
PRAMANA c© Indian Academy of Sciences Vol. 81, No. 6
— journal of December 2013

physics pp. 911–924

Exact solutions for nonlinear variants
of Kadomtsev–Petviashvili (n, n) equation
using functional variable method

M MIRZAZADEH1,∗ and M ESLAMI2

1Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan,
University of Guilan, Rudsar, Iran
2Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran,
Babolsar, Iran
∗Corresponding author. E-mail: mirzazadehs2@guilan.ac.ir

MS received 22 July 2013; revised 16 September 2013; accepted 3 October 2013
DOI: 10.1007/s12043-013-0632-2; ePublication: 5 December 2013

Abstract. Studying compactons, solitons, solitary patterns and periodic solutions is important
in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili
(KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The func-
tional variable method is used to establish compactons, solitons, solitary patterns and periodic
solutions for these variants. This method is a powerful tool for searching exact travelling solutions
in closed form.
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1. Introduction

Travelling wave solutions play important roles in mathematical physics and engineering
sciences. These solutions may well describe various phenomena in nature, such as vibra-
tions, solitons and propagation with a finite speed, and thus they may give more insight
into the physical aspects of problems and may be easily used in other applications. In
mathematics, for a nonlinear partial differential equation (PDE), usually the travelling
wave solutions are considered first. Recently, many powerful methods to construct the
travelling wave solutions of nonlinear PDEs were presented. Some of them are: ansatz
method, exp-function method, tanh method, first integral method, adomian decomposi-
tion method, simplest equation method, sine–cosine method, Hirota’s bilinear method,
functional variable method and so on [1–20].
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A large number of equations in many areas of applied mathematics, physics and engi-
neering appear as nonlinear wave equations. One of the most important one-dimensional
nonlinear wave equation is the KdV equation which describes the evolution of weakly
nonlinear and weakly dispersive wave used in various fields such as solid-state physics,
plasma physics, fluid physics and quantum field theory. A decade ago this equation was
generalized to the well-known K(m, n) equation. There are several nonlinear variants of
the KdV equation which have compacton solutions. Another variant is the CSS equation
which is discussed in [21, 22]. The nonlinear variants of the KdV equations are called
the K(m, n) equations. Rosenau and Hyman [23] studied the role of nonlinear disper-
sion in the formation of patterns in liquid drops and introduced the nonlinearly dispersive
K(m, n) equation:

∂u

∂t
+ a

∂

∂x
(um) + ∂3

∂x3
(un) = 0, m > 0, n > 1, (1)

which have the special property for certain m and n. Here, the first term is the linear term,
while the second term represents the nonlinear term and the third term is the dispersion
term. This equation is the generalized form of the KdV equation. When a = 1, eq.
(1) is referred to as the focussing (+) branch, the focussing branch exhibits compacton
solutions and if a = −1, then eq. (1) is referred to as the defocussing (−) branch, the
defocussing branch exhibits solitary pattern solutions.

Equation (1) is the major equation for compactons. These are defined as solitons with
compact support. Thus they vanish outside a finite core region. Compactons are free from
exponential tails. Compactons are generated as a result of delicate interaction between
the nonlinear convection term (um)x and the nonlinear dispersion term (un)xxx . Also
compactons do not have the properties of solitons. They do not just suffer a phase shift
after scattering. So they only have some properties of particles. A discussion of how even
shocks get generated after scattering is given in [24].

The well-known (1 + 3)-dimensional Kadomtsev–Petviashvili (4DKP) equation [25]

∂

∂x

(
ut + 6u

∂u

∂x
+ ∂3u

∂x3

)
+ 3κ

∂2u

∂y2
− 3

∂2u

∂z2
= 0, (2)

with κ = ±1, is a universal model for the propagation of weakly nonlinear dispersive
long waves which are essentially one directional, with weak transverse effects. The KP
equation also arises naturally in many other applications, particularly in plasma physics,
gas dynamics, and elsewhere.

The KP equation is the best known two-dimensional generalization of the KdV
equation. Wazwaz [15–19] and Ismail et al [20] obtained compactons, solitons, soli-
tary patterns and periodic solutions for the following nonlinear variants of KP and
KdV equations by using the tanh method, the sine–cosine method and the mathematical
transformation:

KP(n, n) equation:

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(un) + b

∂3

∂x3
(un)

)
+ κ

∂2u

∂y2
= 0. (3)
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KP-K(n + 1, n + 1) equation:

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(un+1) + b

∂

∂x

[
u

∂2

∂x2
(un)

])
+ κ

∂2u

∂y2
= 0. (4)

K(n, n) equation:

∂u

∂t
+ ∂

∂x
(au + bun) + κ

∂3

∂x3
(un) = 0. (5)

(1 + k)-dimensional KP(3n, 3n) equation:

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(u3n) + b

∂

∂x

[
un ∂2

∂x2
(u2n)

])
+ ∂2u

∂y2
+ (k − 2)

∂2u

∂z2
= 0,

k = 2, 3. (6)

In this paper, we shall obtain new compactons, solitons, solitary patterns and periodic
solutions for the KP(n, n), the KP(n+1, n+1), the K(n, n) and the (1+k)-dimensional-
KP(3n, 3n) equations with positive and negative exponents by using the functional
variable method.

2. The functional variable method

The functional variable method, which is a direct and effective algebraic method for the
computation of compactons, solitons, solitary patterns and periodic solutions, was first
proposed by Zerarka et al [11]. This method was further developed by many authors
[12–14]. We now summarize the functional variable method, established by Zerarka et al
[11], the details of which can be found in [11–14] among many others.

Consider a general nonlinear PDE in the form

P

(
u,

∂u

∂t
,
∂u

∂y
,
∂u

∂x
,
∂2u

∂t2
,
∂2u

∂y2
,
∂2u

∂x2
,

∂2u

∂t∂x
, ...

)
= 0, (7)

where P is a polynomial in u and its partial derivatives. Use a wave variable ξ = α0t +
α1x + α2y + δ so that

u(x, y, t) = U(ξ). (8)

Equation (7) can be converted to an ordinary differential equation (ODE) as

Q(U,U ′, U ′′, U ′′′, ...) = 0, (9)

where Q is a polynomial in U = U(ξ) and prime denotes derivative with respect to ξ.

If all terms contain derivatives, then eq. (9) is integrated where integration constants are
considered zeros.

Let us make a transformation in which the unknown function U(ξ) is considered as a
functional variable of the form

Uξ = F(U) (10)
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and some successive derivatives of U are

Uξξ = 1

2
(F 2)′,

Uξξξ = 1

2
(F 2)′′

√
F 2,

Uξξξξ = 1

2
[(F 2)′′′F 2 + (F 2)′′(F 2)′], (11)

where ′ = d/dU.

The ODE (9) can be reduced in terms of U, F and its derivatives upon using the
expressions of eq. (11) into eq. (9) gives

R(U,F, F ′, F ′′, F ′′′, ...) = 0. (12)

The key idea of this particular form (eq. (12)) is of special interest because it admits ana-
lytical solutions for a large class of nonlinear wave-type equations. After integration, eq.
(12) provides the expression of F , and this in turn together with eq. (10) give the relevant
solutions to the original problem.

Remark. The functional variable method definitely can be applied to nonlinear PDEs
which can be converted to a second-order ordinary differential equations (ODE) through
the travelling wave transformation.

3. Applications

In this section, we present four examples to illustrate the applicability of the functional
variable method to establish compactons, solitons, solitary patterns and periodic solutions
of nonlinear PDEs.

3.1 KP(n, n) equation

3.1.1 The positive exponents. Let us first consider the KP(n, n) equation with positive
exponents

∂

∂x

(
∂u

∂t
+ a

∂

∂x

(
un

) + b
∂3

∂x3
(un)

)
+ κ

∂2u

∂y2
= 0. (13)

Under the travelling wave transformation

u(x, y, t) = U(ξ), ξ = α0t + α1x + α2y + δ (14)

we have

α1(α0U
′ + aα1(U

n)′ + bα3
1(U

n)′′′)′ + κα2
2U

′′ = 0, (15)

where U = U(ξ) and prime denotes derivative with respect to ξ .
Integrating eq. (15) twice with respect to ξ and neglecting constants of integration, we

get

(α0α1 + κα2
2)U + aα2

1(U
n) + bα4

1(U
n)′′ = 0. (16)
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We use the transformation

U(ξ) = V 1/n(ξ), (17)

that will reduce eq. (16) into the ODE(
α0α1 + κα2

2

)
V 1/n + aα2

1V + bα4
1V

′′ = 0. (18)

Then we use the transformation

Vξ = F(V ), (19)

that will convert eq. (18) to

(
α0α1 + κα2

2

)
V 1/n + aα2

1V + bα4
1(F

2(V ))′

2
= 0. (20)

Thus, we get from eq. (20) the expression of the function F(V ) as

F(V ) =
√

− a

bα2
1

V

√
1 + 2n(α0α1 + κα2

2)

a(n + 1)α2
1

V (1−n)/n. (21)

After making the change of variables

−2n(α0α1 + κα2
2)

a(n + 1)α2
1

V (1−n)/n = Z, (22)

and using the relation (19), the two possible solutions of eq. (21) are in the following
forms:

V1(ξ) =
{
− a(n + 1)α2

1

2n(α0α1 + κα2
2)

sech2

[
1 − n

2nα1

√
−a

b
ξ

]}n/(1−n)

(23)

and

V2(ξ) =
{

a(n + 1)α2
1

2n(α0α1 + κα2
2)

csch2

[
1 − n

2nα1

√
−a

b
ξ

]}n/(1−n)

. (24)

Now, from eqs (23) and (24) we deduce the solutions of the original problem

U1(ξ) =
{
− a(n + 1)α2

1

2n(α0α1 + κα2
2)

sech2

[
1 − n

2nα1

√
−a

b
ξ

]}1/(1−n)

(25)

and

U2(ξ) =
{

a(n + 1)α2
1

2n(α0α1 + κα2
2)

csch2

[
1 − n

2nα1

√
−a

b
ξ

]}1/(1−n)

. (26)

We can easily obtain the following solitary pattern solutions:

u1(x, y, t) =
{
−2n(α0α1 + κα2

2)

a(n + 1)α2
1

× cosh2

[
n − 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n−1)

(27)
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and

u2(x, y, t) =
{

2n(α0α1 + κα2
2)

a(n + 1)α2
1

× sinh2

[
n − 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n−1)

, (28)

for (a/b) < 0, it is easy to see that solutions (27) and (28) can be reduced to compacton
solutions as follows:

u3(x, y, t) =
{
−2n(α0α1 + κα2

2)

a(n + 1)α2
1

× cos2

[
n − 1

2nα1

√
a

b
(α0t + α1x + α2y + δ)

]}1/(n−1)

(29)

and

u4(x, y, t) =
{
−2n(α0α1 + κα2

2)

a(n + 1)α2
1

× sin2

[
n − 1

2nα1

√
a

b
(α0t + α1x + α2y + δ)

]}1/(n−1)

, (30)

for (a/b) > 0.

3.1.2 The negative exponents. In this case, the KP(n, n) equation becomes

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(u−n) + b

∂3

∂x3
(u−n)

)
+ κ

∂2u

∂y2
= 0. (31)

In view of the results (27) and (28) for (a/b) < 0, and n is replaced by −n, we deduce
the following exact soliton-like solutions for eq. (31):

u1(x, y, t) =
{

a(1 − n)α2
1

2n(α0α1 + κα2
2)

× sech2

[
n + 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n+1)

(32)

and

u2(x, y, t) =
{

a(n − 1)α2
1

2n(α0α1 + κα2
2)

× csch2

[
n + 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n+1)

. (33)

Similarly, we now use the results (29) and (30) for (a/b) > 0, and n is replaced by −n,

we have the following analytical periodic solutions for eq. (31):

u3(x, y, t) =
{

a(1 − n)α2
1

2n(α0α1 + κα2
2)

× sec2

[
n + 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n+1)

(34)
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and

u4(x, y, t) =
{

a(1 − n)α2
1

2n(α0α1 + κα2
2)

× csc2

[
n + 1

2nα1

√
−a

b
(α0t + α1x + α2y + δ)

]}1/(n+1)

. (35)

3.2 (1 + k)-dimensional KP(3n,3n) equation

3.2.1 The positive exponents. Let us demonstrate the application of functional vari-
able method for finding the exact travelling wave solutions of the (1 + k)-dimensional
KP(3n, 3n) equation

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(u3n) + b

∂

∂x

[
un ∂2

∂x2
(u2n)

])
+ ∂2u

∂y2
+(k−2)

∂2u

∂z2
= 0, (36)

where k = 2, 3, indicates the dimensions of the two- and three-dimensional spaces.
To look for the exact solutions of eq. (36), we make transformation

u(x, y, t) = U(ξ), ξ = α0t + α1x + α2y + (k − 2)α3z + δ, (37)

and generate the reduced nonlinear ODE in the form

α1(α0U
′ + aα1(U

3n)′ + bα3
1[Un(U 2n)′′]′)′ + ((k − 2)3α2

3 + α2
2)U

′′ = 0. (38)

Integrating (38) twice with respect to ξ and setting the constants of integration to be zero
we find (

α0α1 + (k − 2)3α2
3 + α2

2

)
U + aα2

1U
3n + bα4

1U
n(U 2n)′′ = 0. (39)

We use the transformation

U(ξ) = V 1/2n(ξ), (40)

that will reduce eq. (39) into the ODE(
α0α1 + (k − 2)3α2

3 + α2
2

)
V 1/2n + aα2

1V
3/2 + bα4

1V
1/2V ′′ = 0. (41)

Following eq. (11), it is easy to deduce from (41) the expression of the function F(V )

which reads as

F(V ) =
√

− a

bα2
1

V

√
1 + 4n

(
α0α1 + (k − 2)3α2

3 + α2
2

)
a(n + 1)α2

1

V (1−3n)/2n. (42)

Using the change of variables

−4n
(
α0α1 + (k − 2)3α2

3 + α2
2

)
a(n + 1)α2

1

V (1−3n)/2n = Z, (43)

and using the relation (19), we can obtain the two possible solutions of eq. (41) in the
following forms:

V1(ξ) =
{

− a(n + 1)α2
1

4n
(
α0α1 + (k − 2)3α2

3 + α2
2

)sech2

[
1 − 3n

4nα1

√
−a

b
ξ

]}2n/(1−3n)

(44)
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and

V2(ξ) =
{

a(n + 1)α2
1

4n
(
α0α1 + (k − 2)3α2

3 + α2
2

)csch2

[
1 − 3n

4nα1

√
−a

b
ξ

]}2n/(1−3n)

.

(45)

Using eq. (40), we get the following exact solutions for eq. (38):

U1(ξ) =
{

− a(n + 1)α2
1

4n
(
α0α1 + (k − 2)3α2

3 + α2
2

) sech2

[
1 − 3n

4nα1

√
−a

b
ξ

]}1/(1−3n)

(46)

and

U2(ξ) =
{

a(n + 1)α2
1

4n
(
α0α1 + (k − 2)3α2

3 + α2
2

)csch2

[
1 − 3n

4nα1

√
−a

b
ξ

]}1/(1−3n)

.

(47)

When (a/b) < 0, we have the following solitary pattern solutions:

u1(x, y, z, t) =
{
− 4nA

a(n + 1)α2
1

× cosh2

[
3n − 1

4nα1

√
−a

b
(α0t + α1x + α2y + (k − 2)α3z + δ)

]}1/(3n−1)

(48)

and

u2(x, y, z, t) =
{

4nA

a(n + 1)α2
1

× sinh2

[
3n − 1

4nα1

√
−a

b
(α0t + α1x + α2y + (k − 2)α3z+δ)

]}1/(3n−1)

,

(49)

where

A = α0α1 + (k − 2)3α2
3 + α2

2 .

When (a/b) > 0, we obtain the following compacton solutions:

u3(x, y, z, t) =
{
− 4nA

a(n + 1)α2
1

× cos2

[
3n − 1

4nα1

√
a

b
(α0t + α1x + α2y + (k − 2)α3z + δ)

]}1/(3n−1)

(50)

and

u4(x, y, z, t) =
{
− 4nA

a(n + 1)α2
1

× sin2

[
3n − 1

4nα1

√
a

b
(α0t + α1x + α2y + (k − 2)α3z + δ)

]}1/(3n−1)

(51)

where

A = α0α1 + (k − 2)3α2
3 + α2

2 .
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3.2.2 The negative exponents. The (1 + k)-dimensional KP(3n, 3n) equation with
negative exponents is written as

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(u−3n) + b

∂

∂x

[
u−n ∂2

∂x2
(u−2n)

])
+ ∂2u

∂y2
+ (k − 2)

∂2u

∂z2
= 0.

(52)

In view of the results (48) and (49) for (a/b) < 0, and n is replaced by −n, we deduce
the following exact soliton-like solutions for eq. (52):

u1(x, y, z, t) =
{

a(1 − n)α2
1

4nA
sech2

[
3n + 1

4nα1

√
−a

b
(α0t + α1x + α2y

+(k − 2)α3z + δ)

]}1/(3n+1)

(53)

and

u2(x, y, z, t) =
{
−a(1 − n)α2

1

4nA
csch2

[
3n + 1

4nα1

√
−a

b
(α0t + α1x + α2y

+(k − 2)α3z + δ)

]}1/(3n+1)

, (54)

where

A = α0α1 + (k − 2)3α2
3 + α2

2 .

Similarly, we now use the results (50) and (51) for (a/b) > 0, and n is replaced by −n,

we have the following analytical periodic solutions to eq. (52):

u3(x, y, z, t) =
{

a(1 − n)α2
1

4nA
sec2

[
3n + 1

4nα1

√
a

b
(α0t + α1x + α2y

+(k − 2)α3z + δ)

]}1/(3n+1)

(55)

and

u4(x, y, z, t) =
{

a(1 − n)α2
1

4nA
csc2

[
3n + 1

4nα1

√
a

b
(α0t + α1x + α2y

+(k − 2)α3z + δ)

]}1/(3n+1)

, (56)

where

A = α0α1 + (k − 2)3α2
3 + α2

2 .

On comparison, we observe that our solutions (48)–(56) include the solutions of Wazwaz
[18].
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3.3 K(n, n) equation

3.3.1 The positive exponents. We consider a third variant of the KdV equation

∂u

∂t
+ ∂

∂x

(
au + bun

) + κ
∂3

∂x3

(
un

) = 0, (57)

which was studied in Wazwaz [19]. It is to be noted that eq. (57) is the linear KdV
equation for b = 0 and n = 1. However, for a = 0, eq. (57) will be reduced to the
well-known K(n, n) equation.

Next, to find a travelling wave solution of eq. (57), we use

u(x, t) = U(ξ), ξ = α0t + α1x + δ. (58)

Substituting (58) into eq. (57), we get

α0U
′ + α1(aU + bUn)′ + κα3

1(U
n)′′′ = 0. (59)

Integrating eq. (59) and neglecting constants of integration, we find

(α0 + aα1)U + bα1(U
n) + κα3

1(U
n)′′ = 0. (60)

Using the transformation

U(ξ) = V 1/n(ξ), (61)

eq. (60) will be reduced to the following equation:

(α0 + aα1)V
1/n + bα1V + κα3

1V
′′ = 0. (62)

Using eq. (11), it is easy to deduce from (62) the expression of the function F(V ) as

F(V ) =
√

− b

κα2
1

V

√
1 + 2n(α0 + aα1)

b(n + 1)α1
V (1−n)/n. (63)

Using the change of variables

−2n(α0 + aα1)

b(n + 1)α1
V (1−n)/n = Z, (64)

and proceeding as before, we can obtain the two possible solutions of eq. (62) in the
following forms:

V1(ξ) =
{

− b(n + 1)α1

2n(α0 + aα1)
sech2

[
1 − n

2nα1

√
−b

k
ξ

]}n/(1−n)

(65)

and

V2(ξ) =
{

b(n + 1)α1

2n(α0 + aα1)
csch2

[
1 − n

2nα1

√
−b

k
ξ

]}n/(1−n)

. (66)

Using eq. (61), we obtain the exact solutions for eq. (59) in the following forms:

U1(ξ) =
{

− b(n + 1)α1

2n(α0 + aα1)
sech2

[
1 − n

2nα1

√
−b

k
ξ

]}1/(1−n)

(67)
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and

U2(ξ) =
{

b(n + 1)α1

2n(α0 + aα1)
csch2

[
1 − n

2nα1

√
−b

k
ξ

]}1/(1−n)

. (68)

When (a/k) < 0, we have the following solitary pattern solutions:

u1(x, t) =
{

−2n(α0 + aα1)

b(n + 1)α1
cosh2

[
n − 1

2nα1

√
−b

k
(α0t + α1x + δ)

]}1/(n−1)

(69)

and

u2(x, t) =
{

2n(α0 + aα1)

b(n + 1)α1
sinh2

[
n − 1

2nα1

√
−b

k
(α0t + α1x + δ)

]}1/(n−1)

.

(70)

When (a/k) > 0, we get the following compacton solutions:

u3(x, t) =
{

−2n(α0 + aα1)

b(n + 1)α1
cos2

[
n − 1

2nα1

√
b

k
(α0t + α1x + δ)

]}1/(n−1)

(71)

and

u4(x, t) =
{

−2n(α0 + aα1)

b(n + 1)α1
sin2

[
n − 1

2nα1

√
b

k
(α0t + α1x + δ)

]}1/(n−1)

.

(72)

3.3.2 The negative exponents. In this subsection, we apply our method to obtain soliton-
like and periodic solutions of the K(n, n) equation in the form

∂u

∂t
+ ∂

∂x

(
au + bu−n

) + κ
∂3

∂x3

(
u−n

) = 0. (73)

In view of the results (69) and (70) for (b/k) < 0, and n is replaced by −n, we deduce
the following exact soliton-like solutions for eq. (73):

u1(x, t) =
{

b(1 − n)α1

2n(α0 + aα1)
sech2

[
n + 1

2nα1

√
−b

k
(α0t + α1x + δ)

]}1/(n+1)

(74)

and

u2(x, t) =
{

b(n − 1)α1

2n(α0 + aα1)
csch2

[
n + 1

2nα1

√
−b

k
(α0t + α1x + δ)

]}1/(n+1)

.

(75)
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Similarly, we now use the results (71) and (72) for (b/k) > 0, and n is replaced by −n,

we have the following analytical periodic solutions to eq. (73):

u3(x, t) =
{

b(1 − n)α1

2n(α0 + aα1)
sec2

[
n + 1

2nα1

√
b

k
(α0t + α1x + δ)

]}1/(n+1)

(76)

and

u4(x, t) =
{

b(1 − n)α1

2n(α0 + aα1)
csc2

[
n + 1

2nα1

√
b

k
(α0t + α1x + δ)

]}1/(n+1)

. (77)

3.4 KP-K(n + 1, n + 1) equation

We finally consider KP-K(n + 1, n + 1) equation

∂

∂x

(
∂u

∂t
+ a

∂

∂x
(un+1) + b

∂

∂x

[
u

∂2

∂x2
(un)

])
+ κ

∂2u

∂y2
= 0. (78)

Using the wave variable ξ = α0t + α1x + α2y + δ and proceeding as before we find

α1(α0U
′ + aα1(U

n+1)′ + bα3
1[U(Un)′′]′)′ + κα2

2U
′′ = 0. (79)

Integrating eq. (79) and neglecting constants of integration, we find

(α0α1 + κα2
2)U + aα2

1U
n+1 + bα4

1U(Un)′′ = 0. (80)

Using the transformation

U(ξ) = V 1/n(ξ), (81)

eq. (80) will be reduced to the following equation:(
α0α1 + κα2

2

)
V 1/n + aα2

1V
(1/n)+1 + bα4

1V
(1/n)V ′′ = 0. (82)

Following eq. (11), it is easy to deduce from (82) the expression of the function F(V ) as

F(V ) =
√

− a

bα2
1

V

√
1 + 2(α0α1 + κα2

2)

V aα2
1

. (83)

Using the change of variables

−2(α0α1 + κα2
2)

V aα2
1

= Z, (84)

and proceeding as before, we can obtain the two possible solutions of eq. (82) in the
following forms:

V1(ξ) = −2
(
α0α1 + κα2

2

)
aα2

1

cosh2

[
1

2α1

√
−a

b
ξ

]
(85)

and

V2(ξ) = 2
(
α0α1 + κα2

2

)
aα2

1

sinh2

[
1

2α1

√
−a

b
ξ

]
. (86)

922 Pramana – J. Phys., Vol. 81, No. 6, December 2013



Exact solutions for nonlinear variants of KP(n, n) equation

Using eq. (81), we obtain the exact solutions for eq. (80) in the following forms:

U1(ξ) =
{

−2
(
α0α1 + κα2

2

)
aα2

1

cosh2

[
1

2α1

√
−a

b
ξ

]}1/n

(87)

and

U2(ξ) =
{

2
(
α0α1 + κα2

2

)
aα2

1

sinh2

[
1

2α1

√
−a

b
ξ

]}1/n

. (88)

When (a/b) < 0, we have the following solitary pattern solutions:

u1(x, y, t)=
{
−2

(
α0α1+κα2

2

)
aα2

1

cosh2

[
1

2α1

√
−a

b
(α0t +α1x +α2y +δ)

]}1/n

(89)

and

u2(x, y, t)=
{

2
(
α0α1+ κα2

2

)
aα2

1

sinh2

[
1

2α1

√
−a

b
(α0t +α1x +α2y +δ)

]}1/n

.

(90)

When (a/b) > 0, we get the following compacton solutions:

u3(x, y, t) =
{
−2

(
α0α1 + κα2

2

)
aα2

1

cos2

[
1

2α1

√
a

b
(α0t + α1x + α2y + δ)

]}1/n

(91)

and

u4(x, y, t)=
{

−2
(
α0α1 +κα2

2

)
aα2

1

sin2

[
1

2α1

√
a

b
(α0t +α1x +α2y + δ)

]}1/n

.

(92)

Remark. Comparing our results with earlier results [15–20], it can be seen that the current
results are new.

4. Conclusion

Nonlinear phenomena play crucial roles in applied mathematics and physics. Exact
solutions for nonlinear PDEs play important roles in many phenomena such as fluid
mechanics, hydrodynamics, optics, plasma physics and so on. For the past several
decades, many powerful methods [15–20] were used in solitary wave theory to investigate
compactons, solitons, solitary patterns and periodic solutions for the nonlinear variants of
KP and KdV equations. In this paper, we obtained compactons, solitons, solitary patterns
and periodic solutions of the nonlinear variants of KP and KdV equations by using the
functional variable method. It shows that the method is powerful and straightforward for
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nonlinear differential equations. It is said that this method can be applied to other kinds
of nonlinear problems. Also, we predict that the obtained solutions in this paper will
be important for analysing the nonlinear phenomena arising in applied physical sciences.
The work reveals the power of this method in handling nonlinear PDEs which can be
converted to a second-order ODE through the travelling wave transformation.
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