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Abstract. The mechanism of stress corrosion cracking (SCC) has been discussed for decades.
Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the vari-
ational principle under approximately supposed thermal equilibrium. In that model the functionals
are expressed with extended forms of Dirichlet energy, and Dirichlet principle is applied to them
to solve the variational problem that represents SCC and normal extension on pipe surface. Based
on the model and the maximum entropy principle, the statistical nature of SCC colony is discussed
and it is indicated that the crack has discrete energy and length under ideal isotropy of materials and
thermal equilibrium.
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1. Introduction

Stress corrosion cracking, or SCC, is seen on various types of metal surfaces and it is a
significant menace for the pipeline industry since it often causes structural failure on the
pipe wall without any preceding signs and brings devastating consequence. The causes
of SCC have been discussed for a long time. Phenomenally, it is known that the occur-
rence of SCC needs high tensile stress and temperature under corrosive circumstance [1],
however regarding microscopic mechanism it is still disputable. Further, high-pH SCC
and near-neutral pH SCC must be considered individually [2,3]. While it is widely rec-
ognized that the intergranular crack can be transformed into SCC [4], some experimental
results suggest the predominant influence of hydrogen enbrittlement on that transition
process [5] and others show the existence of oxygen rupture [6]. To understand the
mechanism of SCC from atomistic viewpoint, some theoretical models have been
proposed [7,8].

Pramana – J. Phys., Vol. 81, No. 6, December 2013 1009



Harry Yosh

Here, however, SCC is dealt with as the event on a continuous and quasielastic body
approximately for the sake of easier treatment analytically.

SCC is thermodynamically not a stable phenomenon [9]. However, as the crack growth
speed is relatively slow in the early stage of SCC, it may be treated approximately as
the equilibrium state in sufficiently short period. Then the variational principle would be
applicable to the state of SCC, that is, the crack should occupy the lowest energy state. The
energy state of the crack actually means that of the material in which the crack resides,
and the lowest energy state corresponds to that of minimized Dirichlet energy. In the
following sections we consider first the models of individual SCC derived from extended
form of Dirichlet energy, then the ensemble of SCC, or SCC colony, is discussed based
on one of those models applying thermodynamics and statistical mechanics to elucidate
its nature.

2. Variational principle and extended Dirichlet energy

It is known that the minimal surface area surrounded by fixed boundary is approximated
by the solution of Laplace equation which is induced from the following variational
principle:

E[ϕ] = 1

2

∫
W

|∇ϕ(x, y)|2 dxdy → minimum, (1)

where ϕ is the displacement of the pipe surface and E[ϕ] is called the Dirichlet energy
[10]. In the above formulation it has been supposed that the potential energy is propor-
tional to the area of the pipe surface W , while generally SCC occurs in a brittle manner
and brings discontinuous change on ϕ(x, y). It suggests the necessity to expand the form
of Dirichlet energy shown above in order to represent the displacement other than that
proportional to the surface area. Hence, we consider first the following quasi-Dirichlet
energy ES[ϕ]:

ES[ϕ] =
∫

W

dxdy

∫
d|∇ϕ(x, y)| arctan(|∇ϕ(x, y)|)

=
∫

W

dxdy

{ |∇ϕ(x, y)|2
2

− |∇ϕ(x, y)|4
3· 4

+ |∇ϕ(x, y)|6
5· 6

− · · ·
}

. (2)

As the hoop stress is predominant on pipe surface in general, we assume that the
displacement to axial direction is negligible in sufficiently small area W and ϕ is the
function of radial direction only as shown in figure 1, i.e.,

ϕ(x, y) = ϕ(x), (3)

where x is the radial coordinate and y is the axial coordinate.
Then the above equation for quasi-Dirichlet energy ES[ϕ] is simplified as

ES[ϕ] =
∫ D

0
dx

∫
dϕx(x) arctan(ϕx(x))

=
∫ D

0
dx

{
ϕx(x)2

2
− ϕx(x)4

3· 4
+ ϕx(x)6

5· 6
− · · ·

}
, (4)
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Figure 1. Radial coordinate and displacement.

where ϕx(x) = dϕ(x)/dx. Applying the variational principle formally to that quasi-
Dirichlet energy, we get

− d

dx

d

dϕx

∫
dϕx(x) arctan(ϕx(x)) = −dϕx

dx

d

dϕx

arctan(ϕx(x))

= − ϕxx

1 + ϕ2
x

= 0, (5)

where ϕxx = d2ϕ/dx2. Thus, ϕ must satisfy the following equation at the stationary
condition:

ϕxx = 0, i.e. ϕ = C1x + C2, (6)

where C1 and C2 are constants or

ϕx → ±∞. (7)

Two examples of the solution expressed with (6) and (7) are illustrated in figure 2 where
ϕ(0) = 0 and ϕ(D) = a are the boundary conditions. Figure 2a is the ordinary solution
corresponding to (6), while figure 2b is the combination of solutions (6) and (7) and shows
a discontinuous change at xM corresponding to (7). The total strain energy between 0
and D on the latter is null, while the former has a positive value. They are physically
interpreted as the pipe surface before (figure 2a) and after (figure 2b) the fracture under a
certain constant tensile stress.

The model shown here explains how fracture happens. However, actually, the occur-
rence of SCC does not always mean the immediate structural failure, but in some cases the
energy released from SCC is used for deforming the material around the crack. In terms
of quasi-Dirichlet energy, it should not be null in the latter case, but vary according to the
size of the crack. It implies that this model describes the behaviour of structural failure
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Figure 2. Continuous and discontinuous solutions under quasi-Dirichlet energy.

in completely brittle materials rather than that of SCC. Hence we consider secondly the
following quasi-Dirichlet energy:

EL[ϕ] = 1

2

∫
W

dxdy
|∇ϕ(x, y)|2

1 + β|∇ϕ(x, y)|2 , (8)

where β is a constant and > 0, and where β is determined by the properties of the material
of the pipe wall. As well as the former case, it is simplified using condition (3) to one-
dimensional integral as

EL[ϕ] = 1

2

∫ D

0
dx

ϕx(x)2

1 + βϕx(x)2 , (9)

where x is the radial coordinate.
Applying the variational principle formally to the above quasi-Dirichlet energy, we get

− d

dx

d

dϕx

1

2

ϕx(x)2

1 + βϕx(x)2 = −ϕxx(1 − 3βϕ2
x)

(1 + βϕ2
x)

3
= 0. (10)
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Therefore, ϕ must satisfy the following equations at the stationary condition:

ϕxx = 0 or ϕx = ± 1√
3β

or ϕx → ±∞. (11)

Two examples of the solution are illustrated in figure 3. Figure 3a is the solution ϕ = C0x

and figure 3b is the combination of solutions: ϕ1 = C1x, ϕ2 = (x/
√

3β) + C2 and
ϕ3 = C3x + C4 (C0, ..., C4: constants) corresponding to three ranges having the length
A, S and B respectively. Since ϕ2 has the constant derivative 1/

√
3β which is not null,

quasi-Dirichlet energy shown in figure 3b is not null and the longer interval ϕ2 has, the
greater the energy it stores. Thus, we could regard the displacement expressed with ϕ2

in the range having length S as the individual crack on the pipe surface. We choose S as
making quasi-Dirichlet energy minimum. That energy may be lower than that of figure 3a.
Then, this solution is interpreted as the most probable cracking under the condition that
there exists single crack in the range [0, D]. Note that S and strain energy E of the crack
have the following relation:

E = 1

2

∫ S

0
dx

ϕx(x)2

1 + βϕx(x)2
= S

8β
, (12)

Figure 3. Two solutions for the stationary condition of quasi-Dirichlet energy EL[ϕ].
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where ϕx(x) = 1/
√

3β. We assume that the displacement caused by cracking is pro-
portional to crack’s axial length and denote that factor as λ. Then the crack length L is
written as λS/

√
3β, and E is expressed with the crack length L as

E = λS/
√

3β

8λβ/
√

3β
= L

8λ

√
3

β
. (13)

3. Crack distribution

Although the second model mentioned tells how much energy is stored around the crack,
it is unable to predict how cracks distribute because that model is applicable only to single
crack. As most of SCC form crack colony, it is important to deal with the ensemble of
SCC in order to describe the distribution of cracks in the crack colony.

To deal with multiple cracks, we consider the decomposition of the above crack on
the range having length S by keeping the quasi-Dirichlet energy minimum. First we
assume ideal isotropy and homogeneity for the material of the pipe wall. Now we decom-
pose the crack into n subcracks as seen in figures 4a and 4b satisfying the minimum
quasi-Dirichlet energy EL[ϕ] which is equal to that shown in figure 3b. The events cor-
responding to the solutions shown in figures 3b, 4a and 4b seem to have the probability

Figure 4. Decomposition of the crack.
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equal to each other since their quasi-Dirichlet energy is equal to each other. However,
actually the event shown in figure 4b where every subcrack has the same energy and
length is thermodynamically more probable than figure 4a according to the maximum
entropy principle. Intuitively it is comprehended as we do not have any a priori rea-
son that one of those n cracks is longer than the others. Thus, under the condition that
the crack is divided into n subcracks in thermal equilibrium, the probability of division
into n equilength subcracks is almost 1. That is, the crack length L is discretized and
expressed as

Ln = λS

n
√

3β
(n: 1, 2, 3, ...) (14)

namely,

Ln = L1

n
(n: 1, 2, 3, ...). (15)

Following the discretization of crack length, the energy level of crack E is also discretized
and expressed using the relation (13) as

En = Ln

8λ

√
3

β
(n: 1, 2, 3, ...) (16)

namely,

En = E1

n
(n: 1, 2, 3, ...). (17)

The above discretization of crack implies that the crack has a nature of ‘particle’ under
ideal thermal equilibrium, and the probability f (Ej) that the crack has the energy Ej

would be proportional to the Boltzmann factor, i.e.

f (Ej) = cN · exp

(
μ − Ej

kT

)
, (18)

where k is the Boltzmann constant, T is the temperature, μ is the chemical potential and
cN is the normalization factor.

Therefore, we can estimate the mean number of cracks having the energy En under the
temperature T as

m(En) =
∑n

j=1 j · exp
(
j ·(μ−En)

kT

)
∑n

j=1 exp
(
j ·(μ−En)

kT

)

= 1

exp
(
(En−μ)

kT

)
− 1

+
exp

(
n(En−μ)

kT

)
− n − 1

exp
(
n(En−μ)

kT

)
− 1

, (19)

where the upper bound n in the summation is equal to the number of divisions in the range
having length S since the sum of the subcrack’s strain energy cannot exceed the original
single crack’s energy E1 (= T/8β).
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As mentioned in Introduction, we have assumed SCC to be thermally stable in a certain
short period and the crack growth is negligible. Then SCC is independent of the change of
Gibbs free energy because the cracks can neither diffuse nor move. That is, the chemical
potential μ is null. Thus, the crack distribution (19) is rewritten as

m(En) = 1

exp(En/kT ) − 1
+ exp(nEn/kT ) − n − 1

exp(nEn/kT ) − 1

= 1

exp(En/kT ) − 1
+ exp(E1/kT ) − n − 1

exp(E1/kT ) − 1
. (20)

In figure 5 the behaviours of m(En) under three different conditions are illustrated. When
En/kT is sufficiently small, exp(En/kT ) is approximated as

exp

(
En

kT

)
≈ 1 + En

kT
. (21)

Using (21), (20) is approximated as

m(En) ≈ n. (22)

It is also expressed with (15) and (17) as

m(En) ≈ L1

Ln

= E1

En

. (23)

Figure 5. Mean crack numbers as a function of crack energy.

1016 Pramana – J. Phys., Vol. 81, No. 6, December 2013



Statistical model of stress corrosion cracking

Figure 6. SCC colony.

That is, the mean number of cracks having energy En (or length Ln) is inversely
proportional to En (or Ln) approximately at sufficiently high temperature or small crack
energy.

An example of the SCC colony on the pipe surface is shown in figure 6. It is unlikely
that the SCC colony was created at once. Actually, most of the cracks shown in that

Figure 7. The frequency of crack length as an inversely proportional function of crack
length.
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picture would have grown gradually for years and eventually aggregated into the colony.
In that process some of them might have combined and formed larger cracks because
adjacent cracks tend to link each other. Therefore, it seems difficult to apply the
previous assumptions, i.e. thermodynamical stability and null chemical potential, to such
example. Further, as seen in the picture, each crack is not exactly parallel to the pipe
axis owing to microstructual anisotropy of the material. However, for sufficiently small
cracks, those assumptions are thought still applicable since we can estimate a small crack
as having created at a single incident, and eliminate the effect of crack growth and reduce
the influence of stress caused by the anisotropy of the materials.

In figure 7, the frequency of crack length on the above example was fitted by inversely
proportional function of crack length. Figure 7 indicates that the assumptions mentioned
above are applicable to the cracks having length less than around 3 mm, i.e. such cracks
are thought to have been created in a single incident. As threshold of length depends
not only on temperature, but also on the material properties, the length of 3 mm as the
threshold is specific to that example.

4. Summary

Although SCC, or stress corrosion cracking, is thermodynamically unstable, dealing with
it as approximately stable phenomenon in sufficiently short period is thought plausi-
ble. Then it would take the minimum energy state in thermodynamically closed system.
According to the variational principle, it approximately satisfies the stationary condition
of Dirichlet energy. In order to induce from the variational principle the displacement
on pipe surface including SCC under high tensile stress, we discuss to extend Dirichlet
energy that derives multiple solutions under stationary condition. One of those solutions
coincides with that of the ordinary Laplace equation. The other one is independent of
the boundary conditions but depends on the internal parameter introduced in the extended
Dirichlet energy. The latter solution represents the displacement on pipe surface caused
by SCC.

As most of the SCC form a colony, we need to deal with the ensemble of SCC
statistically to discuss the nature of SCC colony. For that purpose, first we decom-
pose virtually the largest single crack caused by SCC into multiple subcracks. Then, by
applying the maximum entropy principle, we induce that each subcrack has the discrete
energy and length which are determined by the extent of the largest crack under ideal
thermal equilibrium. The nature of those subcracks is similar to that of a particle, and
the frequency of their length is expected to be inversely proportional to the length itself
when the length of each subcrack is small enough. It was verified using the example of
an actual SCC colony.
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