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Abstract. An analysis is performed to study the unsteady, incompressible, one-dimensional, free
convective flow over an infinite moving vertical cylinder under combined buoyancy effects of heat
and mass transfer with thermal and mass stratifications. Laplace transform technique is adopted
for finding solutions for velocity, temperature and concentration with unit Prandtl and Schmidt
numbers. Solutions of unsteady state for larger times are compared with the solutions of steady
state. Velocity, temperature and concentration profiles are analysed for various sets of physical
parameters. Skin friction, Nusselt number and Sherwood number are shown graphically. It has
been found that the thermal as well as mass stratification affects the flow appreciably.
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1. Introduction

Unsteady, natural convection flow of a viscous incompressible fluid over a moving ver-
tical cylinder with combined effects of heat and mass transfer is an important problem
prevalent in many engineering and geophysical applications. These types of problems
find application in nuclear reactor cooling system, underground energy transport system
and oceanography.

Sparrow and Gregg [1] first studied the heat transfer from vertical cylinders. Sub-
sequently, Goldstein and Briggs [2] presented an analytical study of the transient, free
convective flow past a vertical plate and a circular cylinder by employing Laplace trans-
form technique. Bottemanne [3] studied the combined effect of heat and mass transfer
in the steady laminar boundary layer of a vertical cylinder placed in still air. Chen and
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Yuh [4] studied steady heat and mass transfer processes near the cylinders. Their study
covered a wide range of radii and Prandtl numbers. Heckel et al [5] studied the steady, free
convection along a slender vertical cylinder with variable surface temperature and pre-
sented the results for various Prandtl numbers of 0.1, 0.7, 7 and 100. Gorla [6] presented
a numerical solution of steady, combined, free and forced convection in the boundary
layer flow of a micropolar fluid past a continuous moving vertical cylinder. Velusamy
and Garg [7] studied natural convection adjacent to a heat generating vertical cylinder.
Ganesan and Rani [8] presented a numerical solution for the transient natural convec-
tion flow over a vertical cylinder under the combined buoyancy effects of heat and mass
transfer. Thereafter, Ganesan and Loganathan [9–11] presented a numerical analysis of
unsteady natural convective flow past a semi-infinite vertical cylinder with heat and mass
transfer under different physical situations. Rani [12] presented a numerical study on
transient natural convection along a vertical cylinder with variable surface temperature
and mass diffusion. In all these studies, thermal and mass stratifications are not taken into
account.

Shapiro and Fedorovish [13] presented analytical solution of one-dimensional laminar
natural convection along an infinite vertical plate by introducing the pressure work term
and the ambient thermal stratification in the thermodynamic energy equation for Prandtl
number of unity. They found that stratification provides a negative feedback mechanism:
warm fluid rises, expands and cools relative to the environment, whereas cool fluid sub-
sides, compresses and warms relative to the environment. Loganathan and Ganesan [14]
presented a numerical study of free convective flow of a viscous incompressible fluid past
a moving, semi-infinite, vertical cylinder with constant temperature and mass diffusion
in a thermally stratified medium by employing an implicit finite-difference scheme of
Crank–Nicolson type. Takhar et al [16] obtained numerical solutions by finite-difference
scheme for a flow past a continuously moving vertical surface immersed in a stratified
fluid. Cheng [15] studied the coupled heat and mass transfer effects near a vertical wavy
surface in a non-Newtonian fluid-saturated porous medium in the presence of thermal and
mass stratifications and obtained solutions by collocation method. Recently, Deka and
Paul [17,18] presented an analytical study of the transient-free convection flow past an
infinite vertical cylinder in a stably stratified fluid by employing the Laplace transform
technique.

Many researchers have shown interest in the study of transient natural convec-
tive flow past vertical cylinder under various physical situations. However, analytical
approach for the combined effects of thermal and mass stratifications has not been
considered for a moving vertical cylinder, which is necessary for validating numerical
models. The simultaneous effects of thermal and mass stratifications have application
in meteorology and oceanography. In this work, attempt has been made to present an
analytical investigation of one-dimensional free convective flow past an infinite mov-
ing vertical cylinder in the presence of thermal and mass stratifications. The unsteady
non-dimensional linear governing equations are solved by the Laplace transform tech-
nique for unit Prandtl number and unit Schmidt number. The solutions thus obtained
for the fluid with the two stratifications are compared with the classical solutions, i.e.
solutions corresponding to the fluid without thermal and mass stratifications. Also,
solutions of unsteady state for larger times are compared with the solutions of steady
state.
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2. Mathematical analysis

Consider an unsteady, laminar and incompressible viscous flow past an infinite moving
vertical cylinder of radius r0. Here, the x ′-axis is taken vertically upward along the axis
of the cylinder and the radial coordinate r ′ is taken normal to the cylinder. The ensuing
motion is one-dimensional with the non-zero vertical component of velocity u′, varying
only in the x ′-direction. Accordingly, the equation of continuity is trivially satisfied. The
physical model of the problem and the coordinate system are shown in figure 1. We
decompose the fluid temperature and concentration into its environmental and perturba-
tion components, T (x ′, r ′, t ′) = T ′∞(x ′) + T ′(r ′, t ′), C(x ′, r ′, t ′) = C ′∞(x ′) + C ′(r ′, t ′),
so that the one-dimensional flow behaviour is well defined. It is assumed that at time
t ′ > 0, the cylinder starts to move in the vertical direction with constant velocity u0. Also,
constant perturbation temperature (T0) and concentration (C0) are specified near the sur-
face of the cylinder. Then, following Boussinesq’s approximation, the one-dimensional
equations for momentum, energy and concentration are as follows:

∂u′

∂t ′ = ν

r ′
∂

∂r ′

(
r ′ ∂u′

∂r ′

)
+ gβT ′ + gβ∗C ′, (1)

∂T ′

∂t ′ = α

r ′
∂

∂r ′

(
r ′ ∂T ′

∂r ′

)
− γ u′, (2)

∂C ′

∂t ′ = D

r ′
∂

∂r ′

(
r ′ ∂C ′

∂r ′

)
− ξu′. (3)

Here ν is the kinematic viscosity, g is the acceleration due to gravity, β is the volumetric
coefficient of thermal expansion, β* is the volumetric coefficient of expansion with con-
centration, α is the thermal diffusivity of fluid, γ is the thermal stratification parameter,
D is the mass diffusion coefficient and ξ is the mass stratification parameter.

Figure 1. The physical model and coordinate system.
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The initial and boundary conditions for velocity, perturbation temperature and concen-
tration are,

t ′ ≤ 0 : u′ = 0, T ′ = 0, C ′ = 0 ∀ r ′

t > 0 : u′ = u0, T ′ = T0, C ′ = C0 at r ′ = r0

u′ → 0, T ′ → 0, C ′ → 0 as r ′ → ∞

⎫⎪⎬
⎪⎭ . (4)

However, the thermal stratification parameter γ = dT ′∞(x ′)/dx ′ + g/C p, is the main con-
cern in our study. The thermal stratification is the combination of the vertical temperature
advection (= dT ′∞(x ′)/dx ′), where the ambient fluid temperature depends on the height
and the work of compression (= g/C p), the rate of reversible work done on the fluid
particles by compression. In an adiabatic environment, dT ′∞(x ′)/dx ′ + g/C p = 0. In that
case dT ′∞(x ′)/dx ′ = −g/C p and (−g/C p) is called the adiabatic temperature gradient
and is the largest rate at which the temperature can decrease with height without causing
instability. The stability of the atmosphere is determined according to γ > 0 (stable),
γ = 0 (neutral), γ < 0 (unstable). For the air at normal temperature and pressure, the
temperature of neutral atmosphere decreases with height at the rate of g/C p

∼= 10◦C/km.
Meteorologists termed vertical temperature gradients as ‘lapse rate’, so that in their ter-
minology the adiabatic lapse rate is 10◦C/km. A similar variable ξ = dC ′∞(x ′)/dx ′, is
termed as mass stratification parameter. In the context of oceanography, mass stratifi-
cation exists due to the salinity of sea water. The work of compression, though small
(since g = 9.8 m s−2 and at 20◦C, C p = 4182 J kg−1 K−1 for water, while for dry air
C p = 1012 J kg−1 K−1 (see Kundu [19])), may play an important role combined with
vertical temperature advection.

Introducing the non-dimensional quantities,

R = r

r0
, U = u

u0
, t = t ′ν

r2
0

, θ = T ′

T0
, φ= C ′

C0
, Pr= ν

α
, Sc= ν

D

Gr=gβ r2
0

T0

u0ν
, Gc=gβ∗r2

0

C0

u0ν
, S = γ u0r2

0

νT0
, F = ξu0r2

0

νC0

⎫⎪⎪⎬
⎪⎪⎭
(5)

the equations (1)–(3) reduce to

∂U

∂t
= ∂2U

∂ R2
+ 1

R

∂U

∂ R
+ Gr θ + Gc φ (6)

∂θ

∂t
= 1

Pr

(
∂2θ

∂ R2
+ 1

R

∂θ

∂ R

)
− SU (7)

∂φ

∂t
= 1

Sc

(
∂2φ

∂ R2
+ 1

R

∂φ

∂ R

)
− FU (8)

with the following initial and boundary conditions:

t ≤ 0 : U = 0, θ = 0, φ = 0 ∀ R

t > 0 : U = 1, θ = 1, φ = 1 at R = 1

U → 0, θ → 0, φ → 0 as R → ∞

⎫⎪⎪⎬
⎪⎪⎭

. (9)
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Here U is the dimensionless velocity, Gr is the thermal Grashof number, Gc is the mass
Grashof number, Pr is the Prandtl number, θ is the dimensionless temperature, R is the
dimensionless radial distance, S is the dimensionless thermal stratification parameter.

Also, R is the dimensionless radial distance, φ is the dimensionless concentration, Sc
is the Sherwood number, t is the dimensionless time and F is the dimensionless mass
stratification parameter.

3. Solutions

To solve the governing non-dimensional unsteady equations (6)–(8) subject to initial and
boundary conditions (9), we apply Laplace transform technique for the case of unit Prandtl
number and Schmidt number, as for arbitrary Prandtl number or Schmidt number, the
Laplace transform technique leads to an equation of non-tractable form. Thus, taking
Laplace transforms of (6), (7) and (8) we get

d2Ū

dR2
+ 1

R

dŪ

dR
− pŪ + Gr θ̄ + Gc φ̄ = 0, (10)

d2θ̄

dR2
+ 1

R

dθ̄

dR
− pθ̄ − SŪ = 0, (11)

d2φ̄

dR2
+ 1

R

dφ̄

dR
− pφ̄ − FŪ = 0, (12)

where p is the parameter of the Laplace transformation defined by, for example,
L {θ(R, t)} = ∫ ∞

0 e−ptθ(R, t)dt = θ̄ (R, p). Using eqs (11) and (12), we eliminate θ̄ , φ̄

from (10) and after rearrangement, we have{
d2

dR2
+ 1

R

d

dR
− a2

} {
d2

dR2
+ 1

R

d

dR
− b2

}
Ū = 0, (13)

where

a2 = p + i M, b2 = p − i M and M2 = SGr + FGc.

Now, assuming{
d2

dR2
+ 1

R

d

dR
− b2

}
Ū = W (14)

we have from (13){
d2

dR2
+ 1

R

d

dR
− a2

}
W = 0

giving the solution W (R) = C1 I0 (a R) + C2 K0 (a R), where C1 and C2 are arbitrary
constants. Using W (R) in (14) and applying variation of parameter technique, we have
the solution for Ū (R, p) as

Ū = C1 I0 (a R)

2i M
+ C2 K0 (a R)

2i M
+ C3 I0 (bR) + C4 K0 (bR) , (15)
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where C3 and C4 are constants of integration. Since, I0(aR) and I0(bR) are unbounded as
R → ∞, we set C1 = 0 and C3 = 0 and with this assumption we finally have,

Ū = C2 K0 (a R)

2i M
+ C4 K0 (bR) . (16)

In determining Ū , we have used the following properties on Bessel function (see Carslaw
and Jaeger [20]), namely,

d

dR
I0(bR) = bI1(bR),

d

dR
K0(bR) = −bK1(bR),

I0 (bR)K1(bR) + I1(bR)K0(bR) = 1

bR
.

Also, the following identities are derived and used in the determination of Ū , namely,

∫
RI0 (a R)I0(bR) dR = R

a2 − b2
[aI0(bR)I1(a R) − bI0(a R)I1(bR)] ,

∫
RI0(a R)K0(bR) dR = R

a2 − b2
[aI1(a R)K0(bR) + bI0(a R)K1(bR)] ,

∫
RK0(a R)K0(bR)dR = R

a2 − b2
[bK0(a R)K1(bR) − aK0(bR)K1(a R)] .

Now, using eq. (16) in eq. (10) and above properties and identities, we have

C2 K0(a R) − 2i MC4 K0(bR) + 2 Gr θ̄ + 2 Gr φ̄ = 0. (17)

To determine C2 and C4, we apply Laplace transformation to the conditions U = θ =
φ = 1 and then using (16), (17) for R = 1, we obtain

C2 = i M − (Gr + Gc)

pK0
(√

p + i M
) and C4 = i M + (Gr + Gc)

2i M pK0
(√

p − i M
) .

Thus we have,

Ū = 1

2

{
K0

(
R
√

p + i M
)

pK0
(√

p + i M
) + K0

(
R
√

p − i M
)

pK0
(√

p − i M
)
}

− Gr + Gc

2i M

{
K0

(
R
√

p + i M
)

pK0
(√

p + i M
) − K0

(
R
√

p − i M
)

pK0
(√

p − i M
)
}

. (18)
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It is to be noted that for arbitrary Prandtl number (Pr �= 1) and Schmidt number
(Sc �= 1), the elimination of θ̄ , φ̄ leads to an equation of sixth order in Ū and this equation
is not found tractable for finding solution of Ū analytically.

Thereafter, we substitute Ū in (11), and using the same procedure we obtain the Laplace
transform of θ , i.e. θ̄ , as

θ̄ = (F −S)Gc

M2

K0
(
R
√

p
)

pK0
(√

p
) + S

2i M

{
K0

(
R
√

p+i M
)

pK0
(√

p+i M
) − K0

(
R
√

p−i M
)

pK0
(√

p−i M
)
}

+ S(Gr + Gc)

2M2

{
K0

(
R
√

p − i M
)

pK0
(√

p − i M
) + K0

(
R
√

p + i M
)

pK0
(√

p + i M
)
}

. (19)

Also, from the similar nature of eq. (12) with eq. (11), we find

φ̄ = Gr(S − F)

M2

K0
(
R
√

p
)

pK0
(√

p
)

+ F

2i M

{
K0

(
R
√

p + i M
)

pK0
(√

p + i M
) − K0

(
R
√

p − i M
)

pK0
(√

p − i M
)
}

+ F(Gr + Gc)

2M2

{
K0

(
R
√

p − i M
)

pK0
(√

p − i M
) + K0

(
R
√

p + i M
)

pK0
(√

p + i M
)
}

. (20)

Now, we apply Bromwich contour of integration to find the Laplace inverse of Ū for
Pr = 1 as (the details of finding the inverse is explained in the Appendix),

U = 1

2

{
K0

(
R
√−i M

)
K0(M)

+ K0
(
R
√

i M
)

K0
(√

i M
)

}

+ Gr + Gc

2Mi

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}

+ 2 (Gr + Gc)

π M

∫ ∞

0

e−V 2t
{

V 2 sin (Mt)+M cos (Mt)
}

V 4 + M2
� (R,V ) V dV

+ 2

π

∫ ∞

0

e−V 2t
{

V 2 cos (Mt) − L sin (Mt)
}

V 4 + M2
�(R, V ) V dV . (21)
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Here K0 is the modified Bessel function of the second kind and order zero. Also, K1,
I0 and I1 are the modified Bessel function of the second kind and order one, modified
Bessel function of the first kind and order zero and modified Bessel functions of the first
kind and order one respectively. Similarly, we obtain the inverse for θ̄ and φ̄ as,

θ = Gc(F − S)

M2

{
1 + 2

π

∫ ∞

0
e−V 2t �(R, V )

dV

V

}

− S

2i M

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}

+ S(Gr + Gc)

2M2

{
K0

(
R
√−i M

)
K0

(√−i M
) + K0

(
R
√

i M
)

K0
(√

i M
)

}

− 2S

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�(R, V)V dV

+ 2S(Gr+Gc)

π M2

∫ ∞

0

e−V 2t
{

V 2 cos(Mt)−Msin(Mt)
}

V 4 + M2
�(R,V )V dV ,

(22)

φ = Gr(S − F)

M2

{
1 + 2

π

∫ ∞

0
e−V 2t � (R, V )

dV

V

}

− F

2i M

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}

+ F(Gr + Gc)

2M2

{
K0

(
R
√−i M

)
K0

(√−i M
) + K0

(
R
√

i M
)

K0
(√

i M
)

}

− 2F

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�(R, V )V dV

+ 2F(Gr+Gc)

π M2

∫ ∞

0

e−V 2t
{

V 2 cos(Mt)−M sin(Mt)
}

V 4 + M2
�(R,V )V dV .

(23)

It is clearly seen that the expressions of θ and φ are identical only when the thermal
stratification equals mass stratification (S = F). However, from the physical point of view
it is not necessary that the thermal stratification should be equal to the mass stratification
and hence the distinction between the expressions of θ and φ is retained.

The skin friction (shear stress on the surface) in non-dimensional form is given by

τ = − ∂U

∂ R

∣∣∣∣
R=1
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and from eq. (21), it is derived as

τ = 1

2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ Gr + Gc

2Mi

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ 2

π

∫ ∞

0

e−V 2t
{

V 2 cos(Mt) − M sin(Mt)
}

V 4 + M2
�1(V )V 2dV

+ 2 (Gr + Gc)

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�1(V )V 2dV .

(24)

The rate of heat transfer (Nusselt number) in non-dimensional form is expressed as

Nu = − ∂θ

∂ R

∣∣∣∣
R=1

and from eq. (22), it is derived as

Nu = 2Gc(F − S)

π M2

∫ ∞

0
e−V 2t�1(V ) dV

− S

2i M

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ S(Gr + Gc)

2M2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

− 2S

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�1(V )V 2dV

+ 2S(Gr+Gc)

π M2

∫ ∞

0

e−V 2t
{

V 2 cos(Mt)−M sin(Mt)
}

V 4 + M2
�1(V )V 2dV .

(25)

The rate of mass transfer (Sherwood number) in non-dimensional form is given by

Sh = − ∂φ

∂ R

∣∣∣∣
R=1
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and from eq. (23), it is derived as

Sh = 2Gr(S − F)

π M2

∫ ∞

0
e−V 2t�1(V ) dV

− F

2i M

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ F(Gr + Gc)

2M2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

− 2F

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�1(V )V 2dV

+ 2F(Gr + Gc)

π M2

∫ ∞

0

e−V 2t
{

V 2 cos(Mt)−M sin(Mt)
}

V 4 + M2
�1(V )V 2dV ,

(26)

where

�(R, V) = J0 (RV )Y0(V ) − Y0(RV )J0 (V )

J 2
0 (V ) + Y 2

0 (V )

and

�1(V ) = J1(V )Y0(V ) − Y1(V )J0(V )

J 2
0 (V ) + Y 2

0 (V )
. (27)

Here, J0 and Y0 are respectively the Bessel function of the first kind and order zero and
the Bessel function of the second kind and order zero. Also, J1 and Y1 are the Bessel
functions of the first kind and order one and Bessel function of the second kind and order
one respectively.

It is to be noted that in absence of mass transport (Gc = 0), the present work coincides
with the work of Deka and Paul [17]. Accordingly, the expressions for U , θ , τ and Nu
given by eqs (21), (22), (24) and (25) revert to the expressions for velocity, temperature,
skin friction and Nusselt number in Deka and Paul [17].

4. Steady-state solutions

Steady-state equations are obtained by neglecting the time derivative terms in eqs (6), (7)
and (8). We solve these resulting ordinary differential equations subject to the boundary
conditions (9) and obtain the expressions of steady-state velocity (Us), temperature (θ s)

and concentration (φs) profiles as

Us = 1

2

{
K0

(
R
√−i M

)
K0

(√−i M
) + K0

(
R
√

i M
)

K0
(√

i M
)

}

+ Gr + Gc

2Mi

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}
, (28)
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θs = Gc(F − S)

M2
− S

2i M

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}

+ S(Gr + Gc)

2M2

{
K0

(
R
√−i M

)
K0

(√−i M
) + K0

(
R
√

i M
)

K0
(√

i M
)

}
, (29)

φs = Gr(S − F)

M2
− F

2i M

{
K0

(
R
√−i M

)
K0

(√−i M
) − K0

(
R
√

i M
)

K0
(√

i M
)

}

+ F(Gr + Gc)

2M2

{
K0

(
R
√−i M

)
K0

(√−i M
) + K0

(
R
√

i M
)

K0
(√

i M
)

}
. (30)

In non-dimensional form, the steady-state expressions of skin friction; τs =
− (∂Us/∂ R)|R=1, Nusselt number; NuS = − (∂θs/∂ R)|R=1 and Sherwood Number;
Shs = − (∂φs/∂ R)|R=1 are obtained from eqs (28), (29) and (30) respectively as

τs = 1

2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ Gr + Gc

2Mi

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

, (31)

Nus = − S

2i M

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ S(Gr + Gc)

2M2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

, (32)

Shs = − F

2i M

{√−i M K1
(√−i M

)
K0

(√−i M
) −

√
i M K1

(√
i M

)
K0

(√
i M

)
}

+ F(Gr + Gc)

2M2

{√−i M K1
(√−i M

)
K0

(√−i M
) +

√
i M K1

(√
i M

)
K0

(√
i M

)
}

. (33)

It is to be noted that as t → ∞, eqs (21)–(26) approach the results of steady-state
expressions (28)–(33) respectively. Therefore, it can be concluded that the transient veloc-
ity, temperature, concentration, skin friction, Nusselt number and Sherwood number reach
steady state for larger times. It is to be mentioned here that in the absence of mass trans-
port (Gc = 0), the expressions for Us, θ s, τ s and Nus given by (28), (29), (31) and (32)
coincide with the expressions for steady-state velocity as well as temperature, skin friction
and Nusselt number in Deka and Paul [17].
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5. Classical solutions (S = 0, F = 0)

Solutions derived in §3 for the fluid with thermal and mass stratifications are compared
with the solutions of classical case, when there is no thermal and mass stratification.
Here, the corresponding equations for the unstratified fluid (S = 0, F = 0) are non-
dimensionalized by the same set of non-dimensional quantities (5) and the resulting non-
dimensional equations for the classical case take the following forms:

∂Uc

∂t
= ∂2Uc

∂ R2
+ 1

R

∂Uc

∂ R
+ Gr θc + Gc φc, (34)

∂θc

∂t
= 1

Pr

(
∂2θc

∂ R2
+ 1

R

∂θc

∂ R

)
, (35)

∂φc

∂t
= 1

Sc

(
∂2φc

∂ R2
+ 1

R

∂φc

∂ R

)
. (36)

We solve eqs (34)–(36) by the Laplace transform technique, in the same way as referred
earlier, subject to the initial and boundary conditions (9). We obtain the expressions of
velocity (Uc), temperature (θ c) and concentration (φc) profiles for the classical case as
follows:

Uc = 1 + 2

π

∫ ∞

0
e−V 2t�(R, V )

dV

V

+ Gr+Gc

π

∫ ∞

0
(1−e−V 2t )�2(R,V )

dV

V 2
(37)

θc = 1 + 2

π

∫ ∞

0
e−V 2t�(R, V )

dV

V
(38)

and

φc = 1 + 2

π

∫ ∞

0
e−V 2t�(R, V )

dV

V
, (39)

where

�2(R, V )= R
J1 (RV ) Y0 (V ) − Y1 (RV ) J0 (V )

J 2
0 (V ) + Y 2

0 (V )

+{Y1(V ) J0 (RV )+Y0 (RV ) J1(V )} {J 2
0 (V )−Y 2

0 (V )}−2J0(V ) Y0(V ) {J1 (V ) J0(RV )−Y1 (V ) Y0(RV )}
{J 2

0 (V ) + Y 2
0 (V )}2

(40)

and �(R, V ) is defined in eq. (27).
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It is to be noted that when S = 0, eq. (22) assumes eq. (38) and similarly, when F = 0,
eq. (23) assumes eq. (39).

The non-dimensional classical expressions of skin friction τc = − (∂Uc/∂ R)|R=1, Nus-
selt number, Nuc = − (∂θc/∂ R)|R=1 and Sherwood Number, Shc = − (∂φc/∂ R)|R=1 are
derived from eqs (37)–(39) respectively as

τc = 2

π

∫ ∞

0
e−V 2t �1(V ) dV + Gr + Gc

π

∫ ∞

0
(1 − e−V 2t )�3(V )

dV

V 2
, (41)

Nuc = 2

π

∫ ∞

0
e−V 2t �1(V ) dV , (42)

Shc = 2

π

∫ ∞

0
e−V 2t �1(V ) dV , (43)

where

�3(V ) = −2 {J1 (V ) Y0 (V ) − Y1 (V ) J0 (V )} + V {J0 (V ) Y2 (V ) − Y0 (V ) J2 (V )}
2
{

J 2
0 (V ) + Y 2

0 (V )
}

+ 2V
J1 (V ) Y1 (V )

{
J 2

0 (V ) − Y 2
0 (V )

} − Y0 (V ) J0 (V )
{

J 2
1 (V ) − Y 2

1 (V )
}

{
J 2

0 (V ) + Y 2
0 (V )

}2

and �1(V ) is defined in eq. (27).

6. Results and discussion

In order to have a clear overview of the physical situation of the problem, numerical
computations for velocity, perturbation temperature and concentration (hereafter called
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Figure 2. Effects of thermal and mass stratifications on velocity profile.
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Figure 3. Effects of Gr and Gc on velocity profile.

temperature and concentration), skin friction, Nusselt number and Sherwood number are
made for various physical parameters and presented in the figures. Solutions for the case
of stratified fluid are compared with the classical case, when there is no thermal or mass
stratification. It is observed that some expressions contain complex quantities and their
conjugates. To overcome this, we have used in-built functions in MATHEMATICA to
compute the numerical values. Furthermore, solutions of unsteady state for larger times
are compared with the solutions of steady state.
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Figure 4. Effects of thermal and mass stratifications on temperature profile.
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Figure 5. Effects of Gr and Gc on temperature profile.

Velocity profiles represented by figure 2 shows the effects of thermal stratification (S)

and mass stratification (F) independently, keeping other parameters fixed (Gr = 5, Gc =
5), while figure 3 shows the effects of Gr and Gc for S = 0.4, F = 0.2. In figures 2
and 3, we have taken smaller time, t = 1.5, that corresponds to the time in the tran-
sient regime. It is observed that the mass stratification (keeping thermal stratification nill)
reduces the velocity in the boundary layer. Likewise, it has been shown that the thermal
stratification (keeping mass stratification nill) also reduces the velocity. The reduction in
velocity is also due to the layering effect of thermal stratification, as it acts like a resis-
tive force and this layering effect is more compared to the layering effect due to mass
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Figure 6. Effects of thermal and mass stratifications on concentration profile.
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Figure 7. Effects of Gr and Gc on concentration profile.

stratification. For the simultaneous presence of the two stratifications, keeping mass
stratification fixed, an increase in thermal stratification lowers the velocity; and keep-
ing thermal stratification fixed, an increase in mass stratification lowers the velocity. It is
further observed that an increase in Gr or Gc results in an increase in velocity because an
increase in the values of thermal and mass Grashof number has the tendency to increase
the thermal and mass buoyancy effects. Figure 4 reflects the effect of the two stratifica-
tions on fluid temperature, while figure 5 shows the effects of thermal and mass Grashof
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Figure 8. Effects of thermal and mass stratifications on velocity profile against time.
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Figure 9. Effects of thermal and mass stratifications on temperature profile against
time.

number. It is observed from figure 4 that with the increase in the thermal stratification and
mass stratification parameters, the fluid temperature decreases and the decrease is more
due to the thermal stratification. Another observation is that for strong thermal stratifica-
tion, there is a reversal of flow, while the classical solution shows no reversal, as can
be seen from figure 4. The flow reversal occurs because the cooler fluid from the
bottom overshoots upward to a level, where the ambient temperature is higher. This type
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Figure 10. Effects of thermal and mass stratifications on concentration profile against
time.
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Figure 11. Effects of Gr and Gc on velocity profile against time.

of behaviour was predicted by earlier investigators (see Kulkarni et al [21], Deka and
Paul [17]). The reduction of temperature with the increase in Gr or Gc shown in
figure 5 is natural because the thermal and mass buoyancy forces assist the flow by
increasing the fluid velocity (figure 3) and hence the heat is convected, thereby reducing
the fluid temperature. The reduction in velocity and temperature with the thermal strati-
fication was also observed by Loganathan and Ganesan [14] and Deka and Paul [17,18]
in their numerical solution and analytical solution respectively. Likewise, the effects of
the two stratifications on the species concentration shown in figures 6 and 7 are the same
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Figure 12. Effects of Gr and Gc on temperature profile against time.
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Figure 13. Effects of Gr and Gc on concentration profile against time.

as observed on temperature profiles. A decrease in velocity causes diffusion to dominate
over convection caused by thermal as well as mass buoyancy forces. Hence, the concen-
tration decreases due to the increase in thermal and mass stratification parameters. It has
also been observed from figures 2, 4 and 6 that by applying thermal and mass stratifica-
tions, the velocity, temperature and concentrations are appreciably reduced compared to
the classical ones (S = 0, F = 0), which is an added realism of the present study over the
previous studies without stratifications.
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Figure 14. Effects of thermal and mass stratifications on skin friction.
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Figure 15. Effects of thermal and mass stratifications on Nusselt number.

The behaviour of the solutions at a fixed non-dimensional distance R = 1.6 (near the
surface of the cylinder) is presented in figures 8, 9 and 10 to show the effects of the two
stratifications on the fluid velocity, temperature and concentration against time. We have
seen that there is a significant divergence between the classical and new solution. It is
interesting to see that classical velocity, temperature and concentration increase unbound-
edly with time, but in the presence of stratifications considered, velocity, temperature and
concentration reach steady state as time progresses. The simultaneous effects of the two
stratifications lead to a faster approach to steady states as time progresses. On the contrary,
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Figure 16. Effects of thermal and mass stratifications on Sherwood number.
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Figure 17. Effects of Gr and Gc on skin friction.

the thermal and mass Grashof numbers show no such role in converting the unsteady flow
to a steady one as compared to the combined effect of the two stratifications appeared
in figures 11, 12 and 13. Thus, we can conclude that the thermal stratification plays
an important role in lowering the temperature and concentration near the plate as time
progresses.

The behaviour of skin friction, rate of heat transfer (Nusselt number) and the rate of
mass transfer (Sherwood number) against time are presented in figures 14, 15 and 16 for
different values of thermal and mass stratification parameters including the classical case
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Figure 18. Effects of Gr and Gc on Nusselt number.
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Figure 19. Effects of Gr and Gc on Sherwood number.

(when there is no thermal and mass stratification). It is observed that as time progresses,
the skin friction, Nusselt number and Sherwood number approach a fixed value in the new
solution (presence of thermal and mass stratification), while in the classical case these
values decrease monotonically for all values of Gr and Gc. This is as expected, since the
stratification transforms the transient state to a steady state as time progresses and so it
can be concluded that the inclusion of stratification effect has an important role over the
study without stratifications. On the other hand, an increase in Gc lowers the skin friction
more as compared to Gr, while the reverse is true in case of Nusselt number and Sherwood
number, which are displayed in figures 17, 18 and 19. This is also as expected, since the
increase in velocity is more due to Gc than due to Gr (figure 3) and similar expectation
is due to Nusselt and Sherwood number based on the behaviour of temperature (figure 5)
and concentration (figure 7).

7. Summary

We have presented an analytical analysis for the transient natural heat and mass transfer
from a moving heated vertical cylinder. Our analysis refines the thermodynamic energy
and species concentration equation by introducing the thermal and mass stratifications
which lead to a coupling effect among the temperature and concentration with the vertical
velocity. The process thus considered, introduces a negative feedback mechanism and
this mechanism results in a flow that approaches a steady state at large times. In con-
trast, in classical solutions, where there is no stratification, the disturbance caused by the
moving cylinder continues and no steady state is reached. The steady state thus reached
due to stratification also leads to a fixed constant value of Nusselt number, Sherwood
number and skin friction as time progresses, while for classical solutions these values
decrease monotonically. The effect of stratification also leads to a reversal of flow and
this phenomenon may have application in the emergency cooling of the core of a nuclear
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reactor in the case of pump or power failure. Finally, the analytical solutions obtained
by the Laplace transformation technique in terms of Bessel functions can be applied for
validating numerical convection models.
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Appendix

We have the Laplace transformation of U as

Ū = 1

2

{
K0

(
R
√

p + i M
)

pK0
(√

p + i M
) + K0

(
R
√

p − i M
)

pK0
(√

p − i M
)
}

− Gr + Gc

2i M

{
K0

(
R
√

p + i M
)

pK0
(√

p + i M
) − K0

(
R
√

p − i M
)

pK0
(√

p − i M
)
}

which then can be expressed in terms of inverse Laplace transform as

U = 1

2

(
1 + Gr + Gc

i M

)
ei M I1 + 1

2

(
1 − Gr + Gc

i M

)
e−i M I2,

where

I1 = L−1

{
K0

(
R
√

p
)

(p + i M)K0
(√

p
)
}

and

I2 = L−1

{
K0

(
R
√

p
)

(p − i M)K0
(√

p
)
}

.

Now, we apply complex inversion formula for determining I1 and I2 as follows:

I1 = 1

2π i

∫ γ ′+i∞

γ ′−i∞
ept K0

(
R
√

p
)

(p + i M)K0
(√

p
)dp =

∑
sum of residues,

where the integrand has a branch point at p = 0 and a simple pole at p = −i M .
Now K0(

√
p) does not have zero at any point in the real and imaginary axes, if the

branch cut is made along the negative real axis. To obtain I1, we use the adjoining
Bromwich contour (figure 20). Therefore, the line integral in I1 may be replaced by the
limit of the sum of the integrals over FE, ED, DC, CB and BA as S1 → ∞ and S0 → 0.

Here, the particular form of the contour integral has been chosen because the values
along the paths DC, BA and FE approach zero as S1 → ∞ and S0 → 0.

Following Carslaw and Jaeger [20,22], along the paths CB and ED we choose, p =
V 2eiπ and p = V 2e−iπ , respectively.
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Figure 20. Bromwich contour of integration.

Therefore, on the path CB,

I1 (along CB) = 1

π i

∫ ∞

0
e−V 2t J0(RV ) − iY0(RV )(

V 2 − i M
) {J0(V ) − iY0(V )} V dV

and on the path ED,

I1 (along ED) = 1

π i

∫ ∞

0
e−V 2t J0(RV ) + iY0(RV )(

V 2 − i M
) {J0(V ) + iY0(V )} V dV .

Adding the above two integrals, we get

I1 (along CB + ED) = 2

π

∫ ∞

0

{
e−V 2t

V 2 − i M
�(R, V )V

}
dV ,

where

�(R, V ) = J0(RV )Y0(V ) − Y0(RV )J0(V )

J 2
0 (V ) + Y 2

0 (V )
.

Also, the residue of the integrand I1 at the pole p = −i M is = e−i M [K0(R
√−i M)/

K0(
√−i M)].
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Thus, from the theory of residues we have,

I1 = 2

π

∫ ∞

0

{
e−V 2t

V 2 − i M
�(R, V )V

}
dV + e−i M K0

(
R
√−i M

)
K0

(√−i M
) .

Similarly,

I2 = 2

π

∫ ∞

0

{
e−V 2t

V 2 + i M
�(R, V)V

}
dV + ei M K0

(
R
√

i M
)

K0
(√

i M
) .

Finally, we have,

U = 1

2
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√−i M

)
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i M
)
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}

+ Gr + Gc

2Mi
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i M
)

}

+ 2 (Gr + Gc)

π M

∫ ∞

0

e−V 2t
{

V 2 sin(Mt) + M cos(Mt)
}

V 4 + M2
�(R, V )V dV

+ 2

π

∫ ∞

0

e−V 2t
{

V 2 cos(Mt) − M sin(Mt)
}

V 4 + M2
�(R, V )V dV .
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