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Abstract. In this paper, the lag synchronization of chaotic systems with time-delayed linear terms
via impulsive control is investigated. Based on the stability theory of impulsive delayed differen-
tial equations, some sufficient conditions are obtained guaranteeing the synchronized behaviours
between two delayed chaotic systems. Numerical simulations on time-delayed Lorenz and hyper-
chaotic Chen systems are also carried out to show the effectiveness of the proposed scheme. Note
that under the scheme the chaotic system is controlled only at discrete time instants, and so it
reduces the control cost in real applications.

Keywords. Chaotic systems; time delays; impulsive control; lag synchronization.

PACS Nos 05.45.Xt; 05.45.Gg

1. Introduction

Inspired by the pioneering work of Pecora and Carroll [1-3], the subject of how to
synchronize chaotic systems has attracted increasing attention due to their potential appli-
cations in secure communication. Various methods have been put forward to synchronize
chaotic systems, which include nonlinear observer approach [4,5], self-adaptive control
method [6,7], parameter control [8], impulsive control [9-11], etc. Recently, impulsive
control has been widely used to stabilize and synchronize chaotic systems, because it
allows the stabilization and synchronization of chaotic systems using only impulsive con-
trol at discrete time instants, even though the chaotic behaviour may follow unpredictable
patterns. More recently, Yang [12], Yang and Leon [13], Sun et al [14] and Li and Liao
[15] have obtained many impulsive complete and lag synchronization criteria for some
well-known chaotic systems.

Lag synchronization, which is different from complete synchronization, has been pro-
posed as the coincidence of the states of two coupled systems in which one of the systems
is delayed by a finite time 6, i.e., x(t) — y(t+3) ast — oo where x, y denote the states of
the interacting systems. Thus, knowledge of the lag synchronization is of considerable
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practical importance. Shahverdive et al [16] carried out the analytical analysis about
lag synchronization in unidirectionally coupled time-delayed systems. Note that impul-
sive control scheme can reduce the control cost significantly, and so it is of great use in
practical applications. Now, in this paper, lag synchronization of chaotic systems with
time-delayed linear terms will be investigated. The scheme is showed effective through
numerical simulations on chaotic systems.

The rest of the paper is organized as follows. In §2, some results of impulsive control
are presented. In §3, impulsive lag synchronization of chaotic systems with time delay
is obtained. In §4, two numerical examples are given to verify the obtained theoretical
results. Finally, some conclusions are drawn in §5.

2. Preliminaries and problem formation

Consider the general nonlinear functional differential system

X=f(t,x), t=>t, (D

where x € R”" is the state variable, f: [f), o0) X PC — R" and PC = {¢: [-71,0] —
R", ¢(t) is continuous everywhere except at the finite number of points X at which ¢(x™)
and ¢(x7) exist and ¢(x*) = @(x)}. For any r > f9,x, € PC is defined as x,(s) =
x(+s),—1 <s <0.Forg¢ e PC, the norm of ¢ is defined by |¢||= sup_, ;¢ l¢(s)I,
where | - | denotes the norm of the vector in R”". o

Take a discrete set {z;} of time instants, where 0 <ty <t; <th < --- <ty < tr4] <
...l > o0o0ask — o0. Let
Uk, x) = Ax|i—y = x () — x(1) )

be the ‘jump’ in the state variable at the time instant #;. Then this impulsive functional
differential system is described by
x = f(t, x), t# b,
Ax =Uk,x), t=t,k=12,..., 3)
x (o) = xo, o > 0.

Let S(p) = {x € R"||x| < p}, where | - | denotes the norm of the vector in R", K =
{w € C(RT, RT), w(s) is strictly increasing and w(0) = 0}, K* = {¢/ € K, ¥ (s) < s,
Vs >0}, Q2 ={H € C(R",R"), HO0) = 0, H(s) > 0,Vs > 0}. To study the stability
of impulsive functional differential system, the following definitions and lemma will be
used.

DEFINITION 1

Let V: R, x R" — R4, then V is said to belong to class Vj if

(1) V is continuous in (#;,_1, t] x S(p) and for each x € S(p),
lim V(,y) = V(tk_,x)

(t,y)— (1t ,x)

exists, k =1,2,....
(2) V islocally Lipschitzian in x € S(p) and for all ¢ > 1y, V (¢, 0) = 0.
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DEFINITION 2

For (¢, x) € (tr_1, tx] x S(p), the right and upper Dini derivative DV of V (¢, x) € Vj
along the solution x (¢) of system (1) is defined as

DV (t, x(t)) = lim sup é[V(r +8,8f(t,x)) — V(t, x(1)]. 4)

§—0*t

Lemma 1 (Lyapunov-like stability theorem [17]). Consider the impulsive function
differential system

X(t) = f(t, x), t> 1o, .
x(6f) = (x(@)), keN, (5)

where f: [ty,00) x PC — R" and Ji(x): S(p) — R" for each k € N. Assume that
f(@,0) =0, Jr(0) =0, sox(t) = 0 is the solution of eq. (5).

The zero solution of eq. (5) is uniformly asymptotically stable if there exist V €
Vo, w1, w2 € K, € K* and H € Q such that

D) wi(jx]) = V(t, x) < wx(|x]), for any (1, x) € [ty, 00) x S(p);
(ii) forallx € S(p1),0 < py1 <pandk € N, V(ty, Jiy(x)) <y (V(t,,x));

(iii) for any solution x(t) of eq. (5), V(t +s,x(t +5)) < ¥ ' (V(t,x)), -1 <s <0
implies that DTV (¢t,x(t)) < g(t)H(V (¢, x(t)), where g: [ty, 00) — R* is locally
integrable, W~ is the inverse function of \r;

(iv) H is nondecreasing and there exist constants A, > Ay > 0 and A > 0 such that for
allk e Nandpu > 0, A <ty — tr_1 < M and

" du /tk
— g(s)ds > A.
v H@)  Jy

3. Synchronization between delayed chaotic systems via impulsive control

Consider a class of time-delayed chaotic systems, which are described by the following
DDE:

X =Ax+Bx(t — 1)+ f(x), (6)

where x € R" is the state variable, A, B € R"*" and f. R — R" is a nonlinear function
satisfying the Lipschiztian condition, that is, there exists a scalar L > 0 such that for any
x,y € R",

If ) = fOII < Liix = yll. )
To lag-synchronize system (6), the response system is given by
{y‘=Ay+By(r—r)+f(y), L b ®
Ay = y(60) = y(t) = Bely(te — o) —x()], 1 =1,
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where {;}: 0 < ;) < h < -+ <t < try1 < --- with lim;,  #; = o0, y(t,j) =
y(te +0), y(t,) = y(t — 0), By is the control gain. Throughout this paper, y(¢) denotes
the right-hand derivative of y(¢) in impulsive DDE.

DEFINITION 3

Systems (6) and (8) are called lag-synchronized if there exists a constant ¢ > 0 such
that the states of two systems are nearly identical, but one system lags in time to the other,
ie., lim,  » [y —0) — x(2)]|=0.

Define the error
e(t) =yt —o)—x(), fort1=>o, ©)
then we have the error system

{ é=Ae+ Be(t — 1)+ ox(@), y(t —0)), t#t,

Ae = Bke, t =1y, (10)

where ¢ (x (1), y(t —0)) = f(y(t —0)) — f(x(1)).
Here, the problem of lag synchronization between (6) and (8) is shifted to that of the
stability of controlled system (10). Then from Lemma 1, we have the following result.

Theorem 1. Suppose that there exists a symmetric and positive definite matrix Q € R"*"
and constants ¢ > 0,y > 0, 0 < d < 1 such that the following conditions are satisfied:

D) =0+B)'QU+B)—dQ <0;
(i) r = Ap(R2)/An(Q)) + (¢/d) + (Y L? /2 (0)) + O (Q)/y) > 0;
(iii) there exist constant A, > Ay > 0 such that for allk € N,
In(d)

MSt—thoy S A < — ,
r

where
AT l —1pT
Q=A Q+QA+8QBQ B Q.

Then the origin of error system (10) is uniformly asymptotically stable.

Proof. Construct Lyapunov function as follows:
Vit e) :eTQe, (11)

where Q is a symmetric and positive definite matrix. Let w;(|le]]) = A,(Q)l|le||* and
wr(Jle])) = Ay (Q)|le]l?, where A, and X,; denote the smallest and largest eigenvalues of
a square matrix, respectively. Then eq. (11) implies that w;(Jle]]) < V (¢, e) < wy(|le]]).
Suppose ¥ (x) = dx, H(x) = x, then

V(@) = V(U + Bye) =e' (I + B)" QI + Bye
= [+ B)"QU+ By) —dQ +dQle
<de" Qe =y (V(e)).
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For any solution e(¢) of eq. (10), if V(e(t 4+ 5)) < Y1 (V(e)), for —t < s < 0, then
el'(t —1)Qe(t — 1) < d e’ (1) Qe(t). Therefore,
DTV(e@t)) = e" (ATQ + QA)e + e(r — t)" BT Qe
+e" QBe(t — 1) + (9" Qe+ €' Q)
e (ATQ + QA)e + ce(t — 1) Qe(r — 1)

1 1
+ ;eT(t)QBQ‘IBTQe(t) +ye o+ ;eTQTQe
T f )4 2 )\M(Q) T
_6926+[d+km(Q)L + y i|e Qe

Av(§2) & yL? +)»M(Q)

IA

A

< + -+
[)\m(Q) d  ra(Q)
Letg(t)=r,A=—1Ind —rk,then A > O and forany u > O and k € N,

Ko du i
— / g(s)ds
fi—1

v H@w)
® du i
=/ ——/ rds
du U fi—1

=—Ind —r(ty — t;_1)
> —Ind —ri, = A.

} V(e(r)) = rV(e(t)).

Thus, from Lemma 1 we may conclude that the origin of (10) is uniformly asymptotically
stable.

COROLLARY 1

Let Q = I, then the origin of error system (10) is uniformly asymptotically stable if
there exist constants ¢ > 0,y > 0, 0 < d < 1 such that the following conditions are
satisfied:

(i) (I +B)" (I + By) —dI <0;
(i) r = Ap(R3) + (¢/d) + yL* + (1/y) > 0;
(iii) there exist constant A, > Ay > 0 such that for allk € N,
In(d)

Mt —hop A< — ,
r

where

Qi=AT" + A+ (1/¢e)BBT.

4. Numerical examples

In this section, numerical simulations are presented on the lag synchronization of chaotic
systems via impulsive control. For the notional and illustrative convenience, we always
assume the time intervals of impulses to be equidistant and the control gain to be constant,
ie,fy —tr_y =5 forany k € N.
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Example 1. Consider a time-delayed Lorenz system in the following form:

X =alx(—1)—x),
x.zszl — X2 — X1X3, (12)
)53 = x1x, —cx3(t — 1),

where a = 10, b =28, ¢ = 8/3, f(x) = [0, —x1x3, x1x2]7, T > 0 is the time delay.

System (12) may be in the chaotic state through the suitable selection of time delay ©
(see figure 1). Now take (12) as the drive system, and the response system with impulsive
control is given by

Vi =a(y( —1)—y),

y:2=b)’1 — Y2 = Y1)3s (13)
Y3 =y1y2 —cy3(t — 1), t# I

Ay = y(t) —y(t7) = Bily(tx — o) —x(t)], t =1,

in which k = 1, 2, .... The error dynamical system is characterized by

{é=Ae+Be(t—t)+go(x(t),y(t—a)), t#ty, (14)

Ae = Bie, =1y,

where e = y(1 — o) — x(1), p(x(1), y(t —0)) = f(y(t —0)) = f(x(1))

—a 0 O 0a O
A=| b -1 0|, B=]100 0
0O 0 O 00 —c

Choose Q = I, B, = diag{—0.97, —0.97, —097},0 = 04,7 = 02,¢ = 1,y =
1,L = 20, then d = 0.001,r = 499, § = 0.023. From figure 2, the error states of
the drive system (12) and the response system (13) converge to zero, which shows the
effectiveness of the scheme.

-10 X3
-40 -20

Figure 1. Chaotic attractor of system (12) with r = 0.2.
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Figure 2. Time evolution of errors with t = 0.2 and 0 = 0.4.

Example 2. Consider the time-delayed hyperchaotic Chen system in the following form:

Xy =alxy —x1) + x4,

Xo =dx; — x1x3 + cxo(t — 1),
X3 = —bx3z + x1x2,

X4 = pX4 + x2x3,

15)

wherea =35,b=3,c=12,d =7, p =0.5, f(x) = [0, —xx3, X1 X2, xox3]7.

X
3 0 _20 X4 3 0 -50 x,

Figure 3. Chaotic attractor of hyperchaotic Chen system with T = 0.2.
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Figure 4. Time evolution of errors with t = 0.2 and 0 = 0.3.

Take (15) as the drive system and it shows chaotic behaviour when 7 = 0.4 (see
figure 3). The response system with impulsive control is described by

yi=a(ys —y1) + ya,

Y2 =dyr — y1y3 + eyt — 1),

Y3 = —bys + yiy, (16)
Y4 = pyas+ n2ys, t# 1,

Ay =y(t7) = y(r) = Byt — o) —x(@)], 1 =1,

where k = 1,2,.... Choose Q = I, By = diag{—0.98, —0.98, —0.98},0 = 04,7 =
03,e =1,y =1,L = 20, then d = 0.0005, r = 578, § = 0.0132. From figure 4, the
error states of the drive system (15) and the response system (16) converge to zero, and
so the obtained result is also effective for hyperchaotic systems with time delays.

5. Conclusion

In this paper, based on the stability theory for impulsive functional equations, the impul-
sive lag synchronization scheme for a class of delayed chaotic systems has been proposed,
which is applied to two timed-delayed systems, i.e. time-delayed chaotic Lorenz system
and hyperchaotic Chen system. Numerical simulations have shown the effectiveness of
the synchronization method.
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