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Abstract. Orthogonal polynomials with weight exp[−N V (x)] are studied where V (x) =∑d
k=1 a2k x2k/2k is a polynomial of order 2d . The generalized Freud’s equations for d = 3, 4 and

5 are derived and using this Rμ = hμ/hμ−1 is obtained, where hμ is the normalization constant
for the corresponding orthogonal polynomials. Moments of the density functions, expressed in
terms of Rμ, are obtained using Freud’s equation and using this, explicit results of level densities
as N → ∞ are derived using the method of resolvents. The results are compared with those using
Dyson–Mehta method.
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1. Introduction

Universality in random matrix theory [1–4] has led people to study orthogonal [5–7]
and skew-orthogonal polynomials [8] in great detail. However, in the process, the non-
universal level densities are neglected in spite of the possibility of its direct application
in various physical systems. In this context, we study level densities of a class of
non-Gaussian random matrix ensembles and thereby develop the theory of orthogonal
polynomials.

Orthogonal polynomials are defined as
∫

R

Pn(x)Pm(x)w(x)dx = hnδnm, n, m ∈ N. (1.1)

We study orthogonal polynomials with weight function w(x) = exp(−N V (x)), where

V (x) =
d∑

k=1

a2k x2k/(2k), a2d > 0. (1.2)
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Here, we make a numerical analysis of orthogonal polynomials corresponding to d = 3,
4 and 5. We derive the corresponding Freud’s equation and calculate Rμ = hμ/hμ−1. We
observe interesting patterns in the behaviour of Rμ.

Once we have an understanding of Rμ, we use these results to obtain level densities
of non-Gaussian ensembles of random matrices. We know that variation of the first
n eigenvalues of a random matrix can be studied by the n-point correlation function,
R(β)

n (x1, ..., xn) which is defined by

R(β)
n (x1, ..., xn) = N !

(N − n)!
∫

RN−n

dxn+1...dxN Pβ,N (x1, ..., xN ), (1.3)

where β = 1, 2, 4 correspond to ensembles of random matrices invariant under orthogo-
nal, unitary and symplectic transformations. This allows us to find the probability density
of the n eigenvalues at x1, ..., xn , irrespective of the eigenvalues at xn+1, ..., xN . From
here, using the Mehta–Dyson formula, we can calculate the level density, R(β)

1 (x), which,
for β = 2 can be written as [9–12]

R(2)
1 (x) =

N−1∑

μ=0

(hμ)−1[Pμ(x)]2e−N V (x). (1.4)

To calculate R(2)
1 (x) as N → ∞, the standard method is to use the Christoffel–Darboux

formula and the asymptotic results of orthogonal polynomials. The latter is not always
available for general polynomial potential in spite of some serious contributions from
Nevai [13]. However, more rigorous results have been obtained recently by several
authors [6,14–17] on the asymptotics of orthogonal polynomials with V (x) = x2d using
the Riemann–Hilbert technique.

In this paper, we use the method of resolvent to obtain the level densities as N → ∞.
This needs an understanding of moments Mk defined as

Mk =
∫

R

xk R(2)
1 (x)dx, k ∈ N. (1.5)

This is derived using the values of Rμ using generalized Freud’s equation, which we
derive independently. Using this, we obtain the corresponding level densities. This gives
us a good understanding of the origin of multiple band formation in the level densities in
polynomial potential.

Finally, we compare these results with that obtained numerically from the Dyson–
Mehta method which is cumbersome and has its limitations for even reasonable values
of N .

The paper is organized as follows: In §2, we study the d = 3 case and observe the
behaviour of Rμ for different values of ak . Sections 3 and 4 deal with d = 4 and d = 5
results. Section 5 contains our concluding remarks.

2. d = 3 Case

2.1 Freud’s equation

Orthogonal monic polynomials with even weights satisfy a recursion relation [5]

x Pμ = Pμ+1 + Rμ Pμ−1, μ ∈ N, (2.1)
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where Rμ = hμ/hμ−1, for μ ≥ 1 and R0 = 0.
A major development in the study of quartic weight (d = 2 in eq. (1.2)) polynomials

[18–20] was the following recursive equation in Rμ due to [21]:

μ + 1 = N Rμ+1[a4(Rμ+2 + Rμ+1 + Rμ) + a2]. (2.2)

Now, we derive a similar Freud’s equation for sextic potential, i.e. d = 3 in eq. (1.2). We
use the identity

∫

dx[Pμ+1(x)Pμ(x)e−N V (x)]′ = 0. (2.3)

Using Pμ(x) = xμ + · · · and the orthonormality condition (1.1), we get
∫

[e−N V (x)][P ′
μ+1(x)Pμ(x) + Pμ+1(x)P ′

μ]dx

+
∫

N [a6x5 + a4x3 + a2x]Pμ+1(x)Pμ(x)e−N V (x)]dx = 0.

This gives us

(μ + 1)hμ =
∫

Na6x5 Pμ+1(x)Pμ(x)e−N V (x)dx

+
∫

Na4x3 Pμ+1(x)Pμ(x)e−N V (x)dx

+
∫

Na2x Pμ+1(x)Pμ(x)e−N V (x)dx .

Using (2.1), we obtain

μ + 1 = N Rμ+1[a6(Rμ+2(Rμ + Rμ+1 + Rμ+2 + Rμ+3)

+ Rμ+1(Rμ + Rμ+1 + Rμ+2)

+ Rμ(Rμ−1 + Rμ + Rμ+1))

+ a4(Rμ−1 + Rμ + Rμ+1) + a2]. (2.4)

Here we note that the corresponding Freud’s equation is cubic in nature thereby giving
rise to oscillatory behaviour.

2.2 The Rμ plot

For the d = 2 case, two main features were observed in the Rμ plot from the original
Freud’s equation: A two-band structure formed by an oscillation between two values,
converging to a single band.

In the sextic case, the two-band and single band structures reappear. However a new,
more chaotic structure is also seen, appearing either between one-band and one-band or
one-band and two-band structures. Henceforth, it is termed as a ‘transient structure’.
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2.2.1 Single-band structure. For the single-band structure, all the terms in the Freud’s
equation are equal. Thus, we obtain a λ-dependent cubic equation (where λ = μ/N ),
solving which we obtain one real solution

D± = 27

2
(2a3

4 − 10a6a4 − 100a2
6λ)

±
√

(2a3
4 − 10a6a4 − 100a2

6λ)2 − 4(a2
6 − (10a6a2/3))3, (2.5)

Rμ = − a4

10a6
−

3
√

D+
30a6

−
3
√

D−
30a6

, (2.6)

which gives the value of Rμ for λ values where single band exists.

2.2.2 Two-band structure. Solving the Freud’s equation assuming that two bands are
formed (as seen), i.e., A0 = R0 = R2 = R4 = · · · , A1 = R1 = R3 = R5 = · · · , for
N 
 μ, we get

A0 + A1 =
−a4 +

√
a2

4 − 4a2a6

2a6
. (2.7)

It has been numerically verified that the bottom band (A1) tends to 0, and we find that
A1 ∝ 1/N and A1 ∝ 1/(a4)

2.

2.2.3 Transient structure. When the transient structure is divided modulo 3 into three
bands (b0, b1 and b2 in figure 1), it is seen that each of the three separate bands
continuously oscillates, and converges to a common value.

0.1 0.2 0.3 0.4

0.5

1.0

1.5

2.0

b1

b2

b0

Figure 1. Rμ plot modulo 3 for d = 3, a6 = 1, a4 = −2.5, a2 = 1, N = 500 using
eq. (2.4).
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The sum mod 3 for the duration of the transient structure oscillates above the value

b0 + b1 + b2 ≈
−a4 +

√
a2

4 − 4a2a6

2a6
, (2.8)

where b0, b1 and b2 correspond to three consecutive values from each of the bands.

2.3 Critical a4s

On analysing the roots of the sextic potential, we obtain the critical value of a4, denoted
here by a4c, where the structure of the Rμ plot changes. We find the points at which
potential plot touches 0, and obtain

a4c = −
√

48

9
a2a6. (2.9)

In the Rμ plot, when a4 < a4c, we observe a two-band structure, followed by a transient
structure, which converges to single band and when a4 > a4c, we see a one-band structure,
followed by a transient structure, which converges to single band.

We now analyse the behaviour of Rμ as a4 approaches a4c (figure 2). It is observed the
transient structure resolves into three distinct bands near a4c. Exactly at the critical value,
two of these bands coincide to form an upper band, and the third band forms a lower band,
creating a pseudo-two-band structure.

2.4 Level density

In this subsection, we derive the level density using the method of resolvent [8,22,23]
as N → ∞. The result is expressed in terms of moments Mk (1.5) which are derived
using the results from the Freud’s equation. We then compare the result with the level
density for N = 30 using (1.4). For d = 3, we have chosen the coefficients so that we get
multiple bands in the level density.

From the definition of ∂ Pβ,N (x1, ..., xN ), we have

∂ Pβ,N (x1, ..., xN )

∂x1
=

⎛

⎝β
∑

j 
=1

1

x1 − x j
+ w′(x1)

w(x1)

⎞

⎠ Pβ,N (x1, ..., xN ). (2.10)

We note that from here on, β = 2 and we shall not explicitly write it. For n = 1, we
have

∂ R1(x)

∂x1
= β

∫
R2(x, y)

x − y
dy + w′(x1)

w(x1)
R1(x). (2.11)

For large N , the integral on the right can be replaced by a principal-value integral
involving R2(x, y) ≈ R1(x)R1(y). Further, ∂ R1(x)/∂x can be dropped. This follows
from the behaviour of R1(x) and R2(x, y) for large N .

β R1(x)

∫
R1(y)

x − y
dy + w′(x)

w(x)
R1(x) = 0. (2.12)
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We use the resolvent G(z) to solve the integral equation.

G(z) =
∫

R1(y)

z − y
dy. (2.13)

Thus we have from (2.12),

0 = −N
∫ ∞

−∞
V ′(x)R1(x)

z − x
dx +

∫ ∞

−∞
dx

R1(x)

z − x

∫ ∞

−∞
dy

R1(y)

x − y

= 1

2

∫ ∞

−∞

∫ ∞

−∞
R1(x)R1(y)

x − y

[
1

z − x
− 1

z − y

]

dxdy − N V ′(z)G(z)

+ N
∫ ∞

−∞
V ′(z) − V ′(x)

z − x
R1(x)dx (2.14)

implying

G2(z) − 2N V ′(z)G(z) + 2N
∫ ∞

−∞
V ′(z) − V ′(x)

z − x
R1(x)dx = 0. (2.15)

Here, we recall [8] that we use the scaling V (x) → V (x)/2 to obtain the corresponding
results. Finally,

[π R1(x)]2 = N
∫ ∞

−∞
V ′(z) − V ′(x)

z − x
R1(x)dx − N 2

[
V ′(x)

2

]2

= N
[
a6(x4 N + x2 M2 + M4) + a4(x2 N + M2) + a2 N

]

− N 2x2

(
a6x4 + a4x2 + a2

2

)2

[
π R(2)

1 (x)

N

]2

=
(

a6 M4 + a4 M2

N
+ a2

)

+ x2

[(

a6x2 + a6 M2

N
+ a4

)

−1

4

(
a6x4 + a4x2 + a2

)2
]

. (2.16)

Now that we have derived R(2)
1 (x) in terms of M2 and M4, we would be interested to

calculate them using Freud’s equation. We use

Mk =
∑

μ

∫ xk P2
μ(x)

hμ

w(x)dx

=
∑

μ

∫
(xk Pμ(x))Pμ(x)

hμ

w(x)dx

=
∑

μ

∑

ν

∫
Cν Pν(x)Pμ(x)

hμ

w(x)dx

=
∑

μ

Cμ, (2.17)
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where Cμ are coefficients which can be expressed in terms of Rμ. A few typical
examples are

M2 =
N−1∑

μ=0

(
Rμ+1 + Rμ

)
, (2.18)

M4 =
N∑

μ=0

(
R2

μ + R2
μ+1 + 2Rμ Rμ+1 + Rμ+1 Rμ+2 + Rμ Rμ−1

)
, (2.19)

0.5 1.0 1.5
x

0.5

V(x)

−1.5 −1.0 −0.5

−2.0

−1.5

−1.0

−0.5

(a)

(b)

Figure 3. (a) Derived and actual level density plots for a6 = 1, a4 = −3, a2 = 1,
N = 30 with (b) the corresponding potential. Calculated moments are M2 = 62.536,
M4 = 164.770.
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and

M6 =
N∑

μ=0

(
Rμ−2 Rμ−1 Rμ + R2

μ−1 Rμ + 2Rμ−1 R2
μ + R3

μ + 2Rμ−1 Rμ Rμ+1

+ 3R2
μ Rμ+1 + 3Rμ R2

μ+1 + R3
μ+1 + 2Rμ Rμ+1 Rμ+2

+ 2R2
μ+1 Rμ+2 + Rμ+1 R2

μ+2 + Rμ+1 Rμ+2 Rμ+3
)
. (2.20)

The expression for M8 and higher moments are extremely cumbersome but can be
easily calculated using the aforementioned algorithm. The results for level density derived
using the Dyson–Mehta method and using the method of resolvents are shown in figure 3.
The corresponding potential has also been shown.

3. d = 4 Case

3.1 Freud’s equation

As in the d = 3 case, we start with the identity
∫

dx[Pμ+1(x)Pμ(x)e−N V (x)]′ = 0, (3.1)

where V (x) is defined as in eq. (1.2), but with d = 4. Using the recursion relation for
orthogonal polynomials, we get

μ + 1 = N Rμ+1

⎡

⎣a8

⎛

⎝Rμ+2 Rμ+3

μ+4∑

i=μ

Ri + R2
μ+2

μ+3∑

i=μ

Ri + Rμ+2 Rμ+1

μ+2∑

i=μ

Ri

+ Rμ+2 Rμ

μ+1∑

i=μ−1

Ri + Rμ+1 Rμ+2

μ+3∑

i=μ

Ri + R2
μ+1

μ+2∑

i=μ

Ri

+ Rμ Rμ+1

μ+1∑

i=μ−1

Ri + Rμ Rμ+1

μ+2∑

i=μ

Ri

+ Rμ Rμ−1

μ+1∑

i=μ−2

Ri + R2
μ

μ+1∑

i=μ−1

Ri

⎞

⎠

+ a6

⎛

⎝Rμ+2

μ+3∑

i=μ

Ri + Rμ+1

μ+2∑

i=μ

Ri + Rμ

μ+1∑

i=μ−1

Ri

⎞

⎠

+ a4

μ+1∑

i=μ−1

Ri + a2

⎤

⎦ . (3.2)

Here we note that due to the non-linear nature of the Freud’s equation, we observe
oscillations in the solution for Rμ. These oscillations can be seen when the plot is divided
modulo 4 into four residual bands (b0, b1, b2 and b3 in figure 4).
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Figure 4. d = 4 case plot for a8 = 1, a6 = −5, a4 = 6, a2 = −1, N = 200.

3.2 Level density

Using the obtained moments and the formulation for finding level density (§2.4), we
derive the function for R(2)

1 (x) for d = 4 (3.3). The plot of R(2)
1 (x) obtained using this

function is compared with R(2)
1 (x) calculated from (1.4) in figure 5. For d = 4, we have

chosen the coefficients so that we get multiple bands in the level density.
We note that irregularities in the form of small oscillations around the expected value

are seen near the peaks. This is because the numerically calculated level density is for a
finite value of N . These oscillations gradually disappear as N increases.

[
π R(2)

1 (x)

N

]2

=
[

a8 M6 + a6 M4 + a4 M2

N
+ a2

]

+ x2

(

a8x4 + a6x2 + a4 + a8x2 M2 + a8 M4 + a6 M2

N

− (a8x6 + a6x4 + a4x2 + a2)
2

4

)

. (3.3)

4. d = 5 Case

4.1 Freud’s equation

As in the d = 3 case, we start with the identity
∫

dx[Pμ+1(x)Pμ(x)e−N V (x)]′ = 0, (4.1)
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x
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V(x)

−1.5 −1.0 −0.5

−4

−2

(a)

(b)

Figure 5. (a) Derived and actual level density plots for d = 4, a8 = 1, a6 = −5,
a4 = 6, a2 = −1, N = 20 with (b) the corresponding potential. Calculated moments
are M2 = 43.475, M4 = 134.555, M6 = 438.400.

where V (x) is defined as in eq. (1.2), but with d = 5. From here, one can understand
that finding the Freud’s equation is algorithmic in nature and we leave it to the reader to
derive it explicitly. Figure 6 shows the generic plot of the Rμ function. For d = 5, we
have chosen the coefficients so that we get multiple bands in the level density.
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Figure 6. d = 5 case plot modulo 5 for a10 = 10, a8 = −80, a6 = 210, a4 = −200,
a2 = 48, N = 50.

4.2 Level density

Having derived the moments M2, M4, M6 and M8 using the general formulation given in
§2.4, we use the derivation provided to obtain the function for R(2)

1 (x) for d = 5 (4.2).
The plot of R(2)

1 (x) obtained using this function is compared with the R(2)
1 (x) calculated

from (1.4) in figure 7.
Once again, small oscillations around the expected value are seen. This is because we

are calculating R(2)
1 (x) for a finite value of N , and these become smooth as N → ∞.

[
π R(2)

1 (x)

N

]2

= a10 M8 + a8 M6 + a6 M4 + a4 M2

N

+ a2 + x2

(

a10x6 + a8x4 + a6x2 + a4

+ a10x4 M2 + a8x2 M2 + a6 M2 + a10x2 M4 + a10 M6 + a8 M4

N

)

− x2

4
(a10x8 + a8x6 + a6x4 + a4x2 + a2)

2. (4.2)

5. Conclusion

In this paper, we obtain the Freud’s equation for polynomials with weight function
exp[−N V (x)], where V (x) = ∑d

k=1 a2k x2k/2k is a polynomial of order 2d. We derive
the generalized Freud’s equations for d = 3, 4 and 5. We observe limit cycle behaviour
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1 2
x

2

V(x)

−1−2

−2

−4

(a)

(b)

Figure 7. (a) Level density plot for d = 5, a5 = 1, a4 = −8, a3 = 21, a2 = −20,
a1 = 4.8, N = 20 with (b) the corresponding potential. Calculated moments are
M2 = 43.960, M4 = 136.008, M6 = 460.375, M8 = 1625.995.

of Rμ. However, the apparent periodicity with period d is not as explicit as observed for
the quartic case. This needs to be studied further.

We use these results and the method of resolvent to obtain the level densities of the
corresponding random matrix models. However, this involves an explicit calculation of
the higher moments which we calculate numerically and insert in the analytic results of
the level density. It would be nice to obtain explicit results of these moments as was done
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for the quartic case. But we have failed in this investigation due to the complex nature of
the Freud’s equation.

Here, we might recall that for d = 2, the Freud’s equation is quadratic while for higher
d, it becomes cubic (d = 3), quartic (d = 4) and so on. This results in oscillations
in the Rμ function and hence studying the limit cycle behaviour becomes increasingly
complicated. Further investigation is needed to study these non-linear Freud’s equations,
specially in the context of integrability and hence the existence of Lax pairs. We wish to
come back to these questions in a later publication.
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