_- _¢' nl)=_-— _e .
20 State respones of respones network

Amplitude

] I
0 0.5 1 1.5 2 25

_15 1 I
Figure 4. Synchronization state response curves of the complex network (3).
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R f control input
100 espo‘neso contro mp‘u u

Amplitude

150 i | i i

Figure 5. Response curves of adaptive synchronization control inputs (7).

Theorem 1 can be obtained, the complex network (3) can achieve complete synchro-
nization under the adaptive synchronization controller (7) and the adaptive updating law
(8). With initial conditions

1 3 1
x1(0) = 21, x0)=|5], x3(0) = 41,
—1 1 —1
5 2 1
s =1| =2 |, by 0O)y=1|21, ki(0) =12
4 2 3

Let adaptive gains oy =9, ap = 3,03 = 1 and B = 2, B, = 4, 3 = 8. The numerical
simulations are presented in figures 1-5. Figures 1-3 show the synchronization errors of
the complex network and it can be concluded that errors can tend to be zero soon. The
response curves of the complex network is given in figure 4. Figure 5 illustrates control
inputs u; () (i = 1, 2, 3) and the values of control inputs are acceptable.

From figures 1-5, it is easy to see that the controlled complex network (3) is eventually
synchronized.

5. Conclusions
In this paper, we have investigated adaptive synchronization of general complex network

with time-delay coupling, nonlinear coupling and derivative coupling. An effective syn-
chronization controller and adaptive updating laws are derived for the synchronization of
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various delayed complex networks based on the Lyapunov functional method. Finally,
one numerical example has been provided to show the effectiveness of the proposed
method.

The proposed method is simple and effective, but still rather conservative due to
the generality of the network model. Nevertheless, this leaves more theoretical studies
of some other network models and better controller design to the future, for example,
complex networks with unknown parameters and uncertainties and so on.
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