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Abstract. In this paper the classical evolution of a particle is studied which bounces back and
forth in a 1D vibrating cavity such that the reflection from the wall does not change the speed of
the particle. A peculiar behaviour of the particle motion can be seen where the time evolution of
the motion shows superposition of linear and oscillatory behaviour. In particular, the parameter
range is found in which the particle oscillates between the walls in steady state as if the wall was
static and it is showed that for these parameter ranges the particle settles to this steady state for all
initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in
short pulses where the synchronization proposed in our model should work against the space charge
effect in the charged particle bunch.
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1. Introduction

Ultrashort electron pulses in the range of hundreds of femtosecond can be a great tool
for time-resolved electron microscopy. Electron pulses below 100 fs duration are pro-
duced by irradiating sharp metallic needles by ultrashort laser pulses [1]. Similarly, other
charged particle ultrashort pulses have many applications in material science and FEL
development [2]. But it is not possible to get such short-duration pulses with large num-
ber of particles in one bunch due to their Coulomb repulsion. In this paper, we present a
model which can be used to produce short-duration pulses of charged particles.

We consider a charged particle, e.g. a relativistic electron, in a Racetrack Microtron.
The only change from the usual Microtron design is that in this case the energy of the
electron is maintained constant by the Linac. We want to draw a parallel between the
relativistic electron in this storage ring and a particle bouncing between two parallel walls

DOI: 10.1007/s12043-013-0572-x; ePublication: 1 August 2013 485



Nandan Jha and Sudhir R Jain

(like particle in a 1D box). The motion of an electron in one half of the round trip in
microtron can be mapped to the motion of particle from one wall to the other and the
motion of electron in the other half of the round trip can be mapped to the return motion
of the particle in the 1D box.

2. Model of particle in an oscillating box

Now, we shall study the particle in this 1D box. The special property of this 1D box
system is that the speed of the particle remains the same even after a collision with the
walls, even if the walls are vibrating. This property distinguishes this model from Fermi
acceleration model [3] where the speed of the particle changes after collision with the
oscillating wall. This can happen in two cases: (a) if the particle considered is moving at
(or very near) the speed of light and the walls are suitable reflectors that only reverse the
direction of the particle. This case is closely related to an electron in the storage ring since
there also the electron is relativistic and the speed remains the same throughout the ring.
Small perturbations can only change their paths but not their speeds. (b) If the particle
has a finite velocity and the walls are made such that they reflect the particles back with
the same speed they came with.

We consider the case when one of the walls is oscillating sinusoidaly (but without
changing the speed of the particle on collision). The speed of the particle will not change
on collision with the wall if the particle is highly relativistic and small perturbation in
energy by colliding with the moving wall will not change the velocity of the particle.
Therefore, the particle in each round trip will travel more or less distance depending on
the phase of the oscillating wall it encounters.

Let the time taken by the particle for one full round trip when both walls are static is
T0. If one wall starts oscillating at time zero and time taken for the particle to reach the
static wall after N round trips is denoted by TN , then after (N + 1)th round trip,

TN+1 = TN + (T0 + t0 cos φN+1), (1)

where t0 is amplitude of the time delay due to the extra distance travelled by the particle
because of the vibration of the wall and φN+1 is the phase of oscillation of the wall. We
are recording the time TN when the particle returns back to the static wall after N round
trips. The phase φN is the phase of the oscillating wall when the particle reaches the
oscillating wall in N th round trip. For the phase φN we have

φN+1 − φN = ωt, (2)

where ω is the angular velocity of oscillations of the wall and t is the time taken by the
particle to reach the vibrating wall after one round trip from the previous interaction with
the oscillating wall. Therefore,

φN+1 − φN = ω

(
T0 + t0 cos φN

2
+ T0 + t0 cos φN+1

2

)

φN+1 − ωt0(cos φN + cos φN+1)

2
= φN + ωT0. (3)
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To see the change in the total time after (N + 1) round trips due to the oscillating wall,
we subtract (N + 1)T0 from eq. (1) and get

TN+1 − (N + 1)T0 = TN + (T0 + t0 cos φN+1) − (N + 1)T0

TN+1 − (N + 1)T0 = TN − N T0 + (t0 cos φN+1).

If we define the change in round trip time due to vibration of the wall as our new variable,
i.e. (Tm − mT0) = Rm , then we have a map:

RN+1 = RN + t0 cos φN+1. (4)

Equations (3) and (4) are to be solved simultaneously.

(a)

(b)

Figure 1. (a) RN vs. number of round trips and (b) fluctuation of RN over the linear
variation.
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During the motion of particle in the cavity, it will interact with the vibrating wall at all
possible phases of the vibration of wall. But when the following condition is satisfied, φN

will settle down to a steady state φ∗ given by eq. (6)

ω (T0 + t0 cos φ∗) = Nπ, (5)

where N is an integer. From this we get

φ∗ = cos−1

[
Nπ

ωt0
− T0

t0

]
. (6)

Therefore, if parameters T0, t0, ω are chosen such that eq. (5) is satisfied, then the particle
will eventually settle down to this steady state after a few round trips.

3. Numerical simulation results

To simulate this system, we fix T0 = 1, t0 = 0.25 and see the behaviour of RN and
φN numerically as a function of N for different values of ω. For all values of ω that
do not satisfy eq. (5), the behaviour of RN is generically the same. They all are linear
functions of the round trips N with some fluctuations superposed on this linear behaviour.
In figure 1, we have plotted the behaviour of RN for the case when ω = 0.2π.

The time error RN increases or decreases linearly with time depending on the system
parameters. But after subtracting the straight line behaviour from the plot we see the
oscillatory pattern shown in figure 1b.

In the Fourier spectrum of these oscillatory fluctuations in figure 2, we see sharp peaks
in the Fourier spectrum. Sharp peaks in Fourier spectrum are indicative of sinusoidal
behaviour. From the theory of Fourier transforms, we know that the location of these
peaks in the Fourier spectrum give the frequencies of the periodic motions involved.
Therefore, as we have two sharp peaks in the Fourier spectrum of fluctuations, we can

Figure 2. FFT spectrum of the fluctuations in RN .
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say that these fluctuations are due to the overlap of two different periodic motions. In our
system two periodic motions are taking place, one is the periodic oscillations of the wall
and the other is the periodic motions of the particle between the two walls. Therefore,
these periodic motions can be seen in the Fourier spectrum of fluctuations. The fact that
these fluctuations are superposed on a linearly varying function is not trivial and can only
be seen from the numerical simulation.

When we choose ω that satisfies eq. (5) (e.g. ω = 2π for our parameters), the phase
φN settles to a steady state after a few round trips (in our case it settles to π/2). RN has
no fluctuation. It either varies linearly with the number of round trips or it settles to a
constant value if φN settles to π/2.

We can see in figure 3 that for angular frequency of oscillation ω = 2π of the wall, the
particle synchronizes itself with the oscillation of the wall. Therefore, if we have more

(a)

(b)

Figure 3. (a) φN vs. number of round trips and (b) RN vs. number of round trips for
ω = 2π .

Pramana – J. Phys., Vol. 81, No. 3, September 2013 489



Nandan Jha and Sudhir R Jain

than one particle in the cavity, the motion of these particles will tend to synchronize with
the oscillating wall and since the phase of the oscillating wall at which they all synchro-
nize to is independent of initial conditions, after a few round trips they will all bunch
together at the same point and move together in the cavity. If this result can be applied to
the storage ring made from Racetrack Microtron, then this process of synchronization will
act towards bunching the electrons and will act as a force opposing the mutual Coulomb
repulsion of the electrons. Racetrack Microtron has two semicircular D’s where a con-
stant magnetic field is applied to bend the electron by 180◦ and in between these D’s, the
electron travels in straight path and is accelerated by a linear accelerator [4]. For our case
that accelerator will only supply enough energy to compensate for the radiation losses
when the electrons bend in the D’s.

To apply the model proposed in this paper in Racetrack Microtron, it is required that
the magnetic field in one of the D’s is time-dependent to mimic the vibrations of the wall
in our model. The requirement from the time dependence is to increase or decrease the
path taken by the electron in one round trip periodically. This can be achieved if the
region where electron gets reflected by the magnetic field is made to oscillate sinusoidaly.
However, to do this mechanically by making one of the D’s vibrate is impossible. But, we
can achieve this by switching on and off the magnetic field periodically in the boundary
region where the electron enters the D. This will only lead to the electron getting reflected
a little later or earlier causing an increase or decrease in the path. The vibration of the
magnetic field in the region where the electron enters the D and where it leaves the D
must be out of phase by time mπ/Bq such that the electron spends the same time in the
magnetic field regardless of the phase of vibration of the magnetic field.

4. Conclusion

We have shown that for a particle in a vibrating cavity, we can set the parameters of the
vibration and length of the cavity to make sure that the particle settles to a steady state
condition for all initial conditions. We have also proposed a possible way to implement
this result in producing charged particle bunches. To actually show that this proposal can
work for charged particle bunching, more sophisticated numerical simulations are to be
done.
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