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Abstract. It is shown that Painlevé integrability of (2+41)-dimensional Boiti—-Leon—Pempinelli
equation is easy to be verified using the standard Weiss—Tabor—Carnevale (WTC) approach after
introducing the Kruskal’s simplification. Furthermore, by employing a singular manifold method
based on Painlevé truncation, variable separation solutions are obtained explicitly in terms of two
arbitrary functions. The two arbitrary functions provide us a way to study some interesting localized
structures. The choice of rational functions leads to the rogue wave structure of Boiti—Leon—
Pempinelli equation. In addition, for the other choices, it is observed that two solitons may evolve
into breather after interaction. Also, the interaction between two kink compactons is investigated.
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1. Introduction

Since the soliton concept was introduced by Zabusky and Kruskal in 1965 [1], many
integrable systems have been discovered in the natural and applied sciences [2—19]. Inte-
grable systems exhibit richness and variety of exact solutions such as soliton solutions,
periodic solutions, rational solutions, and complexiton solutions (see [20,21]).

In recent years, many localized structures, like dromions, lumps, ring soliton and oscil-
lated dromion, breather solution, fractal dromion, and fractal lump soliton structures [22],
were discovered. Besides the usual localized structures, some new localized excitations
like peakons, compactons, folded solitary waves, and foldon structures were found by
choosing some types of lower-dimensional appropriate functions [22-30]. The interaction

DOI: 10.1007/s12043-013-0577-5; ePublication: 24 August 2013 367



Gui Mu, Zhengde Dai and Zhanhui Zhao

properties of peakon—peakon, dromion—dromion, and foldon—foldon interactions have
also been investigated [23,24]. Recently, some novel localized structures referred to as
rogue waves solutions [25-27], have also been studied. In this work, we study rogue
waves and novel interactions among multiple kink compactons and solitons in the frame-
work of (2+41)-dimensional Boiti—-Leon—Pempinelli (BLP) equation. The BLP equation
is given by [31]

U — Uy — 2uv, =0, (D
Uyt — (u2 - ux)xy - vaxx = 09 (2)

which describes the evolution of the horizontal velocity component of the water waves
propagating in the x—y plane in an infinite narrow channel of constant depth. It is
also thought to be a (2+1)-dimensional generalization of the sinh-Gordon equation.
By suitable transformation and reduction [31,32], BLP equation can be reduced to
one-dimensional dispersive long-wave equation, the Burgers or anti-Burgers equation.
Additionally, various interesting properties of (241)-dimensional BLP equation have
been studied by many authors [31-34]. For example, the Hamiltonian structure, Lax
pair, and Bécklund transformation have been discussed in [31]. Besides, the bilinear form
of the BLPE is obtained by virtue of the binary Bell polynomials in [33]. With the help of
extended tanh-function method, different kinds of localized coherent structures have been
obtained in [34].

The primary purpose of the work is to explore novel localized structures of BLP equa-
tion by using a singular manifold method based on Painlevé truncation. In §2, we carry
out the Painlevé analysis to verify the integrability using WTC—Kruskal approach [4-7].
In §3, we search for variable separation solutions. In §4, we study three types of novel
localized structures with the help of arbitrary functions. The conclusions are given in §5.

2. Painlevé test

In this section, we give out the standard test with the Kruskal’s simplification, which is
constituted by three steps, the leading order analysis, the resonance determination, and
the resonance conditions’ verification. According to the standard WTC approach [4-7],
we investigate the general solution of (1)—(2) of the following form:

00 00
u = Zuj¢(f+a), V= Z Uj(b(j_Hs), (3)
=0 j=0

substituting u = ugg®, v = vo¢” into egs (1) and (2), and balancing the leading term of
¢, leads to

a=p=-1, 4)
with the condition
uy = ¢y, v = ¢y (@)
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Inserting (3) into (1) and (2) and vanishing the coefficients of (@I73, 977% produce
resonances

j:_111721394- (6)

It is noted that the resonance at j = —1 corresponds to the arbitrary singularity
manifold ¢. To verify the resonance conditions, we introduce the Kruskal’s simplification

d(x,y. ) =x+ f(y,1), uj=u;(y, 1, v =v;i(y, 1), @)

where f(y,t) is assumed to be an arbitrary function of y, ¢. Using this simplification,
eq. (5) is reduced to

uy = 1, U():fy. (8)

For j = 1, vanishing the coefficients of (¢ 2, ¢—>) leads to

1
w =2 fro €))

v; is an arbitrary function. Obviously, the resonance condition at j = 1 is satisfied.
For j = 2, vanishing the coefficients of (¢’1, ¢’2), with the help of conclusion (9),
we have

2 _
uy = 22" It (10)

2fy

where v; is an arbitrary function. Thus, the resonance condition at j = 2 holds.
For j = 3, vanishing the coefficients of (¢0, q‘)’l), with the help of the conclusions (9)
and (10), we find that

6vr —
Uy = M, (11)
2fy

where vs is an arbitrary function. Similarly, the resonance condition at j = 3 is identically
satisfied.

For j = 4, vanishing the coefficients of (¢1, (;50), with the help of the previous
condition, it reads that

_lUZIfy - 12U4fy + v2fyt - ng
2 53 ’

12)

Ug =

where vy is an arbitrary function. As a result, the resonance conditions at j = 4 is also
satisfied. This shows that (241)-dimensional BLP equation can pass Painlevé test. This
is in agreement with the modification of the Painlevé test of Garagash [39].
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3. Variable separation solutions

In this section, we concentrate on seeking for variable separation solutions of (2+41)-
dimensional BLP equation. To this end, we truncate the Laurent series of (2+41)-
dimensional BLP equation at the constant level term, and we obtain the following
Backlund transformation:

Vo
MZZ_FM]’ v=E+v1. (13)

Following general procedure, we consider a seed solution

up =ui(x, ), v; = 0. (14)
Now, inserting eq. (13) with the seed solution (14) into (1) and (2), then vanishing the
coefficients of (¢ 3, %), we have

vy — uovody = 0, (15)

—6ugp>p, + 12007 — 6uip, ¢, = 0. (16)

Solving the above system, we obtain the leading-order coefficients ug, vg in agreement
with (5). Subsequently, equating the coefficients of (¢ 2, ) to zero we get

—voP; — 2ugVox + VoPrx + 2v0xPx + 2u1v9¢p: = 0, (17)
2u0¢xx¢y - 12U0¢x¢xx + 2u0¢y¢t + 2u0y¢;% - 12U0x¢§ + 4u0x¢x¢y
- 4ulu0¢x¢y + 4”O¢x¢yx + 4”O¢yqu + 2“(2)¢yx + 4”Oyu0¢x =0. (18)

With eq. (5), the above set of overdetermined system of equations can be consistently
solved as follows:

(e, ) = ‘“*Z—’l_%, 6= 15,0+ dr(y, ). (19)

Next, from the coefficients of (¢!, ¢~2), we have
Vor — Voxx — 2U1vox =0, (20)
200@xxx — UoyPr — U0 Py — 2UoyUox + OVOxPoxy — UoyDry — UoPys
+ 60 P + 2uttordy + 2uittoydy — UoPyxx + 2u0d ity — 2Ugyr Py
—2u0xGyx + 2uitto@yy — Uoxx Py — 2uoltoyy = 0. 21

The compatibility condition of the above equations is that ¢, should only be a function
of the variable y

2 = ¢2(y). (22)
On the above conditions, it is easily found that the coefficients (@°, ¢‘1)

_2U0xxx + UQyt + UQyxx — 2Mlu()yx - 2”0}'”1): =0 (23)
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hold naturally. Thus, we obtain variable separation solution of (2+1)-dimensional BLPE
as

d)lx ¢lt - ¢1xx _ ¢2y

- . v= , 2
bitd T 2 it @4

u

where ¢ = ¢ (x, t) and ¢, = ¢»(y) are arbitrary functions. The corresponding potential
field reads as

W=—Uy=—V = M (25)

(¢ + )

4. Novel localized excitations

So far, localized coherent structures such as the dromions, solitoff solutions, and lump
solutions for the higher-dimensional NLEEs have been proposed [36]. In addition, it is
possible to obtain more and more interesting localized structures with the help of arbitrary
functions in (25). In this paper, after many attempts, we pick out three choices of arbitrary
functions ¢ (x, 7) and ¢, (y) to construct novel localized structures as follows.

(D) Rogue wave

If the arbitrary functions ¢, (x, ¢) and ¢, (y) are chosen as

x2
$rx.0) ==+ 1, (26)
2
$(y) = a> + y? 27)

this case yields

Xy
(a® + (x2/2) + 12 + (y2/2))*

w(x,y,t) = (28)

Here, a is an arbitrary nonzero real parameter. At ¢t = 0, the function w(x, y, 0) becomes

Xy

w(x,y,0) = (@ + (x2/2) + (y2/2))*

In order to obtain the maximum values of the function w(x, y, 0), it is needed to calculate
the necessary condition

dw(x,y,0) —4y (2a* = 3x% +y?) _o

dx (2a% + x2 +y2)3 ’
ow(x,y,0) . —4x (2a2 — 3y2 +x2) .
dy (2a% + x2 +y?)°
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Thus, solving these two conditions leads to five points
(a,a), (a,—a), (—a,a), (—a,—a), (0,0).

After calculations, it is easily verified that maximum values of the function w(x, y, 0)
occur at the points (—a, a) and (a, —a). Furthermore, one can get the maximum value as

1
Wmax — 402 .
From figure 1, it is observed that the three-dimensional spatial structure of the function
w(x, y, 0) has similar structure of the rogue waves which is a point of hot discussion in
recent years [26]. The maximum amplitude of the rogue wave solution (28) increases
inversely with the values of the parameter a. In figure 2, when a = 1/4, the maximum
amplitude of this rogue wave solution is equal to 4. Meanwhile, we note that this rogue
wave has two peaks whose amplitudes are equal to the amplitudes of the one-dimensional
rogue waves observed in [25]. Indeed, it is interesting that 2D rogue waves have more
diversity than 1D rogue waves as in an integrable 2D Schodinger equation proposed by
Kundu’s group [27]. Thus, it indicates that 2D rogue wave which is localized in both x
and y directions may also exist in the framework of BLP equation.

(IT) Two solitons evolve into breather after collision
If we choose the arbitrary functions ¢, (x, t) and ¢,(y) as
¢1(x,t) = ag + aj cosh(kix + c11), 29)

¢2(y) = bo + by tanh(kay) + by exp(ksy) + b3 cos(ksy), (30)

A I - L )

Figure 1. The spatial structure of 2D rogue wave for eq. (28) att = 0 fora = 1/4.
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Figure 2. A spatial structure in x—y plane of (a) v in (24) and (b) w in (25) under
conditions (29) and (30).

figure 2 exhibits breather generation after two soliton collision for the parameters ay =
1,a1 = 10,k2 =k3 =k4=k1 =C =b()= 1,b1 = —10,[92: 10,[93 =8,t = —40.

(IT) Multiple kink—compacton interactions

Rosenau and Hymann have found compactons which vanish identically outside a finite
region and retain their identity after multiple collisions [37,38]. Then, we choose the
function ¢, (x, t) as compacton

bid
0’ < C—
N X+ v n_ X0i % i
d1(x, 1) = by + E b; sin(k; (x + vit — xo;)) + bi, Xoi — o < + vt <xo; + o
i=1 ! T !
2b.’ -t . R
i X+ >xol+2ki

€1y
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Figure 3. The evolution plots of interactions between kink and compactons corresponding to (25) with (31) and (32), (a) r=—2
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and ¢, (y) as a combination of hyperbolic cosh function in the following form:

M
$2(y) = co+ Y _ ci cosh(li(y + yoi)). (32)
i=1
where b;, x;, ki, ¢i, Yoi, and v; are arbitrary constants. For M = 1, N = 2,by = 80, b; =
=2,by = —10,ky =k = LLvy = =1,vu =2,¢0 = 0,c1 = 1,I1 = 1, x01 = xp2 =
yo1 = 0, figure 3 shows that interaction between two kink—compactons is inelastic.

5. Conclusions

In this work, Painlevé integrability of (2+1)-dimensional BLP equation has been effec-
tively demonstrated using the standard WTC—Kruskal approach. This outcome has been
compared with the modification of the Painlevé test of Garagash [39], and then by using
a singular manifold method based on Painlevé truncation, variable separation solutions
with two arbitrary functions are obtained. Based on (24), new types of interactions
among solitons as well as kink—compactons of BLPE are investigated both analytically
and graphically. Meanwhile, the arbitrary function allows us to construct rogue wave
solution of BLP equation. It is expected that the interaction among rogue wave also can
be studied by the proper choice of the arbitrary functions in the future. To the best of our
knowledge, these novel properties and interesting localized structures are investigated for
the fist time in BLP equation.
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