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The Kepler problem in the Snyder space
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Abstract. In this paper the Kepler problem in the non-commutative Snyder scenario was stud-
ied. The deformations were characterized in the Poisson bracket algebra under a mimic procedure
from quantum standard formulations by taking into account a general recipe to build the non-
commutative phase space coordinates (in the sense of Poisson brackets). An expression for the
deformed potential was obtained, and then the consequences in the precession of the orbit of
Mercury were calculated. The result could be used for finding an estimated value for the
non-commutative deformation parameter.
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1. Introduction

Non-commutativity has become a serious theory among the physics theories, since min-
imal fundamental lengths have been introduced by the leading theories of loop quantum
gravity and string theory. This minimal fundamental length usually is identified as the
Planck length and it is supposed that under that scale physics is totally different, even
from the standard quantum physics.

There are many ways to introduce non-commutativity. Usually the Heisenberg algebra
is deformed through a matrix that encodes the lack of commutativity between the position
operators. This is incompatible with Lorentz symmetry and many difficulties arise due to
the many changes that abandoning this fundamental symmetry implies. But there is a safer
way. In fact, Snyder, in the 1940s [1], proposed a modification of the Heisenberg algebra
that implies discrete spectra of the space-time operators. This modification is included
among the k-deformed space-time modifications.
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In fact, the non-commutative space-time program was forgotten due to the successful
renormalization program in the Standard Model. However, there is a renewed interest
due to the development of loop quantum gravity and string theories with their discrete
space-times.

One of the problems with the leading theories of quantum gravity today is the lack of
experimental confirmations. In that direction, this paper shows a possible way to measure
the implications of a non-commutative space-time, using the well-known Kepler celestial
mechanics; introducing a deformation parameter in the Kepler potential and forecast-
ing deformations in the orbits of planets. There are some previous efforts dealing with
this problem, but they used a non-commutativity that was not compatible with Lorenz
symmetry, which was very undesirable [2-5].

The paper is organized as follows: in §3, a short review of non-commutative alge-
bras is given, in §3 the Kepler problem in the Snyder space-time is developed obtaining
an advance of perihelion of a planet due to the deformed considerations and, finally
conclusions are given in §4.

2. Non-commutative algebras

2.1 General case

In a (n + 1)-dimensional Minkowski space-time, we introduce the non-commutativity
through

[)Epn iv] ZIM//.va (1)

where X is the non-commutative coordinate and / is a parameter measuring the non-
commutativity with dimension of squared length, usually identifying /I with [y, the
Planck longitude and M, the rotations generator.

It is usual to demand that the Poincaré algebra is untouched, then we have the standard
commutations relations

[M;uu Mpa] = n,uvM;w - nuvaa - nUaMup + ﬁquVp,

We can obtain a general expression for the new coordinates taking [6]
X = xuP1(A) + 1(xp) puda(A), 3)

where ¢, and ¢, are two dependent functions of the quantity A = sp?, and the relation
between them is
142919y
b= —F7"7,
é1 — 2A¢)
where (') denotes derivative with respect to A.
We have the freedom to take any value of ¢ for realizing non-commutativity. The only

restriction is that the boundary condition ¢ (0) = 1, to retrieve the ordinary commutativity.
In general, the commutator between coordinates and momenta is

(X, o]l = i1 +Ipupvd2). (5)

4)
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2.2 Snyder case

These are infinite possibilities for choosing the value of ¢;, and taking the value of ¢; as
1 is a very special case. This choice implies that ¢, = 1, that leads to the so-called Snyder
space, characterized by

[x;u x,] = ilM/wa (6)
[x;u pvl = iéuv - ilpupvs @)
[Py, pv]1=0. (8)

This is a very interesting case and many have investigated about it since the Snyder’s
paper itself ([1,2,7-10] are some of them).

3. The Kepler problem in the Snyder non-commutative Euclidian space

Classical Euclidian n-dimensional Snyder space is characterized by its non-linear com-
mutation relations (in the sense of Poisson brackets), between the variables of the phase
space. They can be set following the inverse of Dirac quantization recipe

{xi,x;} = lgLijy )
{xi, pj} = dij — lf,Pin, (10)
{pi,pj} =0, (11)

where [, is the Planck longitude which measures the deformation introduced in the canon-
ical Poisson brackets and L;; is defined as a dimensionless matrix proportional to the
angular momentum.

The Kepler potential V = —«/ ,/xiz is implemented in the general non-commutative
case, taking
V(D) = - (12)
X)=— ,
VXiX;
and considering the recipe from (3), we obtain at the first order in /
Vix) =— : . (13)
Jxi0t + 22002
For the Snyder realization (¢; = ¢, = 1), we have
Vix) = — £ (14)

[x}+ ZIg(xp)z'
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So, using polar coordinates for a plane motion,

Pp, 15)
m(pp + p6o), (16)

X

p

the Lagrangian for a particle in the Snyder—Kepler potential can be written as

1 212km 1 . k
L=-m|l——L—|p*+ -mp*0” + —. (17)
p 2 P

We still have the angular momentum L = mp?@ as a constant of motion. So considering
a particle with energy E we obtain for the radial equation

-2

p- = E—Va(p)], (18)

mf(p) [
where
2

2/<lpm
fpy=(1+ P and V(o) =

2mp?  p

is the classical effective potential for the two-bodies problem. In this sense, our interest is
to study non-commutative correction to the confined orbit. So the constant of motion E is
restricted to the values

K
0>FE>FE. =———,
2pc

where p. = (m«)~'L? is the radius of the circular orbit and E. is the energy at

this point. Now, we can write a dimensionless equation of motion in terms of these
quantities as

(=X =Q2x — x> =& +2J%0)7", (19)

where J = (mkl,)/L, 1 > € = E/E. > 0, x_ > x = p./p = x4 (with x4 =
pe/p+ = 1 F /1 — &), and x" = dx/d6. Performing the substitution x = A — y, with
A=4J*—1©6JH, eq. (19) becomes

n_ 1L 4 —gy—g

O8I (h—y)? (20)

where & = (1 4+2J%)(3J%)~!, and the invariants are given by

1+4J2+4J4(4-3¢) (142J%) [144J2 —4J*(8—9¢)]
= and g3=
3J4 27J6
Therefore, choosing # = 0 at y = y, and integrating eq. (20), we find

82

0
=W - W), 21
Je3 = WO - W) @1
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where

W) =(C —y)p (y; &2, 8) —(); 82, 83) » (22)

where g is the Weierstrass-p function and ¢ is the Weierstrass-z function. Equation (21)
represents the formal solution for the Kepler’s problem when the non-commutativity is
taken into account. But we still can say something more about the deformation parameter,
Ip. To do this, we study the advance of perihelion starting from (19), expanding to order
J?, and neglecting x> terms. Thus, we obtain

dx 2
(__) ~—C4+2(1 4+ J2E)x — (1 +4J)x>

de
1+ J%¢)? 1+ J2¢)\
:L_@_(1+4ﬁ) x—g ) (23)
(1+4J?) (14+4J?%)
So, it yields
_ Pe
x=— =Cj+ Cycos (kO + b)), (24)
P
where
1+ J2¢ (4 J2€)? 1/2
Ci=———, GO=k"[——F+—FF-¢ . k=+1+4+4J2
T 142 7P < 1 +4J2 +
Therefore, the correction for the advance of perihelion is given by
2
AG = 7” — 2 (14+4J%)7172, (25)
which can be approximated as a deviation of the Newtonian orbit
AO =~ 27 (1 —2J%) = 27 + 864, (26)
where 80, = —47J? is the non-commutative correction. To obtain the value of the defor-

mation parameter, we can consider that the discrepancy of the observational data and
the theoretical value in the specific case of Mercury (see table 1), could be due to the

Table 1. Sources of the precession of perihelion for Mercury.

Amount (arcsec/Julian century) Cause

5028.83 £0.04[11] Coordinate (due to the precession of the equinoxes)
530 [12] Gravitational tugs of the other planets
0.0254 Oblateness of the Sun (quadrupole moment)
42.98 +£0.04 [13] General relativity

5603.24 Total

5599.7 Observed

—-3.54 Discrepancy
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non-commutativity scenario. Obviously we choose Mercury because it is a natural labo-
ratory to check deformations as it is expected that any little effect can be observable in its
orbit as Mercury is the nearest planet to the Sun. Therefore, we obtain /, = 1.68 x 10732,

4. Final remarks

In this article we have described the effects of Snyder space non-commutativity on
Kepler problem and have studied its effect on a planetary orbit. We have introduced
non-commutativity by performing the deformations in Poisson bracket algebra under a
mimic procedure from quantum standard formulations and then, using a general recipe
built the non-commutative phase-space coordinates (in the sense of Poisson brackets). We
found that the deformation in the central potential allows us to write a Lagrangian
for a particle in the Snyder—Kepler potential and to obtain formal solution for the
Kepler’s problem when non-commutativity is taken into account. Our solution is given
in terms of Weierstrass-p (g) and Weierstrass-z () functions. Then, we used our analy-
tical results to compute the advance of perihelion of a planetary orbit which is given by

Af = 27” =2 (1 +4J%)7 12
This can be approximated as a deviation of the Newtonian orbit as AQ >~ 27 (1 —2J?) =
27 + 86, wWhere 86, = —4m J? is the non-commutative correction.

Finally, we applied this formula to fix the discrepancy between observational data and
the theoretical value obtained from different classical sources and, under the hypothe-
sis that the discrepancy is due to the non-commutativity of the space, we obtained an
estimated value for the non-commutative deformation parameter given by [, = 1.68 x
10732, In future we would like to see the value of deformation parameter in more general
setting as the advance of perihelion in the neighborhood of a black hole.
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