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Abstract. In this paper, we obtain the 1-soliton solutions of the (3 + 1)-dimensional generalized
Kadomtsev–Petviashvili (gKP) equation and the generalized Benjamin equation. By using two
solitary wave ansatz in terms of sechp and tanhp functions, we obtain exact analytical bright and
dark soliton solutions for the considered model. These solutions may be useful and desirable for
explaining some nonlinear physical phenomena in genuinely nonlinear dynamical systems.
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1. Introduction

The research in the area of nonlinear evolution equation (NEE) has made significant
progress in the past decades. There has been a growing interest in finding exact analytical
solutions to nonlinear wave equations by using appropriate techniques. Particularly, the
existence of soliton solutions for NEEs is of great importance because of their potential
application in many physics areas such as chaos, mathematical biology, diffusion process,
plasma physics, optical fibres, neural physics, solid state physics etc.

Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and con-
vection are of vital importance in NEEs [1]. In the past decades, many methods such
as the tanh–sech method [2,3], extended tanh method [4,5], sine–cosine method [6,7],
exp-function method [8,9], homogeneous balance method [10,11], first integral method
[12,13], Jacobi elliptic function method [14,15], (G ′/G)-expansion method [16,17] and
F-expansion method [18,19] were developed for finding exact solutions of NEEs.
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Solitary waves are wave packets or pulses which propagate in nonlinear dispersive
media. Due to dynamical balance between the nonlinear and dispersive effects, these
waves retain a stable waveform. A soliton is a very special type of solitary wave, which
keeps its waveform even after collision with other solitons [20].

Solitons in photonic crystal fibres as well as diffraction Bragg gratings have been stud-
ied. In addition, theories of dispersion-managed solitons, quasilinear pulses have also
been developed. Dark solitons are also known as topological optical solitons in the con-
text of nonlinear optics media. It is known that dark optical solitons are more stable
in the presence of noise and spreads more slowly in the presence of loss, in the optical
communication systems, as compared to bright solitons [21–23].

In this paper, one such modern method of integrability will be applied to carry out the
integration of a generalized version of the (3 + 1)-dimensional generalized Kadomtsev–
Petviashvili and the generalized Benjamin equations. The technique that will be adopted
to integrate such equations is the solitary wave ansatz method.

The paper is organized as follows: in §2, we derived the bright and dark soliton solu-
tions of nonlinear (3 + 1)-dimensional gKP equation. In §3, we apply the ansatz method
to the generalized Benjamin equation and establish many soliton solutions. In the last
section, we briefly make a summary to the results that we have obtained.

2. The (3 + 1)-dimensional gKP equation

The (3 + 1)-dimensional gKP equation, given by [24]

(ut + 6unux + uxxx )x + 3uyy + 3uzz = 0, (1)

describes the dynamics of solitons and nonlinear waves in plasma physics and fluid
dynamics [25].

Now, the bright and dark soliton solutions of this equation will be obtained.

2.1 The bright (non-topological) soliton solution

The solitary wave ansatz for the 1-soliton solution of (1) is given by the form [26–31]

u(x, y, z, t) = λsechpτ, (2)

where τ = ax + by + cz − vt and a, b, c are inverse widths of the soliton. Here λ and v

are respectively the amplitude and the velocity of the soliton. The exponent p is unknown
at this point and will be determined later. From the ansatz (2), it is possible to obtain

utx = −p2λavsechpτ + p(p + 1)λavsechp+2τ, (3)

(unux )x = λn+1 pa2 (pn + p)sechpn+pτ

−λn+1 pa2(pn + p + 1)sechpn+p+2τ, (4)

uxxxx = p4λa4sechpτ − 2p(p + 1)(p2 + 2p + 2)λa4sechp+2τ

+ p(p + 1)(p + 2)(p + 3)λa4sechp+4τ, (5)
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uyy = p2λb2sechpτ − p(p + 1)λb2sechp+2τ, (6)

uzz = p2λc2sechpτ − p(p + 1)λc2sechp+2τ. (7)

Substituting eqs (3)–(7) into eq. (1) yields

− p2λavsechpτ + p(p + 1)λavsechp+2τ

+ 6λn+1 pa2 (pn+ p)sechpn+pτ −6λn+1 pa2 (pn+ p+1)sechpn+p+2τ

+ p4λa4sechpτ − 2p(p + 1)(p2 + 2p + 2)λa4sechp+2τ

+ p(p + 1)(p + 2)(p + 3)λa4sechp+4τ

+ 3p2λb2sechpτ − 3p(p + 1)λb2sechp+2τ

+ 3p2λc2sechpτ − 3p(p + 1)λc2sechp+2τ

= 0. (8)

Now from (8), equating the exponents of pn + p + 2 and p + 4 leads to

pn + p + 2 = p + 4, (9)

which gives

p = 2

n
. (10)

It needs to be noted that the same result is obtained when the exponents pn+ p and p+
2 are equated to each other. From eq. (8), setting the coefficients of sechpn+p+2τ and
sechp+4τ terms to zero we get

−6λn+1 pa2 (pn + p + 1) + p(p + 1)(p + 2)(p + 3)λa4 = 0, (11)

so that

λ =
[

a2(p + 1)(p + 2)(p + 3)

6 (1 + np + p)

]1/n

. (12)

We next set the coefficients of sechpτ terms in eq. (8) to zero to obtain,

−p2λav + p4λa4 + 3p2λb2 + 3p2λc2 = 0, (13)

which gives

v = p2a4 + 3b2 + 3c2

a
, a �= 0. (14)

Finally, we get the bright (non-topological) soliton solution for the (3+1)-dimensional
gKP equation, when the above expressions of p, λ and v given by eqs (10), (12) and (14)
are substituted in eq. (2) as

u(x, y, z, t) = λ sech2/n (ax + by + cz − vt) . (15)

In this case, if we take p = 2 this yields n = 1 and solving eq. (12) we get

λ = 2a2. (16)
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By solving eq. (14) using eq. (13) we get,

v = 4a4 + 3b2 + 3c2

a
, a �= 0. (17)

Hence the 1-soliton solution to (1) is given by

u(x, y, z, t) = 2a2 sech2

(
ax + by + cz −

(
4a4 + 3b2 + 3c2

a

)
t

)
. (18)

In this case, if we take p = 1 this yields n = 2 and solving eq. (12) we get

λ = ±a. (19)

Solving eq. (14) using eq. (19) we get,

v = a4 + 3b2 + 3c2

a
, a �= 0 (20)

Thus, the bright soliton solution to (1) is given by

u(x, y, z, t) = ±a sech

(
ax + by + cz −

(
a4 + 3b2 + 3c2

a

)
t

)
. (21)

2.2 The dark (topological) soliton solution

In this section, we are interested in finding the dark soliton solution, as defined in [23] for
the (3 + 1)-dimensional gKP equation (1).

In order to construct dark soliton solutions for eq. (1), we use an ansatz solution of the
form [32,33]

u(x, y, z, t) = λ tanhp τ, (22)

and choose now a suitable solitary wave ansatz with (3 + 1) dependent variables of
the form

τ = ax + by + cz − vt, (23)

where λ, a, b and c are unknown free parameters and v is the velocity of the soliton, that
will be determined. The exponent p is also unknown.

From eq. (22), we have

utx = −pλva
{
(p − 1) tanhp−2 τ − 2p tanhp τ + (p + 1) tanhp+2 τ

}
, (24)

(
unux

)
x = pλn+1a2

{
(np + p − 1) tanhnp+p−2 τ − 2(np + p) tanhnp+p τ

+ (np + p + 1) tanhnp+p+2 τ
}
, (25)

uxxxx=λpa4

⎧⎪⎨
⎪⎩
(p−1)(p−2)(p−3) tanhp−4 τ −4(p−1)(p2−2p+2) tanhp−2τ

+2p(3p2+5) tanhp τ−4(p + 1)(p2+2p + 2) tanhp+2 τ

+(p + 1)(p + 2)(p + 3) tanhp+4 τ

⎫⎪⎬
⎪⎭, (26)
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uyy = λpb2
{
(p − 1) tanhp−2τ − 2p tanhpτ + (p + 1) tanhp+2τ

}
, (27)

uzz = λpc2
{
(p − 1) tanhp−2τ − 2p tanhpτ + (p + 1) tanhp+2τ

}
, (28)

where τ = ax + by + cz − vt . Substituting eqs (24)–(28) into eq. (1), we obtain

− pλva
{
(p−1) tanhp−2τ −2p tanhp τ +(p+1) tanhp+2τ

}
+ 6pλn+1a2

{
(np+ p−1) tanhnp+p−2τ −2(np+ p) tanhnp+pτ

+ (np + p + 1) tanhnp+p+2τ
}

+ λpa4

⎧⎪⎪⎨
⎪⎪⎩
(p−1)(p−2)(p−3) tanhp−4τ −4(p−1)(p2−2p+2) tanhp−2τ

+ 2p(3p2+5) tanhpτ−4(p + 1)(p2+2p + 2) tanhp+2τ

+ (p + 1)(p + 2)(p + 3) tanhp+4τ

⎫⎪⎪⎬
⎪⎪⎭

+ 3λpb2
{
(p − 1) tanhp−2τ − 2p tanhpτ + (p + 1) tanhp+2τ

}
+ 3λpc2

{
(p − 1) tanhp−2τ − 2p tanhpτ + (p + 1) tanhp+2τ

}
= 0. (29)

Thus, from matching the exponents of tanhnp+p+2τ and tanhp+4τ terms in eq. (29), we
obtain

np + p + 2 = p + 4, (30)

which yields

p = 2

n
. (31)

By setting the corresponding coefficients of tanhnp+p+2τ and tanhp+4τ terms to zero
one gets

6pλn+1a2(np + p + 1) + λpa4(p + 1)(p + 2)(p + 3) = 0, (32)

so that

λ =
[
−a2(p + 1)(p + 2)(p + 3)

6 (1 + np + p)

]1/n

. (33)

We next set the coefficients of tanhp−2τ terms to zero to get

−pλva(p − 1) − 4p(p − 1)(p2 − 2p + 2)λa4 + 3λpb2(p − 1)

+ 3λpc2(p − 1) = 0. (34)

Solving eq. (34) using eq. (33)

v = −4p(p − 2)a4 + 8a4 − 3b2 − 3c2

a
. (35)

Pramana – J. Phys., Vol. 81, No. 2, August 2013 207



Ahmet Bekir and Özkan Güner

Lastly, we can determine the dark (topological) soliton solution for

u(x, y, z, t) = λ tanh2/n(ax + by + cz − vt), (36)

where the velocity of the solitons v is given in eq. (35) and free parameter λ is given
by (33).

In this case, if we take p = 2 this yields n = 1 and solving eq. (32) we get

λ = −2a2. (37)

Solving eq. (34) using eq. (37) we get

v = −8a4 − 3b2 − 3c2

a
, a �= 0. (38)

Hence the dark soliton solution to (1) is given by

u(x, y, z, t) = −2a2 tanh2

(
ax + by + cz +

(
8a4 − 3b2 − 3c2

a

)
t

)
. (39)

3. Generalized Benjamin equation

We consider nonlinear generalized Benjamin equation which is given by

utt + α(unux )x + βuxxxx = 0, (40)

where α and β are constants. This kind of equation is one of the most important NLPDEs,
used in the analysis of long waves in shallow water [34]. Taghizadeh et al obtained some
soliton solutions and travelling wave solutions using the extended tanh method [24].

3.1 The bright (non-topological) soliton solution

In this section the search is going to be for non-topological 1-soliton solution to the gen-
eralized Benjamin equation given by (40). To begin with, let us assume the following
solitary wave ansatz:

u(x, t) = λ sechpτ (41)

and

τ = B(x − vt). (42)

Here λ is the soliton amplitude, v is the soliton velocity and B is the inverse width of
the soliton. The unknown p will be determined during the derivation of the solutions
of eq. (40).

Therefore, from (41), it is possible to get

utt = p2λv2 B2sechpτ − p(p + 1)λv2 B2sechp+2τ, (43)

(unux )x = λn+1 pB2 (pn + p) sechpn+pτ

−λn+1 pB2 (pn + p + 1) sechpn+p+2τ, (44)
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uxxxx = p4λB4sechpτ − 2p(p + 1)(p2+2p + 2)λB4sechp+2τ

+p(p + 1)(p + 2)(p + 3)λB4sechp+4τ, (45)

where

τ = B(x − vt).

Thus, substituting the ansatz (43)–(45) into (40), yields the relation

p2λv2 B2sechpτ − p(p + 1)λv2 B2sechp+2τ

+ αλn+1 pB2 (pn + p)sechpn+pτ

−αλn+1 pB2 (pn + p + 1)sechpn+p+2τ + p4λβB4sechpτ

− 2p(p + 1)(p2 + 2p + 2)λβB4sechp+2τ

+ p(p + 1)(p + 2)(p + 3)λβB4sechp+4τ

= 0. (46)

Now, from (46), equating the exponents pn + p + 2 and p + 4 leads to

pn + p + 2 = p + 4, (47)

so that

p = 2

n
. (48)

Setting the cofficients of sechpn+p+2τ and sechp+4τ terms to zero in eq. (46) we get

−αλn+1 pB2 (pn + p + 1) + p(p + 1)(p + 2)(p + 3)λβB4 = 0, (49)

which after some calculations gives,

λ =
[
βB2(p3 + 6p2 + 11p + 6)

α (1 + np + p)

]1/n

. (50)

Equation (50) shows that solitons will exist for α · β > 0, if n is an even integer.
We next set the coefficients of sechpτ terms to zero in eq. (46) to obtain

p2λv2 B2 + p4λβB4 = 0, (51)

which after some calculations gives

v = pB
√−β. (52)

Thus, from (52) it is possible to conclude that the solitons will exist for β < 0.

Finally, we get the bright (non-topological) soliton solution for the generalized
Benjamin equation when the expressions of p, λ and v given by eqs (48), (50) and (52)
are substituted in (41) as

u(x, t) = λ sech2/n(B(x − vt)). (53)
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Case I: p = 2.
This yields

n = 1 (54)

so that the generalized Benjamin equation given by eq. (40) modifies to

utt + α (uux )x + βuxxxx = 0. (55)

Further substitution of p = 2 into eqs (49) and (51) gives, respectively,

λ = 12βB2

α
, α �= 0, (56)

v = 2B
√−β, β < 0. (57)

Thus, in this case, the bright soliton solution is given by

u(x, t) = 12βB2

α
sech2(B(x − 2B

√−βt)). (58)

Case II: p = 1.
This yields

n = 2 (59)

so that the generalized Benjamin equation given by eq. (40) modifies to

utt + α(u2ux )x + βuxxxx = 0. (60)

Further substitution of p = 1 into eqs (50) and (52) gives, respectively,

λ = B

√
6β

α
, α �= 0, (61)

From eq. (61) we clearly see that the solitons will exist for α · β > 0.

v = B
√−β, β < 0. (62)

Thus, in this case, the bright soliton solution is given by

u(x, t) = B

√
6β

α
sech(B(x − B

√−βt)). (63)

3.2 The dark (topological) soliton solution

In order to start off with the solution hypothesis, the following solitary wave ansatz is
assumed:

u(x, t) = λ tanhp τ (64)

and

τ = B(x − vt), (65)
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where λ and B are the free parameters and v is the velocity of the soliton. The exponent
p is also unknown. These will be determined

From (64) it is possible to obtain

utt = pv2λB2{(p − 1) tanhp−2 τ − 2p tanhp τ + (p + 1) tanhp+2 τ } (66)

(unux )x = pλn+1 B2
{
(np + p − 1) tanhnp+p−2 τ − 2(np + p) tanhnp+p τ

+ (np + p + 1) tanhnp+p+2 τ
}
, (67)

uxxxx = pλB4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p−1)(p−2)(p−3) tanhp−4τ

−4(p−1)(p2−2p+2) tanhp−2τ

+ 2p(p2+5) tanhp τ

−4(p + 1)(p2 + 2p + 2) tanhp+2 τ

+ (p + 1)(p + 2)(p + 3) tanhp+4 τ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (68)

where

τ = B(x − vt).

Substituting eqs (66)–(68) into eq. (40), gives

pv2λB2{(p − 1) tanhp−2 τ − 2p tanhp τ + (p + 1) tanhp+2 τ }
+ pαλn+1 B2

{
(np + p − 1) tanhnp+p−2 τ − 2α(np + p) tanhnp+p τ

+ α(np + p + 1) tanhnp+p+2 τ
}

+ pβλB4(p − 1)(p − 2)(p − 3) tanhp−4 τ

− 4pβλB4(p − 1)(p2 − 2p + 2) tanhp−2 τ

+ 2βp2λB4(p2 + 5) tanhp τ − 4pβλB4(p + 1)(p2 + 2p + 2) tanhp+2 τ

+ pλβB4(p + 1)(p + 2)(p + 3) tanhp+4 τ

= 0. (69)

Now, from (69) equating the exponents of tanhnp+p+2 τ and tanhp+4 τ gives,

np + p + 2 = p + 4 (70)

which yields

p = 2

n
. (71)

Setting the coefficients of tanhnp+p+2τ and tanhp+4τ terms in eq. (69) to zero, we have

αpλn+1 B2(np + p + 1) + pλβB4(p + 1)(p + 2)(p + 3) = 0 (72)

Pramana – J. Phys., Vol. 81, No. 2, August 2013 211



Ahmet Bekir and Özkan Güner

which after some calculations gives,

λ =
[
−βB2(p + 1)(p + 2)(p + 3)

α (1 + np + p)

]1/n

. (73)

From eq. (73) it is important to note that α · β < 0, if n is an even integer.
By equating the coefficients of tanhp−2 τ terms in eq. (69) to zero we obtain

pv2λB2(p − 1) − 4pβλB4(p − 1)(p2 − 2p + 2) = 0. (74)

Solving eq. (74) using (73),

v = 2B
√

βp2 − 2pβ + 2β (75)

which shows that solitons will exist for
{
βp2 − 2pβ + 2β

}
> 0.

Thus, we can determine the dark (topological) soliton solution for

u(x, t) = λ tanh2/n(B(x − vt)), (76)

where the velocity of the solitons v is given by eq. (75) and free parameter λ is given
by (73).

Case I: p = 2.
This yields

n = 1 (77)

so that the generalized Benjamin equation given by eq. (40) modifies to

utt + α (uux )x + βuxxxx = 0. (78)

Further substitution of p = 2 into eqs (73) and (75) gives, respectively,

λ = −12βB2

α
, α �= 0, (79)

v = 2B
√

2β, β > 0. (80)

Thus, in this case, the dark soliton solution is given by

u(x, t) = −12βB2

α
tanh2(B(x − 2B

√
2βt)). (81)

Case II: p = 1.
This yields

n = 2 (82)

so that the generalized Benjamin equation given by eq. (40) modifies to

utt + α(u2ux )x + βuxxxx = 0. (83)
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Further substitution of p = 1 into eqs (73) and (75) gives, respectively,

λ = B

√
−6β

α
, α �= 0, α · β < 0 (84)

v = ±B
√

2β, β > 0. (85)

Thus, in this case, the dark soliton solution is given by

u(x, t) = B

√
−6β

α
tanh(B(x ± B

√
2βt)). (86)

Remark 1. As a result, we find dark and bright soliton solutions of eqs (1) and (40)
different from the solutions which are found in [24,25,34].

Remark 2. With the aid of Maple, we have verified all solutions we obtained in §3 and 4,
by putting them back into the original eqs (1) and (40).

Remark 3. Comparing other methods with the solitary wave ansatz method shows that
the latter gives an abundant variety of solutions compared to the other methods. This can
be easily obtained by selecting a variety of arbitrary values for the parameters p and n,

provided that np = 2.

4. Conclusion

In this paper, we obtained the exact bright and dark soliton solutions of some nonlinear
evolution equations. In view of the analysis, we see that the examined equation is an
interesting model for soliton-type (dark, bright, kink, shock, etc.) solutions. In addi-
tion, we note that the solitary wave ansatz method is an efficient method for constructing
exact soliton solutions for such nonlinear evolution equation. To our knowledge, these
new solutions have not been reported earlier. They may be of significant importance for
explaining some special physical phenomena. We hope that the present solutions may be
useful in further numerical analysis and these results are going to be very useful in future
research.
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